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Abstract

We extend the recently proposed framework using reduced quadrature in the Finite Element and
Isogeometric methods for solid mechanics to the nonlinear realm. The proposed approach makes
use of the governing equations in the updated Lagrangian formulation in combination with the rate
form of the constitutive laws. The key ingredient in the framework is the careful development and
use of the Taylor series expansion in the integrands of the internal work terms. The resulting for-
mulation relies on the evaluation of stress gradients, for which the evolution equations and update
algorithms are developed. The versatility of the proposed approach is demonstrated on an extensive
set of numerical examples employing a variety of constitutive models. The resulting formulations
are especially effective in alleviating volumetric locking for the cases of nearly-incompressible and
plastic deformations.

Keywords: One-point quadrature, Volumetric locking, Isogeometric Analysis (IGA), Taylor
series expansion, Plasticity, M7 Microplane model

1. Introduction

In [1] the authors developed a new approach to numerical quadrature in computational solids
that is based on the idea of Taylor expansion of the integrated quantities, focusing on the treatment
of the stress terms. This was done in an effort to: 1. Reduce the computational costs associated
with the traditional Gaussian quadrature; 2. Develop a parameter-free framework for stabilizing
reduced-integration approaches; and 3. Provide accurate and stable methods for the discretiza-
tions that rely on the nodal quadrature, such as meshfree methods [2]. Although the formulation
in [1] assumed linear elasticity and rectangular element topology, applications to FEM (linear and
quadratic), NURBS-based IGA [3, 4], and the Material-Point Method (MPM) [5] using IGA as
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the discretization [6] were presented to illustrate the method’s broader applicability. An important
development in [1] was the treatment of near-incompressibility where the corrections coming from
the Taylor series expansion were only applied to the deviatoric part of the stress. This construc-
tion alleviated volumetric locking issues without the need to introduce suitable auxiliary pressure
approximation spaces, a significant benefit for the discretizations of higher order and continuity.
Another important finding in [1] was the need to use the Taylor series expansion up to second order
to fully eliminate zero-energy modes from 3D linear hexahedral discretizations.

In the present work, we extent the ideas and methods developed in [1] to the nonlinear realm.
Before proceeding, we note that the use of the Taylor series expansion in the evaluation of internal
work terms in the FEM and related methods is not new. The first papers appeared in the early-
to-mid 80s [7, 8] and were aimed at addressing the instability of one-point quadrature methods
and improving the performance of hourglass control techniques [9, 10]. After a fairly long pause,
in [11], the authors used the Taylor expansion of the first PK stress in the framework of the total
Lagrangian formulation, and combined it with the more traditional artificial stiffness technique
(still requiring a tunable parameter) to develop nonlinear large-deformation solid formulations.
The work in [11] was recently extended to include a gradient-extended damage model. Nodal in-
tegration in meshfree methods, such as the Reproducing Kernel Particle Method (RKPM) [12, 13],
suffers very similar issues as one-point quadrature in FEM. Because of the smoothness of meshfree
approximations, short wavelength modes with zero gradient at nodal locations can be admitted in
the solution with little to no resistance, which often leads to severe node-to-node oscillations in
the numerical results [14–16]. Stress points [17–19] and sub-domain type methods [20–23] have
also been utilized to avoid the instability, but this is akin to expensive high-order quadrature. The
Taylor series expansion approach of [7] has been employed for meshfree methods in [24, 25] and
later developed with implicit gradients in [26, 27] to provide a low-cost, practical solution [28].
Nevertheless, the nonlinear formulations need approximate material tangents [28]. Overall, the
sub-domain methods, least-squares methods [15, 29, 30], and Taylor series methods all necessitate
stress-gradient type terms whose development is lacking and is also address in the present paper.

Methods of reduced quadrature for IGA are often based on finding an optimal set of points
(or a near-optimal set, like the Greville points) and weights that can exactly integrate piece-wise
polynomial functions with a given degree of continuity [31, 32]. More recently, reduced Gauss
quadrature rules, as well as a combination of Gauss-point- and Greville-point-based rules were
developed in [33, 34] for IGA. These approaches significantly reduced the number of quadrature
points required for IGA relative to the full Gauss quadrature because the continuity of B-Spline
functions was explicitly taken into account when constructing these rules. However, these rules are
quite specialized to NURBS-based IGA in that they rely on the knot-vector or patch structure of
the NURBS meshes. In addition, near-incompressibility, which is important in many applications,
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is not explicitly addressed by these methods.
In the present work, we’re guided by the considerations of: 1. Relative method simplicity;

2. Circumvention of tunable parameters; 3. Direct applicability to a large class of discretizations
(FEM, IGA, meshfree methods) and constitutive models; and 4. Proper treatment of large defor-
mations. For this, our proposed formulation includes the following items and features. We work
with the governing equations in the updated Lagrangian form [35] and assume that the constitutive
laws are written in the rate form. In the internal work terms, both the Cauchy stress and strain-
displacement (or strain-rate-velocity) matrix are expanded in the Taylor series up to second order
in the element parametric variable. The Taylor expansion results in the structure of the internal
work integral that includes the one-point quadrature term and correction terms that depend on the
first and second parametric gradients of the Cauchy stress. Given a choice of the objective rate of
stress, time-evolution equations and update algorithms are developed for the stress and its para-
metric gradients. The stress gradient updates make use of the material tangent stiffness matrix,
which, if not available in the analytical form, may be approximated using a finite-difference ap-
proach. (The original idea to introduce the rate form of the stress gradient equation and develop its
update is from [36].) Ideas from the B-bar formulation [37, 38] are used to develop the correction
terms such that volumetric locking is avoided for the cases of nearly-incompressible and plastic
deformations.

The paper is organized as follows. In Section 2 we develop the core constituents of the pro-
posed framework, including the evolution equations and update algorithms for the stress parametric
gradients, linearization of the resulting correction terms, treatment of near-incompressibility, and
reduction to the 2D case. In Section 3 we show how our proposed framework applies to several
popular constitutive models, namely, hyperelasticity, Von Mises plasticity, and the M7 Microplane
model of concrete failure [39]. In Section 4 we show several numerical examples using both linear
FEM and quadratic NURBS discretizations. In Section 5 we draw conclusions.

2. Theoretical Framework

2.1. Core Formulation

We start from the weak form of the updated Lagrangian formulation of solid mechanics: Find
v, such that for all w∫

Ω

w · ρ
∂v
∂t

∣∣∣∣∣
X

dΩ +

∫
Ω

∇w : σσσ dΩ −

∫
Ω

w · ρf dΩ −

∫
Γh

w · h dΓ = 0, (1)

where v is the velocity vector, ∂v
∂t

∣∣∣∣∣
X

is the acceleration vector, w is the vector-valued test function, Ω

is the solid-object current configuration,σσσ is the Cauchy stress, ρ is the solid density in the current
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configuration, f is the body force per unit mass, and h is the applied traction on the boundary Γh.
Let d = 2, 3 denote the number of space dimensions. The Galerkin approximation of the above

weak form leads to the following set of discrete nonlinear equations:

RAi =

∫
Ω

NAρ
∂vh

i

∂t

∣∣∣∣∣
X

dΩ +

∫
Ω

BAIiσI dΩ −

∫
Ω

NAρ fi dΩ −

∫
Γh

NAhi dΓ = 0, (2)

where A is the nodal or control-point index, i = 1, . . . , d is the Cartesian-direction index,
I = 1, . . . , d(d + 1)/2 is the Voigt-notation index, NA is the Ath basis function, and BAI j’s are
the components of the strain-displacement or strain rate-velocity matrix given by

BA =


NA,x1 0

0 NA,x2

NA,x2 NA,x1

 (3)

in 2D and

BA =



NA,x1 0 0
0 NA,x2 0
0 0 NA,x3

0 NA,x3 NA,x2

NA,x3 0 NA,x1

NA,x2 NA,x1 0


(4)

in 3D. Here and in what follows, comma denotes partial differentiation. The remaining develop-
ments assume 3D unless specified otherwise. Note that in the updated Lagrangian formulation
employed in this work the partial derivatives are taken with respect to the spatial coordinates of the
current configuration.

Following the developments in [1], we expand the internal work in Taylor series to second
order as follows:∫

Ωe

BT
Aσσσ dΩ =

∫
�

BT
AσσσJξ d� ≈ Jξ(000)

∫
�

(
BT

A(000) + ξiBT
A,ξi

(000) +
1
2
ξkξlBT

A,ξkξl
(000)

)
(
σσσ(000) + ξ jσσσ,ξ j(000) +

1
2
ξmξnσσσ,ξmξn(000)

)
d�.

(5)

Here, Ωe is the integration zone (e.g., a finite element) in the current configuration mapped from a
parametric domain denoted by �, ξξξ are the parametric coordinates, and Jξ is the Jacobian determi-
nant of the mapping between the parametric and physical domains. The latter quantity is assumed
to vary little over the integration-zone domain and is approximated by its value at the element mid-
point. The present work assumes that the parametric domain is a bi-unit square in 2D or a bi-unit
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cube in 3D.
In Equation (5), most cross-terms involving odd-order polynomial modes integrate to zero in

the parametric domain. Ignoring the remaining cross-terms we simplify Equation (5) as∫
Ωe

BT
Aσσσ dΩ ≈

(
Jξ(000)

∫
�

d�
)

BT
A(000)σσσ(000) +

(
Jξ(000)

∫
�

ξiξ j d�
)

BT
A,ξi

(000)σσσ,ξ j(000)

+

(
Jξ(000)

4

∫
�

ξkξlξmξn d�
)

BT
A,ξkξl

(000)σσσ,ξmξn(000).
(6)

Note that the integrals in the parentheses may be computed analytically with the values provided
in [1] for both the 2D and 3D cases. Furthermore, the moment matrix

∫
�
ξiξ j d� may be expressed

as a constant times the identity matrix for a bi-unit square or cube parametric domains.
The first term on the right hand side of Equation (6) corresponds to the traditional one-point

Gaussian quadrature technique, while the second and third terms represent the first-and second-
order corrections [1], respectively, and require the values of the parametric derivatives of the BA

matrix as well as the Cauchy stress. The former object may be expressed in 3D as follows:

BA,ξi =



NA,x1ξi 0 0
0 NA,x2ξi 0
0 0 NA,x3ξi

0 NA,x3ξi NA,x2ξi

NA,x3ξi 0 NA,x1ξi

NA,x2ξi NA,x1ξi 0


, BA,ξiξ j =



NA,x1ξiξ j 0 0
0 NA,x2ξiξ j 0
0 0 NA,x3ξiξ j

0 NA,x3ξiξ j NA,x2ξiξ j

NA,x3ξiξ j 0 NA,x1ξiξ j

NA,x2ξiξ j NA,x1ξiξ j 0


, (7)

with the mixed basis-function derivatives are approximated as

NA,xkξi ≈ NA,ξlξi [x−1
,ξξξ (000)]lk , NA,xkξiξ j ≈ NA,ξlξiξ j [x−1

,ξξξ (000)]lk. (8)

Here, as before, the Jacobian of the transformation between the physical and parametric domains
x,ξξξ is assumed to show little variation over the integration domain and is approximated by its value
at the midpoint of the parametric domain.

2.2. Evolution of the Cauchy Stress and Its Gradients

To develop the expressions for the Cauchy stress and its parametric derivatives that are applica-
ble to a large class of material models we will work with a rate form of the constitutive equations.
We adopt the Truesdell rate of the Cauchy stress σ̇σσTr, which may be expressed as [40]:

σ̇σσTr = σ̇σσ + (∇ · v) σσσ − ∇v σσσ −σσσ ∇vT , (9)
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where σ̇σσ is the material time derivative of the Cauchy stress. We also assume a constitutive law of
the form

σ̇σσTr = H(σσσ,∇v) (10)

where H is a response function. We will consider special cases of H in the later parts of the
paper. Combining Equations (9) and (10) and rearranging terms gives a time-continuous evolution
equation for the Cauchy stress

σ̇σσ = H(σσσ,∇v) − (∇ · v) σσσ + ∇v σσσ +σσσ ∇vT (11)

Integrating this equation in time at the midpoint of each integration zone gives the Cauchy stress
needed to evaluate the first term on the right hand side of Equation (6).

In order to evaluate the second term on the right hand side of Equation (6), following the ideas
from [36], we differentiate both sides of Equation (11) with respect to the parametric coordinates
ξξξ to obtain

˙(σσσ,ξi) = H,ξi(σσσ,∇v) − (∇ · v),ξi σσσ − (∇ · v) σσσ,ξi + ∇v,ξi σσσ + ∇v σσσ,ξi +σσσ,ξi ∇vT +σσσ ∇vT
,ξi

. (12)

Equation (12) now defines the evolution equation for the Cauchy stress parametric gradient. Inte-
grating this equation in time at the midpoint of each integration zone produces the Cauchy stress
parametric gradient needed to evaluate the second term on the right hand side of Equation (6).
Note that because the partial derivatives are taken with respect to the time-independent parametric
coordinates, we are able to interchange the order of space and time differentiation on the left side
of Equation (12). Similarly, differentiating both sides of Equation (12) with respect to ξξξ results in

˙(σσσ,ξiξ j) = H,ξiξ j(σσσ,∇v) − (∇ · v),ξiξ j σσσ − (∇ · v),ξi σσσ,ξ j − (∇ · v) σσσ,ξiξ j − (∇ · v),ξ j σσσ,ξi

+ ∇v,ξiξ j σσσ + ∇v,ξi σσσ,ξ j + ∇v σσσ,ξiξ j + ∇v,ξ j σσσ,ξi

+σσσ,ξiξ j ∇vT +σσσ,ξi ∇vT
,ξ j

+σσσ ∇vT
,ξiξ j

+σσσ,ξ j ∇vT
,ξi

,

(13)

which is the evolution equation for the stress second gradient that is required to evaluate the third
term in Equation (6).

2.2.1. Update Algorithms for the Cauchy Stress and Its Gradients

We apply a combination of operator-splitting and midpoint time integration approaches [36]
to the ODEs given by Equations (11)-(13) to develop update algorithms for the stress and its
gradients. This results in a classical half-step rotation approach for the stress update and the
corresponding extensions to the stress gradients detailed in what follows.
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Stress Update To update the stress, we carry out the following three-step procedure:

1. Rotate the Cauchy stress to the configuration at tn+ 1
2 :

σ̃σσn = σσσn +
∆t
2

(
− (∇ · v)n+ 1

2 σσσn + ∇vn+ 1
2 σσσn +σσσn (∇vT )n+ 1

2

)
. (14)

2. Update the Cauchy stress in the configuration at tn+ 1
2 using a constitutive model:

σ̃σσn+1 = σ̃σσn + ∆σ̃σσ, (15)

where the stress increment ∆σ̃σσ is given by

∆σ̃σσ = ∆t H(σ̃σσn,∇vn+ 1
2 ), (16)

It is important to note that if a midpoint technique is used to integrate Equation (2) in time,
only one half of the stress increment ∆σ̃σσ is added to σ̃σσn to produce the stress field at time
tn+ 1

2 in order to compute the contributions of the internal force terms in Equation (6).

3. Rotate the updated Cauchy stress to the configuration at tn+1:

σσσn+1 = σ̃σσn+1 +
∆t
2

(
− (∇ · v)n+ 1

2 σ̃σσn+1 + ∇vn+ 1
2 σ̃σσn+1 + σ̃σσn+1 (∇vT )n+ 1

2

)
, (17)

and store the result as the initial condition for the stress update in the next time step.

Stress Gradient Update For the stress gradient update, we carry out the following three-step
procedure:

1. Rotate the Cauchy stress gradient to the configuration at tn+ 1
2 :

σ̃σσn
,ξi

= σσσn
,ξi

+
∆t
2

(
− (∇ · v)n+ 1

2
,ξi

σσσn − (∇ · v)n+ 1
2 σσσn

,ξi

+ ∇vn+ 1
2

,ξi
σσσn + ∇vn+ 1

2 σσσn
,ξi

+σσσn
,ξi

(∇vT )n+ 1
2 +σσσn (∇vT

,ξi
)n+ 1

2

)
.

(18)

2. Update the Cauchy stress gradient in the configuration at tn+ 1
2 using a constitutive model:

σ̃σσn+1
,ξi

= σ̃σσn
,ξi

+ ∆σ̃σσ,ξi . (19)

The stress gradient increment ∆σ̃σσ,ξi may be computed as

∆σ̃σσ,ξi ≈
∂σσσ

∂εεε
∆εεε ,ξi = ∆t CCC∇svn+ 1

2
,ξi

, (20)
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where εεε is the strain, ∆εεε = ∆t∇svn+ 1
2 is the strain increment over the time interval (tn, tn+1),

∇s is the symmetric gradient, and CCC is the material tangent stiffness. Note that the stress
gradient increment is driven by the strain gradient increment, which, in turn, is computed as
a product of the strain rate gradient and time step size. As in the case of the stress update,
if a midpoint technique is used to integrate Equation (2) in time, only one half of the stress
gradient increment ∆σ̃σσ,ξi is added to σ̃σσn

,ξi
to produce the stress gradient field at time tn+ 1

2

in order to compute the first-order correction contributions of the internal force terms in
Equations (6).

3. Rotate the updated Cauchy stress gradient to the configuration at tn+1:

σσσn+1
,ξi

= σ̃σσn+1
,ξi

+
∆t
2

(
− (∇ · v)n+ 1

2
,ξi

σσσn+1 − (∇ · v)n+ 1
2 σ̃σσn+1

,ξi

+ ∇vn+ 1
2

,ξi
σσσn+1 + ∇vn+ 1

2 σ̃σσn+1
,ξi

+ σ̃σσn+1
,ξi

(∇vT )n+ 1
2 +σσσn+1 (∇vT

,ξi
)n+ 1

2

)
,

(21)

and store the result as the initial condition for the stress gradient update in the next time step.

Stress Second Gradient Update For the stress second gradient update, we carry out the following
three-step procedure:

1. Rotate the Cauchy stress second gradient to the configuration at tn+ 1
2 :

σ̃σσn
,ξiξ j

= σσσn
,ξiξ j

+
∆t
2

(
− (∇ · v)n+ 1

2
,ξiξ j

σσσn − (∇ · v)n+ 1
2

,ξi
σσσn

,ξ j
− (∇ · v)n+ 1

2 σσσn
,ξiξ j
− (∇ · v)n+ 1

2
,ξ j

σσσn
,ξi

+ ∇vn+ 1
2

,ξiξ j
σσσn + ∇vn+ 1

2
,ξi

σσσn
,ξ j

+ ∇vn+ 1
2 σσσn

,ξiξ j
+ ∇vn+ 1

2
,ξ j

σσσn
,ξi

+σσσn
,ξiξ j

(∇vT )n+ 1
2 +σσσn

,ξi
(∇vT )n+ 1

2
,ξ j

+σσσn (∇vT
,ξiξ j

)n+ 1
2 +σσσn

,ξ j
(∇vT

,ξi
)n+ 1

2

)
.

(22)

2. Update the Cauchy stress second gradient in the configuration at tn+ 1
2 using a constitutive

model:
σ̃σσn+1

,ξiξ j
= σ̃σσn

,ξiξ j
+ ∆σ̃σσ,ξiξ j . (23)

The stress second gradient increment ∆σ̃σσ,ξiξ j may be computed as

∆σ̃σσ,ξiξ j ≈
∂σσσ

∂εεε
∆εεε ,ξiξ j = ∆t CCC∇svn+ 1

2
,ξiξ j

. (24)

As before, if a midpoint technique is used to integrate Equation (2) in time, only one half
of the stress second gradient increment ∆σ̃σσ,ξiξ j is added to σ̃σσn

,ξiξ j
to produce the stress second

gradient field at time tn+ 1
2 in order to compute the contributions of the second-order correction

to the internal force terms in Equation (6).
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3. Rotate the updated Cauchy stress second gradient to the configuration at tn+1:

σσσn+1
,ξiξ j

= σ̃σσn+1
,ξiξ j

+
∆t
2

(
− (∇ · v)n+ 1

2
,ξiξ j

σσσn+1 − (∇ · v)n+ 1
2

,ξi
σσσn+1

,ξ j
− (∇ · v)n+ 1

2 σ̃σσn+1
,ξiξ j
− (∇ · v)n+ 1

2
,ξ j

σσσn+1
,ξi

+ ∇vn+ 1
2

,ξiξ j
σσσn+1 + ∇vn+ 1

2
,ξi

σσσn+1
,ξ j

+ ∇vn+ 1
2 σ̃σσn+1

,ξiξ j
+ ∇vn+ 1

2
,ξ j

σσσn+1
,ξi

+ σ̃σσn+1
,ξiξ j

(∇vT )n+ 1
2 +σσσn+1

,ξi
(∇vT )n+ 1

2
,ξ j

+σσσn+1 (∇vT
,ξiξ j

)n+ 1
2 +σσσn+1

,ξ j
(∇vT

,ξi
)n+ 1

2

)
,

(25)

and store the result as the initial condition for the stress second gradient update in the next
time step.

Remark 1. The theory presented in this work makes use of the Truesdell rate of the Cauchy stress,
which is an objective rate that is also natural for constitutive models defined in terms of the Second
Piola–Kirchhoff stress tensor, like in the case of hyperelasticity [35]. The proposed formulation
can accommodate other objective rates, which will introduce minor changes in the evolution of the
stress and its gradients. For example, the formulation based on the popular Jaumann rate of the
Cauchy stress may be obtained by replacing the velocity gradient with with its skew-symmetric
counterpart given by 1

2 (∇v − ∇vT ) (see also [36]).

Remark 2. The half-step algorithm above is second-order accurate in time and is used for the
dynamic analyses shown in this work. As an alternative that is better suited for quasi-static sim-
ulations, a full-step approach may be adopted. In this case, the algorithms are reduced to two
steps where a full-step rotation is followed by the material update. In that case, Equation (2) may
be integrated in time using the Backward Euler method. Alternatively, the inertial terms may be
dropped all together to produce a truly static response.

2.3. Linearization

For implicit computations using the Newton–Rhapson technique, the governing equations need
to be linearized with respect to the solution unknowns, which, in the present formulation, are
assumed to be nodal velocities at step n+1. We focus on the linearization of the internal force vector
and separate the contributions to the left-hand-side matrix coming from one-point quadrature and
correction terms as

K = K1pt + Kcorr1 + Kcorr2. (26)

Here, Kcorr1 and Kcorr2 are the first-order and second-order correction contributions, respectively.
The tangent stiffness matrix coming from the one-point quadrature term is standard and may be
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expressed as

K1pt
AiB j =

∆t
4

(
Jξ(000)

∫
�

d�
)

BAIi(000)DIJ(000)BBJ j(000)

+
∆t
4

(
Jξ(000)

∫
�

d�
)

NA,xk(000)σkl(000)NB,xl(000)δi j,
(27)

where the first and second term on the right hand side correspond to the material and geometric
stiffness contributions, respectively, δi j is the Kronecker delta, and DIJ are the components of the
material tangent stiffness tensor CCC in the Voigt notation.

The left-hand-side matrix contributions coming from the first- and second-order correction
terms may be deduced from the second and third terms, respectively, on the right-hand side of
Equation (6) and expressed as:

Kcorr1
AiB j =

∆t
4

(
Jξ(000)

∫
�

ξkξld�
)

BAIi,ξk(000)DIJ(000)BBJ j,ξl(000)

+
∆t
4

(
Jξ(000)

∫
�

ξmξnd�
)

NA,xkξm(000)σkl(000)NB,xlξn(000)δi j,
(28)

and

Kcorr2
AiB j =

∆t
16

(
Jξ(000)

∫
�

ξkξlξmξnd�
)

BAIi,ξkξl(000)DIJ(000)BBJ j,ξmξn(000)

+
∆t
16

(
Jξ(000)

∫
�

ξpξqξrξsd�
)

NA,xkξpξq(000)σkl(000)NB,xlξrξs(000)δi j,
(29)

where, as before, we separate the material and geometric stiffness contributions. In the above
expressions the factor ∆t

4 assumes the use of midpoint time integration and nodal velocities as
unknowns.

Remark 3. The formulation presented in this section includes correction terms up to second order.
It should be noted that for a 2D linear quadrilateral the contribution of the second-order correction
terms is identically zero, which simplifies the formulation considerably. As pointed out in [1], for
a 3D linear hexahedron, second-order correction includes a handful of non-zero terms that should
be included in the formulation to eliminate zero-energy modes present the formulation using only
first-order correction.

2.4. Treatment of Near-Incompressibility

It is well known that nearly incompressible materials exhibit volumetric locking under full
quadrature, while low-order quadrature leads to hourglassing [9, 10, 41]. In addition, even com-
pressible materials exhibit volumetric locking under full quadrature in the presence of plastic de-
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formations, which are isochoric. As a result, the proposed correction framework needs to be mod-
ified to enable stable and accurate handling of near-incompressibility and plastic deformations.
To develop the formulation, we take inspiration from the B-bar technique [37] and first carry out
an additive decomposition of the strain-rate velocity matrix BA into its deviatoric and dilatational
parts as

BA = Bdev
A + Bdil

A , (30)

where, in 3D,

Bdev
A =



2
3 NA,x1 −1

3 NA,x2 −
1
3 NA,x3

−1
3 NA,x1

2
3 NA,x2 −1

3 NA,x3

−1
3 NA,x1 −

1
3 NA,x2

2
3 NA,x3

0 NA,x3 NA,x2

NA,x3 0 NA,x1

NA,x2 NA,x1 0


, (31)

and

Bdil
A =



1
3 NA,x1

1
3 NA,x2

1
3 NA,x3

1
3 NA,x1

1
3 NA,x2

1
3 NA,x3

1
3 NA,x1

1
3 NA,x2

1
3 NA,x3

0 0 0
0 0 0
0 0 0


. (32)

We also provide the expressions for Bdev
A,ξi

and Bdev
A,ξiξ j

, which we will use in the following sections:

Bdev
A,ξi

=



2
3 NA,x1ξi −1

3 NA,x2ξi −
1
3 NA,x3ξi

−1
3 NA,x1ξi

2
3 NA,x2ξi −1

3 NA,x3ξi

−1
3 NA,x1ξi −

1
3 NA,x2ξi

2
3 NA,x3ξi

0 NA,x3ξi NA,x2ξi

NA,x3ξi 0 NA,x1ξi

NA,x2ξi NA,x1ξi 0


, Bdev

A,ξiξ j
=



2
3 NA,x1ξiξ j −1

3 NA,x2ξiξ j −
1
3 NA,x3ξiξ j

−1
3 NA,x1ξiξ j

2
3 NA,x2ξiξ j −1

3 NA,x3ξiξ j

−1
3 NA,x1ξiξ j −

1
3 NA,x2ξiξ j

2
3 NA,x3ξiξ j

0 NA,x3ξiξ j NA,x2ξiξ j

NA,x3ξiξ j 0 NA,x1ξiξ j

NA,x2ξiξ j NA,x1ξiξ j 0


.

(33)
As a next step, we develop B̄A, the “bar” version of the strain rate-velocity matrix. We first present
the lower-order case, suitable for linear FEM, and then show an extension to the higher-order case
suitable for quadratic NURBS.
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2.4.1. Low-Order Case

We project Bdil
A onto the integration-zone constants by interpolating it at the parametric origin

as
B̄dil

A = Bdil
A (000), (34)

and define B̄A as
B̄A = Bdev

A + B̄dil
A = Bdev

A + Bdil
A (000). (35)

Note that the above choice implies: i) B̄A(000) = BA(000); and ii) B̄A,ξi(000) = Bdev
A,ξi

(000) and B̄A,ξiξ j(000) =

Bdev
A,ξiξ j

(000). Replacing BA with B̄A in the Galerkin formulation given by Equation (2) results in the
following expressions for the internal force vector:∫

Ωe

B̄T
Aσσσ dΩ ≈

(
Jξ(000)

∫
�

d�
)

BT
A(000)σσσ(000)

+

(
Jξ(000)

∫
�

ξiξ jd�
)

Bdev T
A,ξi

(000)σσσ,ξ j(000)

+

(
Jξ(000)

∫
�

ξkξlξmξnd�
)

Bdev T
A,ξkξl

(000)σσσ,ξmξn(000).

(36)

Here, the first- and second-order corrections make use of the deviatoric part of the stress, a key
idea in development of the selective/reduced integration (SRI) schemes [42]. The tangent matrix
corresponding to the above force vector may be now expressed as

K = K1pt + Kcorr1 + Kcorr2, (37)

where the one-point quadrature contribution K1pt is the same as in Equation (27) and the correction
contributions are:

Kcorr1
AiB j =

∆t
4

(
Jξ(000)

∫
�

ξkξld�
)

Bdev
AIi,ξk

(000)DIJ(000)Bdev
BJ j,ξl

(000)

+
∆t
4

(
Jξ(000)

∫
�

ξpξqd�
)

NA,xnξp(000)
(
T dev

klinσlm(000)T dev
km jo

)
NB,xoξq(000)

(38)

and

Kcorr2
AiB j =

∆t
16

(
Jξ(000)

∫
�

ξkξlξmξnd�
)

Bdev
AIi,ξkξl

(000)DIJ(000)Bdev
BJ j,ξmξn

(000)

+
∆t
16

(
Jξ(000)

∫
�

ξpξqξrξsd�
)

NA,xnξpξq(000)
(
T dev

klinσlm(000)T dev
km jo

)
NB,xoξrξs(000).

(39)

Here, T dev
i jkl = δikδ jl −

1
3δi jδkl is the fourth-rank deviator tensor.
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The stress first and second gradient update algorithms are also modified to account for
near-incompressibility as follows:

Stress Gradient Update The three-step stress gradient evolution algorithm becomes:

1. Rotate the Cauchy stress gradient to the configuration at tn+ 1
2 :

σ̃σσn
,ξi

= σσσn
,ξi

+
∆t
2

(
− (∇ · v)n+ 1

2 σσσn
,ξi

+ ∇vdev,n+ 1
2

,ξi
σσσn + ∇vn+ 1

2 σσσn
,ξi

+σσσn
,ξi

(∇vT )n+ 1
2 +σσσn (∇vT

,ξi
)dev,n+ 1

2

)
.

(40)

2. Update the Cauchy stress gradient in the configuration at tn+ 1
2 using:

σ̃σσn+1
,ξi

= σ̃σσn
,ξi

+ ∆t CCC∇svdev,n+ 1
2

,ξi
. (41)

3. Rotate the updated Cauchy stress gradient to the configuration at tn+1:

σσσn+1
,ξi

= σ̃σσn+1
,ξi

+
∆t
2

(
− (∇ · v)n+ 1

2 σ̃σσn+1
,ξi

+ ∇vdev,n+ 1
2

,ξi
σσσn+1 + ∇vn+ 1

2 σ̃σσn+1
,ξi

+ σ̃σσn+1
,ξi

(∇vT )n+ 1
2 +σσσn+1 (∇vT

,ξi
)dev,n+ 1

2

)
,

(42)

and store the result as the initial condition for the stress gradient update in the next time
step. Note that in all the terms using parametric derivatives of the velocity gradient only its
deviatoric part survives, hence the use of the dev superscript in Equations (40)-(42).

Stress Second Gradient Update The three-step stress second gradient evolution algorithm be-
comes:

1. Rotate the Cauchy stress second gradient to the configuration at tn+ 1
2 :

σ̃σσn
,ξiξ j

= σσσn
,ξiξ j

+
∆t
2

(
− (∇ · v)n+ 1

2 σσσn
,ξiξ j

+ ∇vdev,n+ 1
2

,ξiξ j
σσσn + ∇vdev,n+ 1

2
,ξi

σσσn
,ξ j

+ ∇vn+ 1
2 σσσn

,ξiξ j
+ ∇vdev,n+ 1

2
,ξ j

σσσn
,ξi

+σσσn
,ξiξ j

(∇vT )n+ 1
2 +σσσn

,ξi
(∇vT )dev,n+ 1

2
,ξ j

+σσσn (∇vT
,ξiξ j

)dev,n+ 1
2 +σσσn

,ξ j
(∇vT

,ξi
)dev,n+ 1

2

)
.

(43)

2. Update the Cauchy stress second gradient in the configuration at tn+ 1
2 using:

σ̃σσn+1
,ξiξ j

= σ̃σσn
,ξiξ j

+ ∆t CCC∇svdev,n+ 1
2

,ξiξ j
. (44)
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3. Rotate the updated Cauchy stress second gradient to the configuration at tn+1:

σσσn+1
,ξiξ j

= σ̃σσn+1
,ξiξ j

+
∆t
2

(
− (∇ · v)n+ 1

2 σ̃σσn+1
,ξiξ j

+ ∇vdev,n+ 1
2

,ξiξ j
σσσn+1 + ∇vdev,n+ 1

2
,ξi

σσσn+1
,ξ j

+ ∇vn+ 1
2 σ̃σσn+1

,ξiξ j
+ ∇vdev,n+ 1

2
,ξ j

σσσn+1
,ξi

+ σ̃σσn+1
,ξiξ j

(∇vT )n+ 1
2 +σσσn+1

,ξi
(∇vT )dev,n+ 1

2
,ξ j

+σσσn+1 (∇vT
,ξiξ j

)dev,n+ 1
2 +σσσn+1

,ξ j
(∇vT

,ξi
)dev,n+ 1

2

)
,

(45)

and store the result as the initial condition for the stress second gradient update in the next
time step.

2.4.2. Higher-Order Case

To achieve better accuracy and stability for higher-order elements (e.g., quadratic NURBS) we
expand Bdil

A in Taylor series to include the linear modes as

B̄dil
A = Bdil

A (000) + ξ jBdil
A,ξ j

(000), (46)

and define B̄A as
B̄A = Bdev

A + B̄dil
A = Bdev

A + Bdil
A (000) + ξ jBdil

A,ξ j
(000). (47)

This choice implies: i) B̄A(000) = BA(000) and B̄A,ξi(000) = BA,ξi(000); and ii) B̄A,ξiξ j(000) = Bdev
A,ξiξ j

(000). Replac-
ing BA with B̄A in the Galerkin formulation given by Equation (2) gives the following expressions
for the internal force vector:∫

Ωe

BT
Aσσσ dΩ ≈

(
Jξ(000)

∫
�

d�
)

BT
A(000)σσσ(000)

+

(
Jξ(000)

∫
�

ξiξ jd�
)

BT
A,ξi

(000)σσσ,ξ j(000)

+

(
Jξ(000)

4

∫
�

ξkξlξmξnd�
)

Bdev T
A,ξkξl

(000)σσσ,ξmξn(000).

(48)

Note that in this construction the one-point quadrature and first-order correction terms make use of
the full stress, while the second-order correction terms make use of the deviatoric part of the stress.
The tangent-matrix contributions for the one-point quadrature and first-order correction terms are
thus given by Equations (27) and (28), respectively, while Equation (39) is employed to compute
the tangent-matrix contributions of the second-order correction terms. Likewise, only the stress
second gradient update algorithm needs to be modified to account for near-incompressibility.

2.4.3. Reduction to 2D

The reduction to 2D with treatment of near-incompressibility may be accomplished in two
ways. Starting from the 2D definition of the strain rate - velocity matrix, we define its deviatoric
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and dilatational parts as follows:

BA =


NA,x1 0

0 NA,x2

NA,x2 NA,x1

, (49)

Bdev
A =


1
2 NA,x1 −1

2 NA,x2

−1
2 NA,x1

1
2 NA,x2

NA,x2 NA,x1

, (50)

and

Bdil
A =


1
2 NA,x1

1
2 NA,x2

1
2 NA,x1

1
2 NA,x2

0 0

. (51)

In addition, the parametric gradient of Bdev
A becomes

Bdev
A,ξi

=


1
2 NA,x1ξi −1

2 NA,x2ξi

−1
2 NA,x1ξi

1
2 NA,x2ξi

NA,x2ξi NA,x1ξi

. (52)

Alternatively, starting with a 3D definition of the strain rate - velocity matrix, decomposing it
into the deviatoric and dilatational parts, and then introducing the plane strain assumption (i.e.,
velocities in the x3-direction and derivatives with respect to x3 are set to zero) yields:

BA =


NA,x1 0

0 NA,x2

0 0
NA,x2 NA,x1

, (53)

Bdev
A =


2
3 NA,x1 −1

3 NA,x2

−1
3 NA,x1

2
3 NA,x2

−1
3 NA,x1 −

1
3 NA,x2

NA,x2 NA,x1

, (54)

and

Bdil
A =


1
3 NA,x1

1
3 NA,x2

1
3 NA,x1

1
3 NA,x2

1
3 NA,x1

1
3 NA,x2

0 0

. (55)
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Note that the top three rows of the matrices correspond to the axial strain-rate components and the
33 component of the strain rate is retained. The parametric gradient of Bdev

A now becomes

Bdev
A,ξi

=


2
3 NA,x1ξi −1

3 NA,x2ξi

−1
3 NA,x1ξi

2
3 NA,x2ξi

−1
3 NA,x1ξi −

1
3 NA,x2ξi

NA,x2ξi NA,x1ξi

. (56)

Looking at the internal force and tangent matrix given by Equations (36)-(38), both alternatives
produce identical contributions for the one-point quadrature terms, while the contributions from
the correction terms employing Bdev

A,ξi
differ between the two approaches. We will study the effect

of choosing one approach over the other in the Numerical Examples sections of the present paper.

3. Application to Specific Constitutive Models

In this section we provide details of the correction framework for a selection of constitutive
material models, starting with hyperelastcity, progressing to Von Mises plasticity, and culminating
with the M7 Microplane model of concrete failure. The latter is taken as an example of a complex
material model treated as a “black box” algorithm in the present approach. (The M7 Microplane
model [43] is available as a FORTRAN77 routine at1.)

3.1. Hyperelasticity

Hyperelastic models assume the existence of a stored energy density function φ(E), where
E = 1

2 (FT F − I) is the Green–Lagrange strain and F is the deformation gradient. In this setting,
the second Piola–Kirchhoff stress S, which is work-conjugate to the Green–Lagrange strain, is ob-
tained from the energy density function by taking its derivative with respect to the Green–Lagrange
strain as S =

∂φ

∂E . The transformation between the second Piola–Kirchhoff and Cauchy stress takes
on the following form:

σσσ = J−1FSFT , (57)

where J = detF is the determinant of the deformation gradient. The reader is referred to [44]
and references therein for the background. Taking the material time derivative on both sides of
Equation (57) and using the fact that Ḟ = (∇v)F, results in the following expression for the material
time derivative of the Cauchy stress:

σ̇σσ = J−1FṠFT − (∇ · v) σσσ + ∇v σσσ +σσσ ∇vT . (58)

1http://www.civil.northwestern.edu/people/bazant/m7-coding/m7 cyc schell v1.f
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Comparing Equations (11), (10) and (58), we immediately recognize that the Truesdell rate of
the Cauchy stress may be expressed as a function of the material time derivative of the second
Piola–Kirchhoff stress as

σ̇σσTr = H(σσσ,∇v) = J−1FṠFT . (59)

In addition, it is clear from the above derivations that the Truesdell rate naturally arises in the
rate-form equations of hyperelasticity.

A direct computation of the material time derivative of S yields

Ṡ =
∂̇φ

∂E
=

∂2φ

∂E∂E
Ė = CheĖ, (60)

where Che =
∂2φ

∂E∂E is the material tangent tensor in the reference configuration. A direct computa-
tion of the material time derivative of E yields

Ė = FT ∇sv F. (61)

Combining Equations (59)-(61) enables us to express the Truesdell rate of the Cauchy stress purely
in terms of the current-configuration quantities as

σ̇σσTr = CCChe ∇sv, (62)

where CCChe is the current-configuration hyperelastic material tangent stiffness tensor. The latter is
obtained from its reference-configuration counterpart Che and may be conveniently expressed in
the index notation as

Che
i jkl = J−1FiαF jβFkγFlδChe

αβγδ, (63)

where the Greek indices are used to denote the reference-configuration quantities. Using the mate-
rial tangent stiffness from Equation (63) the increments of the stress and stress gradients may now
be computed in a straightforward manner as

∆σ̃σσ = ∆t CCChe,n+ 1
2 ∇svn+ 1

2 , (64)

∆σ̃σσ,ξi ≈ ∆t CCChe,n+ 1
2 ∇svn+ 1

2
,ξi

, (65)

and
∆σ̃σσ,ξiξ j ≈ ∆t CCChe,n+ 1

2 ∇svn+ 1
2

,ξiξ j
, (66)
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To account for near-incompressibility, the latter updates are modified as

∆σ̃σσ,ξi ≈ ∆t CCChe,n+ 1
2 ∇svdev,n+ 1

2
,ξi

(67)

and
∆σ̃σσ,ξiξ j ≈ ∆t CCChe,n+ 1

2 ∇svdev,n+ 1
2

,ξiξ j
. (68)

For the Neo-Hookean solid used in the numerical examples section, the 3D stored energy density
function φ may be written as

φ(J, C) = φiso(C) + φvol(J), (69)

where φiso and φvol are given by

φiso(C) =
1
2
µ(tr C − 3), (70)

φvol(J) = −µ ln J +
1
2
κ (ln J)2 , (71)

and C = 2E + I is the Cauchy–Green deformation tensor. With these definitions, the second
Piola—Kirchhoff stress S becomes

S = 2
∂φ

∂C
= κ ln JC−1 − µC−1 + µI, (72)

while the reference-configuration material tangent stiffness tensor Che is given by

Che = 4
∂2φ

∂C∂C
= 2(−µ + κ ln J)

∂C−1

∂C
+ κC−1 ⊗ C−1. (73)

Using the identity ∂
∂C (C−1) : T = −C−1TC−1, which holds for an arbitrary fourth-rank tensor T, we

can express the tangent stiffness tensor in the index notation as

Che
αβγδ = κC−1

αβC
−1
γδ + (µ − κ ln J)(C−1

αγC
−1
βδ + C−1

αδC
−1
βγ ). (74)

Remark 4. Rather than using the rate form of hyperelasticity given by Equation (62), one may
choose to evaluate the Cauchy stress directly by using Equation (57). In this case, the direct
evaluation would apply to the one-point quadrature terms, while the stress gradients would be
handled in the rate form with the updates given by Equations (65)-(66) or (67)-(68) for near-
incompressibility.
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3.2. Von Mises Isotropic Plasticity

We assume an isotropic hypoelastic-plastic material response of the form

σ̇σσTr = CCCel (∇sv − ∇svpl), (75)

where ∇svpl is the plastic strain rate and CCCel is the elastic stiffness tensor given by

Cel
i jkl = λδi jδkl + µ

(
δikδ jl + δilδ jk

)
, (76)

with λ and µ being the standard Lamé parameters. The von Mises yield criterion is defined through
the yield function f as

f
(
σvm, ε p)

= σvm − σY
(
ε p) , (77)

where σvm is the von Mises stress, σY is the yield stress, which is function of the equivalent plastic
strain ε p.

The yield function is employed as follows: The material responds elastically if f
(
σvm, ε p)

≤ 0;
plastic flow occurs on the so-called yield surface, i.e., for f

(
σvm, ε p)

= 0; the yield function
cannot exceed zero. To satisfy these conditions a return mapping technique was developed, which
consists of the elastic predictor followed by, if necessary, the plastic corrector. The plastic corrector
modifies the stress state and the associated internal variables to make sure the key yield condition,
f
(
σvm, ε p)

= 0, is satisfied. In the case of von Mises plasticity, the return mapping technique is
known as the radial return algorithm [35].

The first step of the radial return algorithm consists of the elastic predictor that defines the trial
Cauchy stress as

σσσtrial = σσσn + ∆t CCCel ∇svn+ 1
2 . (78)

The deviatoric part of the trial stress is computed in the usual manner as

σσσdev = σσσtrial −
1
3

(tr σσσtrial)I, (79)

and the trial von Mises stress becomes

σvm =

√
3
2
σσσdev : σσσdev. (80)

If the trial von Mises stress is such that f
(
σvm, ε p)

≤ 0, we conclude that the material response for
that step is elastic and complete the update of the stress and its gradients using the elastic predictor
as

∆σ̃σσ = σσσtrial −σσσn, (81)
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∆σ̃σσ,ξi ≈ ∆t CCCel ∇svn+ 1
2

,ξi
, (82)

and
∆σ̃σσ,ξiξ j ≈ ∆t CCCel ∇svn+ 1

2
,ξiξ j

. (83)

To account for near-incompressibility, the stress gradient updates become

∆σ̃σσ,ξi ≈ ∆t CCCel ∇svdev,n+ 1
2

,ξi
. (84)

and
∆σ̃σσ,ξiξ j ≈ ∆t CCCel ∇svdev,n+ 1

2
,ξiξ j

. (85)

If the trial von Mises stress is such that f
(
σvm, ε p) > 0, we radially return to the yield surface.

For this, using Newton’s method, we solve for the plastic strain increment ∆γ that satisfies the
equation

f ∗ (∆γ) = σvm − 3µ∆γ − σY
(
εn,p

+ ∆γ
)

= 0. (86)

Each step of the Newton iteration looks like

∆γk+1 = ∆γk +
f ∗

(
∆γk

)
3µ + Hk , (87)

where k is the iteration counter and Hk = dσY
dε p is the hardening modulus at the kth iteration. Once

the yield condition is met, we update the stress tensor and equivalent plastic strain as

σσσn+1 =
1
3

(tr σσσtrial)I +

(
1 −

3µ∆γ

σvm

)
σσσdev,

εn+1,p
= εn,p

+ ∆γ,
(88)

and compute the consistent elasto-plastic tangent modulus CCCep [45] as

C
ep
i jkl =

(
λ +

2µ
3

)
δi j δkl + 2 µ β Idev

i jkl − 2 µ γ ni j nkl

β =
σY

σvm0 , γ =
1

1 +
(

H
3µ

) − (1 − β) , ni j =
σdev

i j√
σdev

kl σ
dev
kl

,
(89)

where Idev
i jkl = 1

2

(
δikδ jl + δilδ jk

)
− 1

3δi jδkl is the symmetric fourth-rank deviatoric tensor. The stress
and stress gradients are now updated using the results of the plastic corrector step as

∆σ̃σσ = σσσn+1 −σσσn, (90)
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∆σ̃σσ,ξi ≈ ∆t CCCep ∇svn+ 1
2

,ξi
, (91)

and
∆σ̃σσ,ξiξ j ≈ ∆t CCCep ∇svn+ 1

2
,ξiξ j

, (92)

or, to account for near-incompressibility, as

∆σ̃σσ,ξi ≈ ∆t CCCep ∇svdev,n+ 1
2

,ξi
(93)

and
∆σ̃σσ,ξiξ j ≈ ∆t CCCep ∇svdev,n+ 1

2
,ξiξ j

. (94)

As will be shown in the numerical examples section, the latter stress gradient updates are critical
to avoid volumetric locking associated with the volume-preserving plastic deformations, even if
the material itself is compressible.

3.3. Approximate Material Tangent and the M7 Microplane Model of Concrete Failure

For more general constitutive models it is often the case that while the stress update is available,
the material tangent stiffness, which is required for the first- and second-order correction terms is
often too complex to derive analytically. In this case, we propose to approximate the material
tangent stiffness using a finite-difference approach. The key idea and a detailed discussion of this
technique may be traced back to [46].

We use Voigt notation in 3D and assume that the stress increment is obtained via a function or
algorithm that takes the strain increment as input, i.e.,

∆σσσ = ∆σσσ(∆εεε). (95)

To evaluate the tangent stiffness, we first define the strain vector increment in the direction J as
∆εεε J = εeJ, where ε is a small number, eJ is a the Jth cartesian basis vector, and J = 1, . . . , 6. The
components of the tangent stiffness DIJ, I = 1, . . . , 6, are given by

DIJ = lim
ε→0

∆σI(∆εεε J)
ε

. (96)

In practice, the limit is never taken and the above finite-difference-like expression in the present
work is evaluated using ε ≤ 10−4. Note that in order to populate the tangent stiffness tensor entries
the stress update function using the strain increment perturbations is called six times.

Remark 5. It is important that the tangent stiffness approximated by the above finite-difference
formula is consistent with the stress state coming from the actual stress update. If the yield condi-
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tion is met (not met) during the stress update, it must be assumed that the yield condition is also
met (not met) for all the strain perturbations used in the finite-difference approximation of DIJ.

We apply the above construction in the context of the M7 Miroplane Model of concrete failure
the basics of which we summarize in what follows. The M7 model is the latest in a sequence of
concrete models (labeled M0, M1, etc.) whose development began in the early 80s [39, 47–53].
A detailed history of these developments is provided in [39, 51]. In the microplane models, the
material response occurs on a multitude of planes of different orientations with the vectorial strain
and stress measures corresponding to a normal and two tangential (or shear) directions. This helps
the physical insight of the modeler by intuitively reflecting the microcrack openings, shear slip and
frictional dilatancy.

To characterize inelasticity or damage, the microplane stresses are subjected to the so-called
stress-strain boundaries, which are the strain-dependent yield limits imposed on each microplane
shown in [49, 50] to be appropriate for modeling of complex loading paths and load cycles. To
incrementally update the vectorial stresses, a 12-step algorithm detailed in [39] is employed. The
computational method involves an elastic predictor followed by a return (or drop) to the boundary
at constant strain (similar to the classical radial return algorithm in plasticity). Once the microplane
stresses are computed, the local tensorial stress is evaluated by employing the principle of virtual
work and using the collection of all the vectorial stresses on each microplane (all the planes in
different orientations on the surface of a unit hemisphere) [39]. The integral over the unit hemi-
sphere is approximated using numerical integration [48]. As shown in [54], utilizing at least 37
microplanes is essential for maintaining accuracy.

The M7 model was further extend to implicit analysis in [43], where a tangent stiffness was
derived. Here we approximate the material tangent stiffness using our finite difference approach
and use the analytical version for comparison in the Numerical Examples section.

4. Numerical Examples

We first provide abbreviations of the methods employed in the examples presented in this sec-
tion: FI stands for full integration; 1P1C stands for one point integration with correction up to first
order; 1P1C-23INC is 1P1C with near-incompressibility treatment using the 2x3 B-matrix in 2D
(see Section 2.4.3); 1P1C-24INC is 1P1C with near-incompressibility treatment using the 2x4 B-
matrix in 2D (see Section 2.4.3); 1P1C-3INC is 1P1C with near-incompressibility treatment in 3D;
1P2C stands for one point integration with up to second-order correction; 1P2C-INC is 1P2C with
near-incompressibility treatment on the second-order correction terms only (designed for higher-
order discretizations); and 1P1C-3INC-2C one point integration with near-incompressibility treat-
ment on both the first- and second-order correction terms.
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4.1. 2D Hyperelastic Cook’s Membrane Using Linear Quadrilaterals

Figure 1: Cook’s membrane problem setup. Problem dimensions is given in mm.

The problem configuration is depicted in Figure 1 with the dimensions given in mm. The
membrane is fixed at the left edge and subjected to a uniform vertical dead load at the right edge.
The problem parameters are as follows: Poisson ratio ν = 0.4999; Young’s modulus E = 78.2 GPa;
Traction F = 100 N/mm.

Figure 2: 2D hyperelastic nearly-incompressible Cook’s membrane. Top-right-hand-corner displacement versus the
number of elements per side. The converged value of the displacement (i.e., “External Solution”) is from [38].

We carry out the computations using a sequence of progressively refined meshes and compare
a subset of the methods presented here to the classical B-bar approach and a converged reference
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FI 1P1C-23INC 1P1C B-bar

Figure 3: 2D hyperelastic nearly-incompressible Cook’s membrane. Contours of the pressure (MPa).

solution from [38]. Figure 2 shows the top-right-hand-corner displacement as a function of the
number of elements per side, while Figure 3 shows the pressure distribution on the finest mesh.
The problem was computed using a total of 30 load steps in all cases.

The method performance is consistent with the linear-elastic Cook’s membrane case shown
in [1]. Namely, FI and 1P1C suffer from volumetric locking, which manifests itself in slow
convergence of the displacement and oscillations in the pressure contours, while the B-bar and
1P1C-23INC converge to the expected displacement value quickly and produce smooth pressure
contours. The 1P1C-23INC formulation appears to be a little softer on the coarse meshes than its
B-bar counterpart.

4.2. 2D Plastic Cook’s Membrane Using Linear Quadrilaterals

We repeat the computations from the previous section, assuming the material response is now
governed by the classical Von Mises isotropic plasticity. We also include both versions of the near-
incompressibility treatment (see Section 2.4.3). The problem setup may also be found in [38], with
a non-linear hardening law given by

κ(ep) = σ0 + (σ∞ − σ0)[1 − exp(−δep)] + Kep, (97)

where κ is the radius of the yield surface and ep is the effective plastic strain. The material param-
eters are as follows: Shear modulus µ = 80.1938 MPa; Bulk modulus κ = 164.21 MPa; Initial flow
stress σ0 = 0.450 MPa; Saturation flow stress σ∞ = 0.715 MPa; Saturation exponent δ = 16.93;
Linear hardening modulus K = 0.12924 MPa. We use 50 load steps to reach the final solution in
all cases.

Figures 4 and 5 show the top-right-hand-corner displacement and pressure contours, respec-
tively. As expected, FI and 1P1C exhibit locking, although it is not as severe as in the nearly-
incompressible case. 1P1C-23INC and 1P1C-24INC show very similar behavior and alleviate the
volumetric locking issue. B-bar, in this case, gives the softest response.
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Figure 4: 2D plastic Cook’s membrane. Top-right-hand-corner displacement versus the number of elements per side.
The converged value of the displacement (i.e., “External Solution”) is from [38].

4.3. 2D Plastic Taylor Bar Impact Using Linear Quadrilaterals

The Taylor bar impact experiment [55] is widely used as a benchmark validation for the nu-
merical solutions of problems involving large plastic deformations. The problem setup considered
here may be found in [56]. The 2D bar has the initial size of 32 × 6.4 mm. The bar is assigned a
downward initial velocity v = 227 m/s and the contact is modeled by applying no-penetration and
zero tangential stress boundary conditions at the bottom edge. For the plastic material employed,
the hardening law is linear and is given by

κ(ep) = σY + Kep. (98)

The rest of the problem parameters are as follows: Simulation time t∞ = 4 ×10−5 s; Poisson ratio
ν = 0.3; Density ρ = 2700 kg/m3; Young’s modulus E = 78.2 GPa; Yield stress σY = 290 MPa;
Hardening modulus K = 100 MPa.

Six meshes (labeled M1-M6), with 5 × 10, 10 × 20, 15 × 30, 20 × 40, 25 × 50 and 30 × 60
elements along the horizontal and vertical direction are employed in the calculations. The number
of time steps to complete the analyses were 30 for M1, 60 for M2, 90 for M3, 120 for M4, 150 for
M5, and 180 for M6. A comparison is made between FI, 1P1C-23INC, 1P1C-24INC, and B-bar
methods. Figure 6 shows the bottom-right-hand-corner displacement. Locking is observed for FI
as the spreading of the bottom edge is significantly underpredicted. 1P1C-23INC, 1P1C-24INC,
and B-bar all alleviate locking. B-bar converges to a slightly softer response compared to the
correction-based methods and the reference result in [56] also plotted in the figure.
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FI 1P1C-23INC 1P1C-24INC

1P1C B-bar

Figure 5: 2D plastic Cook’s membrane. Contours of the pressure (MPa).

Figure 7 shows the mesh M5 in the final configuration. The locking response of FI is clearly
visible. B-bar produces more shearing deformation and overly stretched elements near the center
of the bottom edge compared to the correction-based methods. Contours of the vertical component
of the Cauchy stress are shown in Figure 8. While no stress oscillations are present in either case,
the stress field is visibly different between the B-bar and correction-based methods.

4.4. 3D Plastic Square Taylor Bar Using Linear Hexahedra

We replicate the setup from [57] to simulate the square Taylor bar. We use quarter symmetry,
which gives the computational domain of 30×30×60 mm3. The remaining problem parameters are
as follows: Initial velocity v = 300 m/s; Final time t∞ = 8 ×10−5 s; Poisson ratio ν = 0.3; Density
ρ = 1,710 kg/m3; Young’s modulus E = 220 GPa; Yield stress σY = 200 MPa; Linear hardening
modulus K = 100 MPa. (Hardening law given by Equation (98) is employed.)

The computations are carried out using the mesh of 2,048 elements. The equivalent plastic
strain distribution on the bar deformed configuration is shown in Figure 9. Both FI and 1P1C show
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Figure 6: 2D Taylor bar. Bottom-right-hand-corner displacement. The converged value of the displacement (i.e.,
“External Solution”) is from [56].

FI 1P1C-23INC 1P1C-24INC B-bar

Figure 7: 2D Taylor bar. Mesh M5 in the final configuration.

significant locking, while the correction-based methods give the deformed shape and equivalent
plastic strain that are consistent with the results from [57], also shown in the figure. The case
from [57] was computed using 2,048 one-point quadrature linear hexes with hourglass control in
LS-DYNA, and used an actual contact model between the bar and rigid wall, which results in the
mushrooming at the base and some differences in the maximum values of the plastic strain. It is
also clear from the figure that, for the present example, including second-order correction terms
does not make a significant difference in the results. Although zero-energy modes are possible
with the first-order correction for 3D linear hexes (see [1]), they are not triggered in the present
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FI 1P1C-23INC 1P1C-24INC B-bar

Figure 8: 2D Taylor bar. Contours of the vertical component of the Cauchy stress (σ22) for mesh M5.

FI 1P1C

1P1C-3INC 1P1C-3INC-2C Reference Solution

Figure 9: 3D square Taylor bar. Equivalent plastic strain at final time. External solution is from [57]
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setup.

4.5. 3D Hyperelastic Block Under Compression Using Linear Hexahedra

Figure 10: 3D hyperelastic block under compression. Left: Geometry, boundary conditions, and loading. Right:
Deformed configuration and mesh.

This example, studied in [38, 58], is a popular volumetric locking benchmark problem. The
geometry, loading and boundary conditions are shown in Figure 10. A downward pressure p is
applied as a dead load over the grey area on the top of the block. The bottom plane is constrained
in the vertical direction, and the top plane is constrained in horizontal directions. The problem
parameters are as follows: Bulk modulus κ = 400,889.806 MPa; Shear modulus µ = 80.194 MPa;
Reference compression pressure p0 = 4 MPa, with the loading factors going from from p/p0 = 20
to p/p0 = 80. Quarter symmetry is applied to reduce the computational costs.

The deformed configuration for the 1P1C-3INC computation using the finest mesh and highest
load level is shown in Figure 10. The results are consistent with those reported in [58]. Figure 11
shows the results of the mesh refinement study for each load case. Vertical displacement of the
central node on the upper surface is the quantity of interest. The displacement is normalized
by the height of the block and expressed in percent values. The FI case, as expected, produced
severe locking, while the 1P1C-3INC formulation gave rapid convergence to the expected value
of the displacement for each load level. We also carried out the computations using the second-
order correction, i.e., 1P1C-3INC-2C, but little difference was observed compared to the first-order
correction. This observation is consistent with the results reported in Section 4.4.

4.6. 3D Twisted Hyperelastic Beam Using Linear Hexahedra and Quadratic NURBS

This example was introduced in [59] to assess the accuracy and robustness of IGA under high
mesh distortion. The geometry, loading, boundary conditions and the von Mises stress plotted on
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Figure 11: 3D hyperelastic block under compression. Convergence of the vertical displacement of the central node on
the upper surface of the block for different levels of the compressive load p/p0 = 20, 40, 60, 80. The displacement is
normalized by the height of the block and expressed in percent values. “External Solutions” are the converged values
of the displacement from [38].

the deformed near-final configuration are shown in Figure 12. The bottom surface of the beam is
fixed in all directions while the top surface is fixed in the vertical direction and has an applied in-
plane rotation. We use the same nearly-incompressible hyperelastic material model as the previous
example in Section 4.5.

We are interested in the maximum sustainable rotation angle θ and consider three discretiza-
tions: 6×6×18 linear hexahedra with 1P1C-3INC, 7×7×19 quadratic NURBS with 1P2C-INC and
7× 7× 19 quadratic NURBS with 1P1C-3INC-2C. The deformed configurations corresponding to
the three discretizations are shown in Figure 13. The results indicate that C0 linear hexes with near-
incompressibility treatment exhibit no locking and are able to reach 480◦ of twist; C1 quadratic
NURBS with the 1P2C-INC formulation (i.e., near-incompressibility treatment only on the second-
order correction terms) lock fairly early in the computations and are not able to go beyond 126◦

of twist; C1 quadratic NURBS with the 1P1C-3INC-2C formulation (i.e., near-incompressibility
treatment on the first- and second-order correction terms) exhibit the most robust behavior and
reach 492◦ of twist.

Note that we are able to reach nearly 500◦ of twist, which is somewhat lower than the maximum
sustainable rotation reported in [59]. The discrepancy is attributable to the use of a simple Newton–
Raphson technique for nonlinear equation solving in the present work. More advanced nonlinear
solution strategies were employed in the original reference to push the computations further.
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Figure 12: 3D twisted beam. Left: Geometry, boundary conditions, and loading. Right: Near-final configuration
(θ = 450◦) with the von Mises stress computed using C1-continuous quadratic NURBS.

4.7. 3D Cylindrical Plastic Taylor Bar Using Quadratic NURBS

We reproduce the setup from [56]. The modeling parameters are as follows: Initial height
23.46 mm; Initial radius 3.91 mm; Initial impact velocity v = 373 m/s; Final time t∞ = 4 ×10−5 s;
Poisson ratio ν = 0.3; Density ρ = 2700 kg/m3; Young’s modulus E = 78.2 GPa; Yield stress σY =

0.29 GPa; The hardening rule is given by

κ(ep) = σY(1 + 0.125ep)0.1. (99)

The problem is computed assuming quarter symmetry and using the meshes of 324, 768, and 1,500
C1-continuous quadratic NURBS elements.

The deformed shape and distribution of the equivalent plastic strain at the end of the compu-
tation are shown in Figures 14 and 15 using the finest mesh. The correction-based methods show
better correlation with the experimentally obtained final shape from [60] than the slightly lock-
ing FI case. Note that, compared to the results from a similar test case presented in the previous
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1P1C-3INC on C0 1P2C-INC on C1 1P1C-3INC-2C on C1

θ = 480◦ θ = 126◦ θ = 492◦

Figure 13: 3D twisted beam. Maximum sustainable rotation angle.

section, higher-order NURBS show a lot less volumetric locking under full quadrature than linear
hexes, which makes them less reliant on hourglass-control-, B-bar- or correction-type techniques.

Table 1: 3D cylindrical Taylor bar. Summary of results.

Type Elements Bottom Radius (mm) Height (mm) Normalized CPU Time
FI 324 7.17587 16.3469 1.0000
FI 768 7.38461 16.4063 3.2083
FI 1500 7.50073 16.4376 7.6903

1P2C 324 7.30374 16.6029 0.3292
1P2C 768 7.35342 16.5867 1.0787
1P2C 1500 7.47174 16.5843 2.5759

1P2C-INC 324 7.62881 16.6929 0.4436
1P2C-INC 768 7.57723 16.6233 1.4776
1P2C-INC 1500 7.54907 16.5959 3.4492
Experiment - - 16.51 -
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FI 1P2C 1P2C-INC

Figure 14: 3D cylindrical Taylor bar. Equivalent plastic strain distribution in the domain interior at the end of the
computation.

FI 1P2C 1P2C-INC Experiment Snapshot

Figure 15: 3D cylindrical Taylor bar. Deformed shape comparison. The experimental snapshot is from [60]

The summary of the bar final-configuration bottom radius and height as well as the normalized
CPU time for each run are reported in Table 1. The CPU time calculation includes quadrature
and formation of the left-hand-side matrix and right-hand-side vector. The near-incompressibility
treatment shows convergence from the softer side for the bottom radius, which is consistent with
the observations in [1]. Using the correction-based approaches results in about 60% computa-
tional cost savings for the overall CPU time relative to FI. This is quite significant because near-
incompressibility treatment, which typically incurs additional computational costs relative to FI, is
included at essentially no additional cost in the correction-based formulations.
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4.8. 3D Uniaxial Compression of a Concrete Prism Using the M7 Microplane Model

The setup is from [61], where the experimental compression tests on concrete prisms were con-
ducted. A 50×100×100 mm concrete prism with a square cross section is subjected to a downward
displacement-controlled loading, with a maximum global compressive strain 0.01. The M7 model
parameters are taken from [39]. Using the notation of the aforementioned reference, they are as
follows: Young’s modulus E = 30,173 MPa; k1 = 1 ×10−4; k2 = 110; k3 = 20; k4 = 40; k5 = 1 ×10−4;
Poisson ratio ν = 0.18. Following the procedure in [43], a 1% random perturbation to the param-
eter k1 is generated to prevent many elements entering the softening regime at the same time. An
adaptive time stepping technique is used to help convergence due to the nonlinear, strain-softening
nature of the M7 concrete model. We carry out implicit analysis using three meshes (denoted by
M1, M2 and M3) comprised of 512, 1,000 and 1,728 linear hexahedral elements, respectively.

Figure 16: Compression of a concrete prism. Global axial stress-strain response. Suffix “FD” denotes finite-difference
approximation of the tangent stiffness, while suffix “AT” denotes the analytical tangent stiffness. External solution is
from [39] and experimental result is from [61].

Figure 16 shows the global stress-strain response and an excellent agreement between the ex-
perimental data of [61], computational results of [39], and and our correction-based approach.
Only the first-order correction is employed in this case. Comparison of the analytical and finite-
difference-based formulation for the tangent stiffness is also presented and reveals virtually no
difference in the global stress-strain response predictions. We note that the agreement between the
experimental data and correction-based methods improves in the postpeak response as the mesh is
refined.

Table 2 provides a CPU time comparison between the FI and correction-based methods for M2.
The latter include the analytical expressions vs. the finite-difference approximation of the tangent
stiffness. (The FI case used the analytical tangent.) Note that, as before, the CPU time computation
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Table 2: Compression of a concrete prism. Number of time steps and normalized CPU time for M2.

Formulation Total Number of Time Steps Normalized CPU Time
1P1C-FD 1,378 0.4502
1P1C-AT 1,819 0.3193

FI-AT 2,040 1.0000

includes all aspects of the analysis exclude equation solving (time stepping, quadrature and ma-
trix assembly). We also include a number of adaptive time steps used to complete the simulation.
Note that the full quadrature case required over 2,000 steps to complete the calculations, while the
correction-based finite-difference approach used under 1,400 steps. The correction-based formu-
lation with the analytical tangent gave the best CPU time performance, while the correction-based
formulation using the finite-difference tangent came in second. The additional costs associated
with the finite-difference-based evaluation of the tangent stiffness do not seem significant, which
makes this a practical methodology for use with complex constitutive material models.

1P1C-FD 1P1C-AT

Figure 17: Compression of a concrete prism. Hydrostatic stress (MPa) at final time.

The hydrostatic stress contours at final time are plotted in Figure 17, showing little-to-no dif-
ference between the analytical and finite-difference material tangent definitions.

5. Conclusion

In this work, one-point integration and Taylor series expansion techniques developed in [1] for
linear elasticity are reformulated for the fully nonlinear case. The updated Lagrangian formula-
tion in combination with the rate form of the constitutive laws is felt to be a particularly suitable
framework for the application of the Taylor-expansion-based methods. The evolution equations
for the Cauchy stress parametric gradients are derived in a straightforward fashion. The increment
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of the stress parametric gradient (first and second) appears to be well approximated using a prod-
uct of the material tangent stiffness and the increment of the strain parametric gradient (first and
second). The framework respects objectivity and accommodates many constitutive laws, which
makes it well suited for large-deformation analysis. The resulting formulation is more straight-
forward to develop and implement than the methods based on the total Lagrangian approach. It is
also free from user-defined parameters. The treatment of near-incompressibility is straightforward,
computationally efficient, and robust.

The effectiveness of the methods developed is demonstrated on a set of numerical examples
using both linear FEM and quadratic NURBS discretizations. Several constitutive models with
varying levels of complexity are employed in the examples showing the versatility of the pro-
posed approach. The examples show applications ranging from highly dynamic impact of metal
specimens to quasi-static concrete failure. Good agreement with the experimental results is ob-
tained in all cases where the experimental date were available. It is important to note that the
finite-difference approximation of the material tangent stiffness used to compute the stress gradi-
ent increments appears to give stable and accurate results for a complex concrete failure model
without introducing significant additional computational costs. This opens the possibility to ef-
fectively use the proposed methodology for problems where the material tangent stiffness is not
readily available.
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