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ABSTRACT

We present a novel formulation for the immersed coupling of isogeometric analysis and peridynamics for the simulation of fluid–structure in-
teraction (FSI). We focus on air-blast FSI and address the computational challenges of immersed FSI methods in the simulation of fracture and
fragmentation by developing a weakly volume-coupled FSI formulation by means of a simple penalty approach. We show the mathematical for-
mulation and present several numerical examples of inelastic ductile and brittle solids under blast loading that clearly demonstrate the power and
robustness of the proposed methodology.
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1 INTRODUCTION
The present work is a continuation of the efforts first reported
in [1,2], where the first and third authors of the present pa-
per formulated a framework for immersed fluid–structure in-
teraction (FSI) with applications to air blast. The coupled FSI
formulation utilized the weak forms of the governing fluid
and structural mechanics equations and discretized the equa-
tions using two meshes: background and foreground. The
coupled FSI kinematics was approximated using the basis func-
tions defined on the background mesh, while the solid do-
main integration, tracking of the solid current configuration
and storing of the solid internal history variables were car-
ried out on the foreground mesh. This construction resulted
in a monolithic FSI coupling without the mesh distortion is-
sues that may arise in moving-mesh techniques. One of the
key breakthroughs reported in [1,2] was a clear demonstra-
tion that the use of non-uniform rational B-splines (NURBS)-
based isogeometric analysis (IGA) [3,4] resulted in the in-
creased accuracy of the discrete solution. In particular, the
higher-order accuracy and smoothness of the strain-rate ap-
proximation completely removed the well-known cell-crossing
instability of the traditional material-point methods (MPMs)
that are typically discretized using low-order C0-continuous
finite element method (FEM) [5,6].
While the resulting FSI framework and its IGA-based im-

plementation present a very promising approach and a clear
advance over the existing methods, it was pointed out in [7]
that the proposed methodology could benefit from further
improvements.

Discretizing the solid on the background domain precludes
the direct use of the existing, well-established solid and struc-
tural mechanics solvers in the proposed FSI framework. This
lack of modularity was recently addressed in [7], where the
authors developed a strongly coupled FSI formulation that in-
troduced linear constraints between the background and fore-
ground discrete function spaces. The kinematic compatibility
was enforced through the constraint on the solution spaces,
while that same constraint on the test functions gave a con-
sistent definition of the discrete structural force vector on the
nodes (or control points in the case of IGA) of the background
grid. The resulting formulation was successfully demonstrated
on the coupling of IGA with a state-based peridynamic (PD)
solid [8–10].
Constraining the foreground solid to the background fluid

kinematics as in [7] gives the desired modularity together
with monolithic coupling; however, the modeling of fracture
and fragmentation in the immersed FSI simulations remains
a challenge. While the foreground discretization such as PD
can easily support discontinuous kinematic fields by locally
breaking bonds between material points [11–19], the smooth
background discretization of IGA [20–28] is not designed
to excel in approximating discontinuous kinematics. Thus,
constraining the foreground solution to its background counter-
part results in an overly smooth foreground solution and, when
coupled with continuum-damage (or phase-field [26,27]) ap-
proaches tomodel fracture and fragmentation, results in the size
of damage zones that scales with that of the background mesh.
As a result, unless the background mesh is sufficiently fine, the
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damage bands appear to be artificially thick and often predict
non-physical behavior, especially in the brittle fracture regime.
The width of the damage zones may be reduced by using a finer
background mesh, but with a significant increase in the compu-
tational costs.
In order to directly address the issue of modeling fracture

and fragmentation, an alternative approach is needed where
the coupling of background and foreground solutions is weak-
ened, especially in the presence of damage growth and fracture
propagation. To develop such a coupling strategy, we took
inspiration from a recent work [29] where an elaborate vol-
ume coupling methodology using a Nitsche technique [30]
was formulated in the context of composite materials with a
complex microstructure. In the present effort, we develop a
relatively simple weakly coupled formulation where we only
retain the penalty terms of the volumetric Nitsche approach.
The main goal here is to assess whether the concept of weak
coupling, in our case of IGA and PD, is effective in addressing
the challenges involved in the modeling of fracture and frag-
mentation in the immersed FSI. Although in the present work
PD is used for the modeling of the solid on the foreground do-
main, other meshfree methods like reproducing kernel particle
methods (RKPM) [31–33] may be naturally employed for that
purpose.
The paper is outlined as follows. In Section 2, we summarize

the governing equations of fluid and structural mechanics at the
continuum level. In Section 3, we revisit the strongly-coupled
FSI formulation from [7] and develop a newweakly coupled ap-
proach by means of a carefully designed volumetric penalty op-
erator. InSection4, several 2Dnumerical examples arepresented
to compare the performance of the strongly and weakly coupled
immersed FSI formulations, to study the effect of the penalty pa-
rameter choices on the solution quality and to demonstrate the
effectiveness of weakly coupled approaches in dealing with frac-
ture and fragmentation in solids and structures subjected to blast
loading. In Section 5, we make concluding remarks and outlines
future research directions.

2 FLUID AND STRUCTURAL MECHANICS
GOVERNING EQUATIONS

Let � denote the FSI problem domain. Let �f and �s denote
the fluid and solid subdomains in the spatial configuration, with
�f ⋃�s = � and�f ⋂ �s = ∅.
The fluid mechanics problem is governed by the Navier–

Stokes equations of compressible flows. The weak form of the
fluid problem makes use of the following semilinear forms and
linear functionals:

M f
ω(W,Y) =

∫
ω

W · A f
0Y,tdω, (1)

B f
ω(W,Y) =

∫
ω

W · A f
i Y,idω −

∫
ω

W,i · (Fp
i − Fdi )dω,

(2)

F f
ω (W) =

∫
ω

W · S fdω +
∫

�
f
H

W · H f d�. (3)

Here,

Y =
⎡
⎣ p
v
T

⎤
⎦ (4)

is a set of pressure-primitive variables [34,35], where p is the
pressure, v is the material-particle velocity and T is the temper-
ature. Y andW are the vector-valued trial and test functions, re-
spectively, that are members of S and V , the fluid problem trial
and test function spaces, respectively. It is important to note that
these spaces are defined on all of �. The fluid traction and heat
flux boundary conditions are imposed on �

f
H , andH

f contains
the prescribed values of these boundary conditions. Fp

i and Fdi
are the pressure and viscous/thermal fluxes, respectively, S is the
volume source, and A0 and Ai are the Euler Jacobian matrices.
(The reader is referred to [1] and references therein for further
details.)The subscriptω is used todenote thedomainof integra-
tion, comma denotes partial differentiation with respect to the
spatial coordinates and i = 1, …, d, where d = 2, 3 is the space
dimension.Thecompressible-flowequations are complemented
with the ideal gas law as the equation of state.
With the above definitions, following [1], the continuous

weak form of the compressible flow problem may be stated as:
find Y ∈ S , such that ∀W ∈ V ,

M f
� f (W,Y) + B f

� f (W,Y) − F f
� f (W) = 0. (5)

The structure is modeled as an isothermal large-deformation
inelastic solidusing the frameworkof correspondence-basedPD.
Let S̃ and Ṽ denote the trial and test function spaces for the PD
formulation defined on �s. Assuming the Lagrangian form of
themass balance equation andno thermal coupling, the pressure
and temperature slots of the trial (Ỹ) and test (W̃) functions are
set to zero, while the slots 2: 2 + (d − 1) are occupied by the
solid velocity trial functions (ṽ) and the momentum-equation
test functions (w̃), respectively. That is,

Ỹ =
⎡
⎣ 0
ṽ
0

⎤
⎦ , (6)

and

W̃ =
⎡
⎣ 0
w̃
0

⎤
⎦ . (7)

Following [7], the semilinear forms and linear functionals em-
ployed in the the solid problem are:

Ms
�s(W̃, Ỹ) =

∫
�s
w̃ · ρs ˙̃v d�s, (8)

Bs
�s (W̃, Ỹ) =

∫
�s
w̃ ·

∫
H
(T − T′) dH d�s, (9)

and
F s

�s (W̃) =
∫

�s
w̃ · s d�s. (10)

Here,ρs is the current-configuration solidmass density, s is the
volumetric source term, and the overdot symbol is used to de-
note thematerial timederivative.ThePD family set (or horizon)
H(x) of the point x is defined as

H(x) = {x′ | x′ ∈ H(x) ∩ �s, 0 < |x′ − x| ≤ δ}, (11)
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where δ is the horizon size, 〈x − x′〉 denotes a PD bond be-
tween x and x′, T = T〈x − x′〉 is the PD force state, with
T′ = T〈x′ − x〉. Underscores are employed to mark the bond-
associated fields.
In the correspondence, PD framework classical constitutive

laws may be employed to evaluate the Cauchy stress at the bond
level. For this, the spatial velocity gradient is computed using the
integral form employed the reproducing kernel (RK) methods.
The relationship between the force stateT and theCauchy stress
depends on the details of the velocity-gradient definition and
evaluation. In the present work, we adopt the formulation de-
tailed in [7], Appendix A, and the reader is encouraged to con-
sult this reference as well as [10,36] for further information.
With the above definitions, the continuous, weak

correspondence-based PD formulation of the solid becomes:
find Ỹ ∈ S̃ , such that ∀W̃ ∈ Ṽ ,

Ms
�s(W̃, Ỹ) + Bs

�s (W̃, Ỹ) − F s
�s (W̃) = 0. (12)

3 COUPLED FSI FORMULATIONS IN A
DISCRETE FORM

In this section, we present two discrete forms of the volume-
coupled FSI problem. The first approach is presented recently
in [7], where the FSI coupling is carried out by explicitly
constraining the fluid and solid velocity degrees-of-freedom
(DOFs). We refer to this approach as strong coupling. As an al-
ternative, we also explore a weak coupling approach based on a
volumetric penalty formulation.
In both cases, we first define the background-domain finite-

dimensional trial- and test-function spaces Sh ⊂ S and Vh ⊂
V , respectively. The members of Sh and Vh may be written as

Yh(x) =
Ncp∑
B=1

YB NB(x) (13)

and

Wh(x) =
Ncp∑
A=1

WA NA(x), (14)

where YB andWA are the control-point DOFs and weights, re-
spectively,N(x)’s are the B-Spline basis functions andNcp is the
dimension of the B-Spline space. We also define S̃h and Ṽh, the
finite-dimensional trial and test function spaces, respectively, for
the PD solid. The members of S̃h and Ṽh may be written as:

Ỹh(x) =
Nmp∑
Q=1

ỸQ χQ (x) (15)

and

W̃h(x) =
Nmp∑
P=1

W̃P χP(x), (16)

whereNmp is the number of material points or PD nodes repre-
senting the solid, ỸQ ’s and W̃P’s are the discrete nodal DOFs and
weights, respectively, and χP(x) is a characteristic function of a
PD node P that satisfies∫

�s
χP(x) d�s = VP, (17)

where VP is the local volume of the PD node.

For the strong coupling approach, we use nodal interpolation
to relate the foreground PD and background IGA discrete func-
tion spaces as

Ỹh(x) = �Yh(x) =
Nmp∑
Q=1

⎛
⎝ Ncp∑

B=1

YB NB(xQ )

⎞
⎠ χQ (x) (18)

and

W̃h(x) = �Wh(x) =
Nmp∑
P=1

⎛
⎝ Ncp∑

A=1

WA NA(xP)

⎞
⎠ χP(x).

(19)
With these definitions, the spatially discretized, immersed,

strongly coupled FSI formulation may now be stated solely in
terms of the background domain unknowns as: find Yh ∈ Sh,
such that ∀Wh ∈ Vh,

M f
�(W

h,Yh) + B f
�(W

h,Yh) − F f
�(W

h) + Bst�(W
h,Yh)

+Bdc�(W
h,Yh) + Ms

�s (W̃h, Ỹh) + Bs
�s (W̃h, Ỹh)

−F s
�s (W̃h) − (M f

�s (Wh,Yh) + B f
�s(Wh,Yh)

− F f
�s (Wh) + Bst�s(Wh,Yh) + Bdc�s(Wh,Yh))

= 0. (20)

In the space-discrete case, we augment the Galerkin for-
mulation of compressible flows with the Streamline Upwing
Petrov Galerkin (SUPG) stabilization (Bst�(W

h,Yh)) [37–40]
and discontinuity-capturing (Bdc�(W

h,Yh)) [41–44] operators
to obtain a stable formulation in the regime of convection domi-
nance and to provide additional dissipation in the shock regions.
The detailed definition of these operators that are employed in
the present work may be found in [34,45,46]. Finally, because
numerical quadrature is not explicitly defined in the standalone
fluid mechanics domain, the integrals over the fluid mechanics
domain are carried out by computing the contributions over the
full FSI domain and subtracting the contributions from the solid
domain.

Remark 3.1.Constraining the trial and test functions of the PD do-
main to that of the background domain results in the following algo-
rithmic approach to the strong FSI coupling. At the beginning of the
step, the background fluid solutionYh is interpolated to the PDmesh
using Eq. (18), resulting in the field Ỹh. At this stage, Yh is used to
evaluate the discrete residual vector (also often called the nodal force
vector) for the background domain, while Ỹh is used to evaluate the
discrete residual vector for the foreground domain. The foreground-
domain residual vector is then distributed to the background-domain
DOFs using a linear transformation induced by Eq. (19). The reader
is referred to [7] for the details of this transformation. At this stage,
the background-DOF residuals are added, and the solution incre-
ment is computed on the background mesh. The procedure repeats
if multiple passes per step are employed.

Remark 3.2. The resulting strong coupling methodology is sim-
ilar to the classical immersed boundary [47] and immersed
finite element [48] methods, but, unlike these techniques, it
does not use ad hoc smoothed delta functions to distribute the
foreground-domain residual vector to the background DOFs.
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Figure 1Descriptions of the problem setup and geometry for the examples computed. (a) Chamber detonation. (b) A hollow square block of
ductile material subjected to internal explosion. (c) A hollow cylinder made of elastic, brittle material subjected to internal explosion.

The foreground-domain residual vector distribution on the
background DOFs is defined consistently with the test-function
constraints given by Eq. (19). This presents a clear bene-
fit of using a variational formulation in the background do-
main, which is associated with the fluid mechanics part of the
problem.

For the weak coupling approach, the fluid and structural equa-
tions are discretized independently and a volumetric penalty
term is added to the formulation to penalize the deviation be-
tween the fluid and structural velocities. The resulting formu-
lation is now stated in terms of both the background- and
foreground-meshunknowns as: findYh ∈ Sh and Ỹh ∈ S̃h, such
that for allWh ∈ Vh and W̃h ∈ Ṽh,

M f
�(W

h,Yh) + B f
�(W

h,Yh) − F f
�(W

h) + Bst�(W
h,Yh)

+Bdc�(W
h,Yh) + Ms

�s (W̃h, Ỹh) + Bs
�s (W̃h, Ỹh)

−F s
�s (W̃h) +

∫
�s
(wh − w̃h) ·Cpen (vh − ṽh) d�s

= 0. (21)

The penalty parameterCpen in Eq. (21) needs a careful design
to ensure a proper coupling between the fluid and structural sys-
tems and to not produce an overly stiff method with significant
limitations on the stable time step size. It is also important to
note that in the regions where the solid and fluid overlap, it is
not necessary to generate an accurate fluid mechanics solution
because, from the standpoint of the fluid problem, this region
is completely fictitious. On the other hand, it is imperative that
the solid solution is accurate and stable in this region since this
is the actual solid domain. For these reasons, we choose Cpen
to scale with the internal work terms of the solid formulation,
which, with the aid of scaling arguments, yields the following
definition:

Cpen = β
E
t
h2

. (22)

Here E is the local elastic modulus, h is local mesh size, 
t is
the time step size, and β is a dimensionless positive constant.
The latter may be chosen just large enough to ensure that the
penalty terms do not dominate the stable time step size, a com-
mon practice in contact and impact simulations using penalty
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Figure 2Chamber detonation problem. (a–c) Snapshots of air speed (in m/s) and solid plastic strain in the current configuration at different
times for the finest mesh. From top to bottom, the individual rows correspond to β = 1/3, β = 1.0, β = 3.0, β = 9.0, and strong coupling,
respectively. (d) Solid plastic strain at t = 0.7ms.
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Figure 3Chamber detonation problem. The solid deformed shape at t = 1.5ms. (a) β = 3.0. (b) β = 9.0. (c) Strong coupling.
(d) Conforming-mesh ALE result from [1].

methods (see [49–51]). In the case thematerial damage ismod-
eled, we propose to further modify the penalty parameter as

Cpen = β˜
(1 − d)E
t

h2
, (23)

where d is a damage variable (or a phase field variable [26,27])
with d= 1 corresponding to a complete loss ofmaterial stiffness.
We will examine the effects of the penalty parameter choice on
the resulting coupled FSI solutions presented in the Numerical
Examples section.

Remark 3.3. The penalty parameter Cpen is present only in the
last integral of Eq. (21). This integral is evaluated using numerical
quadrature associated with the nodes of PDmesh, where the damage
field is readily available.

Remark 3.4. The resulting weak coupling methodology is similar
in structure to immersogeometric FSI (IMGA-FSI) [23,24,52,53],
which is a new class of immersed FSI formulations that was devel-
oped for the coupling of incompressible flow with a Kirchhoff–Love
shell [54] using a combination of penalty and Lagrange multiplier
techniques. The present approach couples an IGA-based compress-
ible flow formulation to a PD solid by means of a volumetric penalty
only. A more elaborate Nitsche-like technique may be formulated in
the future to make the approach more robust with respect to the se-
lection of the penalty parameter.

The resulting semi-discrete FSI equations, for both the strongly
and weakly coupled formulations, are integrated in time using
an explicit generalized-α technique [55] that is adopted for im-
mersed FSI and detailed in [1].

4 NUMERICAL EXAMPLES
Three2Dnumerical examples, shown inFig. 1, are employed test
and demonstrate the performance of the IGA-PD framework
for FSI with a penalty-based coupling approach for blast load-
ing and fragmentation applications. The material parameters
and boundary and initial conditions for these examples may be
found in [7]. C1-continuous quadratic NURBS are used for the
background IGA solution, while RK functions with quadratic
consistency, rectangular support and bond-associative stabiliza-
tion [56,10] are employed in the foreground PD formulation.
The PD support size is chosen as δ = 2.5h [57], where h is the
mesh size. In the examples involving damage,we report anormal-
ized solid mass loss, which we define as

L�s =
∫
�s χ (d) ρs d�s∫

�s ρs d�s , χ (d) =
{
0 if d < 0.99
1 otherwise ,

(24)
where d is the scalar damage field.
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Figure 4Chamber detonation problem. Comparison of the results for different discretization levels and coupling approaches. (a) Coarse mesh.
(b)Mediummesh. (c) Fine mesh. From top to bottom, individual rows correspond to: (1) pressure at the center of detonation; (2) pressure at
the center of the right wall; (3) horizontal displacement of the bar center of mass; and (4) horizontal component of the integrated penalty force.
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Figure 5Chamber detonation problem. Comparison of the results for different discretization levels of β = 1. (1) Pressure at the center of
detonation; (2) pressure at the center of the right wall; (3) horizontal displacement of the bar center of mass; and (4) horizontal component of
the integrated penalty force.

Figure 6Ductile fracture problem. Snapshots of air speed (in m/s) and solid damage in the current configuration at different stages during the
simulation for the finest mesh. Top, middle and bottom rows correspond to strong coupling, weak coupling without damage in the penalty
stiffness, and weak coupling with damage in the penalty stiffness, respectively.

4.1 Chamber detonation
The problem setup is shown in Fig. 1a. We carry out the weakly
coupled simulations using four non-dimensional penalty con-
stants, β = 1/3, 1.0, 3.0, 9.0, and compare with the strongly
coupled case. Three different discretizations are considered for

each case: coarse - fluid: 20 × 20 elements; solid: 30 × 15 el-
ements (PD nodes); medium - fluid: 40 × 40 elements; solid:
60 × 30 elements (PD nodes); fine - fluid: 80 × 80 elements;
solid: 120× 60 elements (PD nodes). In the PD case, each fore-
ground element is replaced by a meshfree node at its centroid
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Figure 7Ductile fracture problem. Comparison of solid damage for different coupling approaches. Zoomed-in view of the solutions for the
finest mesh. Top and bottom rows correspond to 150μs and 200μs, respectively. The number of fully damaged PD nodes at the fracture
interface is indicated. (a) Strong coupling. (b)Weak coupling without damage in the penalty stiffness. (c) Weak coupling with damage in the
penalty stiffness.

Figure 8Ductile fracture problem. Comparison of the normalized solid mass loss for different coupling approaches and discretizations. (a)
Coarse mesh. (b)Mediummesh. (c) Fine mesh. Here, strong indicates strong coupling, penalty indicates weak coupling without damage in the
penalty stiffness and damaged-penalty indicates weak coupling with damage in the penalty stiffness.

with anequivalent volume.The time step sizeused for the coarse,
medium and fine strongly coupled cases is 1ms, 0.5ms and
0.25ms, respectively. The time step size used for all the weakly
coupled cases is taken to be 8 times smaller than the correspond-
ing values for the strongly coupled cases. This factor is chosen
such that the simulations remain stable for the largest value of
β = 9.0.

Air speed and solid plastic strain contours at several time in-
stants are compared between the different cases computed on
the finest mesh in Fig. 2. The fluid response appears to be
very similar in all cases. As the penalty constant increases, plas-
tic contours in the solid domain become more pronounced,
more so near the domain boundaries and, especially, at the cor-
ners. The strong coupling produces excessive deformation and
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Figure 9 Brittle fracture problem. Snapshots of air speed (in m/s) and solid damage in the current configuration computed on the finest mesh.
Top, middle and bottom rows correspond to strong coupling, weak coupling without damage in the penalty stiffness and weak coupling with
damage in the penalty stiffness, respectively.

plastic straining at the domain corners because the discrete solu-
tion tries to accommodate high velocity gradients near the cor-
ners of the solid. Switching to weak coupling allows for some
mismatch in the kinematics, and the domain corners experience
little distortion, which is a real advantage of the proposed weak
coupling.
InFig. 3, the final shapeof the bar (for the finest discretization)

is compared for the weak and strong immersed FSI cou-
pling approaches and the conforming-discretization arbitrary
Lagrangian–Eulerian (ALE) simulation results taken from [1].
The agreement with the ALE results is quite good, especially for
the higher penalty-constant case. Note the fluid mesh distortion
in the vicinity of the corners for the ALE case. Figure 4 shows
the time history of the pressure, the solid-object center-of-mass
displacement, and the integrated penalty force on the solid in
the x-direction for the 3 discretizations employed. Convergence
with mesh refinement for all quantities may be inferred. In

addition, the figure shows that the penalty force is not a strong
function of the penalty constant value, which is an important
observation on the robustness of the approach. Figure 5 shows
the same quantities for the β = 1.0 case and for the 3 discretiza-
tions employed. We note that all the quantities clearly converge
undermesh refinement, as well as the fact that the global penalty
force is likewise not a strong function of the mesh size. This
suggests that even using relatively coarse background meshes
may result in an accurate total force the structure feels from the
surrounding fluid.

4.2 Ductile solid subjected to internal explosion
The problem setup is shown in Fig. 1b. To simulate ductile frac-
ture, a plasticity-driven failure approach described in [10,36]
is employed with ε̄Pth = 0.18 and ε̄Pcr = 0.2. The background
domain and foreground solid are discretized uniformly. Three
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Figure 10 Brittle fracture problem. Normalized solid mass loss for different coupling approaches and discretizations: (a) coarse mesh; (b)
mediummesh; and (c) fine mesh. Here, strong indicates strong coupling, penalty indicates weak coupling without damage in the penalty
stiffness and damaged-penalty indicates weak coupling with damage in the penalty stiffness.

discretization levels are considered, with the solid node spacing
of h = 2mm, 1.5mm and 1mm, respectively. In each case, the
fluid mesh size is set to four times that of the solid node spacing.
The time step size used for the coarse, medium and fine strongly
coupled cases is 0.4μs, 0.3μs and0.2μs, respectively.The time
step used for the weakly coupled cases is four times smaller for
the strongly coupled cases on the respectivemeshes. This choice
is made to stably accommodate a penalty constant of β = 1 em-
ployed in the weakly coupled simulations. For the weakly cou-
pled cases, we also examine the effect of adding the damage vari-
able in the definition of the penalty parameter (see Section 3).
Figure 6 shows the results of the finest-mesh simulations,

where the air speed is plotted on the background mesh while
the damage field is plotted on the foreground PD nodes. In all
cases, the fractures initiate at the interior corners, the locations of
stress concentration, and show a very similar final pattern. How-
ever, the strongly coupled case exhibits much thicker damage
bands and the structural response is sufficiently different to al-
ter the fluid behavior as predicted by the strongly and weakly
coupled cases. For the weak coupling, the damage bands are
much narrower and, as a result, the fractures are much sharper.
Figure 7 examines the thickness of the damage band inmore de-
tail and compares the results of the strong coupling to the weak
coupling, with and without the damage variable affecting the
penalty stiffness. The results with the damage variable affecting
thepenalty stiffness correspond to the sharpest and cleanest frac-
ture.The timehistory of thenormalized solidmass loss is plotted
inFig. 8 andgives aquantitative confirmationof theobservations
in Figs 6 and 7.

4.3 Brittle solid subjected to internal explosion
The problem setup is shown in Fig. 1c. To simulate brittle frac-
ture using the bond-associative damagemodel [10,36], themax-
imum principal stress failure criterion is used with the critical
stress σcr = 3GPa. A PD bond is broken once its associated
maximum principal stress exceeds σ cr.
The background and foreground domains are discretized us-

ing a uniform rectangular mesh and a semi-uniform nodal spac-

ing (uniform along the θ -direction), respectively. We again con-
sider three meshes, with the solid node spacing of h = 2, 1.5
and 1mm. The fluid mesh size is set to three times that of the
solid node spacing in each case. The time step size for the coarse,
medium and fine meshes in the strongly coupled case is set to
0.4μs, 0.3μs and 0.2μs, respectively. The time step size used
for the weakly coupled cases is four times smaller on the corre-
sponding meshes. The penalty constant is set to β = 1.
Figure 9 shows the air speed on the background grid and the

damage field on the PD nodes in the current configuration. Un-
like in the ductile case, the blast wave shatters the brittlematerial
into many small fragments as predicted by the weakly coupled
simulations. However, in the strongly coupled case, the back-
ground mesh is not able to support such fine fragments and
produces a much smaller number of larger-size chunks. This
feature of theweakly coupledmethods to enable the solid to frag-
ment into small chunks that are not constrained in size to the
resolution of the background grid is remarkable and presents a
real breakthrough for the immersed FSI methods. We also note
that the fragmentation results are very similar for the cases with
andwithout damage dependence in the definition of the penalty
parameter. The time history of the normalized solid mass loss
reported in Fig. 10 shows a dramatic difference between the
strongly and weakly coupled cases.

5 CONCLUSIONS
We developed a practical computational framework that is ca-
pable of capturing the mechanics of air blast coupled to solids
and structures that undergo large, inelastic deformations, dam-
age and fragmentation. The foundation for the proposed frame-
work is an immersed FSI approach, which does not require ex-
plicit tracking of the fluid–structure interfaces and which has
no limitations on the solid domain motion and topology. Weak
forms of the fluid and structural mechanics equations are dis-
cretized on the background and foreground domains, respec-
tively, and are coupled by means of a volumetric penalty oper-
ator, which is the main novelty of the proposed approach. We
employ IGA based on NURBS in the background domain and
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a correspondence-based PD solid in the foreground domain us-
ing the RK functions to define the non-local derivatives [57,58].
We feel that the combination of these numerical methodologies
is particularly attractive for the problem class of interest due to
the higher-order accuracy and smoothness of IGA and RK, the
benefits of using immersed methodology in handling the fluid–
structure interfaces and coupling, and the unique capabilities of
PD for modeling fracture and fragmentation.
Using three numerical examples, the present work illustrates

very clearly that strong coupling, a hallmark of immersed bound-
ary methods and immersed finite element methods, while well
suited for FSI with large solid deformations, is not an opti-
mal approach for the modeling of fracture and fragmentation.
On the other hand, weak coupling remains accurate for large-
deformation FSI and enables the modeling of fracture and frag-
mentation with a lot less sticking, and with fragment sizes that
are not constrained to the resolutionof the backgroundmesh.As
such, the proposedmethodology presents a real breakthrough in
the application of immersed methods to FSI with fracture and
fragmentation.
A likely explanation for the observed results is the fact that

the volumetric penalty term attempts to minimize the error be-
tween the fluid and structural kinematics in the L2-norm over
the volume. L2 is a weak norm that does not significantly pe-
nalize discontinuities or sharp gradients in the difference be-
tween the foreground and background solutions. As a result, the
foreground solution is able to develop the discontinuities (i.e.
fractures) that remain essentially undetected by the background
mesh through the volumetric penalty operator. Conversely, in
the strong coupling approach, any discontinuity generated on
the foreground mesh is “overwritten” by the strong kinematics
constraint to the smooth background grid that does not support
solution discontinuities.
In the future, it may be worthwhile to investigate more elabo-

rate volumetric Nitsche coupling approaches to reduce the de-
pendence of the overall method performance, including the size
of the stable time step in explicit simulations, on the choice of
the penalty constant. However, onemust be careful to not intro-
duce stronger than necessary coupling and lose the benefits of
the present approach.
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