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Highlights

• Severe oscillations in node-based collocation methods have been found in convection-dominated problems

• Relationship between upwind stabilization and gradient smoothing technique is built

• Upwind reproducing kernel collocation method is designed

• No artificial parameter for stabilization is required in the entire formulation

Abstract

Because of the best approximation property, traditional Bubnov-Galerkin numerical methods have proven
immensely successful in modeling self-adjoint problems, such as heat conduction, elasticity, and so on. However,
a numerical instability arises in these (and central finite difference) methods for problems with strong convection.
In this class of problems, the convective transport term can lead to large spurious oscillations but can be handled
by the class of Petrov-Galerkin methods. In particular, the upwind-type schemes and their variational and subgrid
descendants have been substantially developed over the years for an effective weak-form Galerkin solution that
precludes these instabilities. Nevertheless, the scale of development of upwind methods for strong-form collocation
is substantially smaller, where numerical oscillations are also observed when they are straightforwardly applied
to convection-dominated problems without special treatment. To this end, this paper presents a new upwind
collocation method. First, the connection between the upwind finite difference scheme and the gradient smoothing
technique in meshfree methods is established. It is then shown that selecting the collocation points as meshfree
nodal points is not optimal; selecting the collocation points according to the flow direction and Péclet number is
then studied. The upwind effect is achieved without introducing artificial parameters and is trivial to generalize for
multi-dimensional cases. Cross-wind diffusion is also not observed in the solution. An error analysis is presented,
and the effectiveness of the proposed methodology is well demonstrated by the steady and unsteady numerical
examples.

keywords collocation, upwind, RKPM, convection-dominated problems

1 Introduction

The best approximation property possessed by the Bubnov-Galerkin method has been the key ingredient for the success
of FEM in modeling the problems such as heat conduction and elasticity [1]. However, the convective transport
terms in Eulerian conservation laws make the Bubnov-Galerkin method non-symmetric, leading to a loss of the
”best approximation” property. Consequently, numerical solutions for problems with significant first-order convective
terms may display spurious oscillations. One potential remedy for such oscillations is to refine the discretization
or decrease the element Péclet number. Stabilized Petrov-Galerkin methods [2–4] have successfully mitigated the
unstable oscillations in traditional Bubnov-Galerkin approaches by introducing artificial diffusivity. Additionally,
alternative methods featuring fine-scale features, such as the variational multi-scale method and residual free bubbles
[5] and residual free bubbles [6], have been developed to address challenges associated with Bubnov-Galerkin methods.

∗Corresponding author: jiarui wang@brown.edu

1



The numerical difficulties from the convection-dominated problems are also grounded in the class of meshfree
methods. Developed over two decades ago [7], these methods have demonstrated success in modeling large deforma-
tions, penetration, and fragmentation [8,9], achieving stability through nodal integration [10,11]. Substantial efforts
have been devoted to the development of stabilized meshfree methods for convection-dominated problems. The finite
point method [12] was employed to solve convective transport and compressible flow problems under residual type
stabilization. The multi-resolution reproducing kernel particle method (RKPM) [13] was emerged by combining the
original RKPM [14] with the well-known streamline upwind Petrov-Galerkin (SUPG) method [3]. Another approach
is the meshless local Petrov-Galerkin (MLPG) [15], designed to stabilize convection-dominated problems. This is
achieved through either employing upwind-type test functions, akin to the concept proposed by Christie et al. [2],
or modifying the support of the test function. The discussion of stabilization parameter between the meshfree and
meshfree based methods was discussed in [16]. The upwind meshfree point interpolation collocation approach was
proposed by Gu et al. [17], where the upwind stabilization was achieved by biasing the nodal support domain to
the upwind region. Similar ideas have been employed in the development of meshfree upwind collocation method by
using the radial basis function [18,19]. The meshfree radial basis function has also been implemented to incorporate
Roe’s approximate Riemann solver [20] in [21]. Hillman et al. [22] investigated nodally integrated RKPM with the
SUPG stabilization and employed the concept of implicit gradient approximation [23] to embed stabilization into
the gradient of test functions without explicit differentiation. This approach is further elaborated by Huang [24], in
which a variationally consistent SUPG meshfree approach was developed.

Recently, there has been growing interest in strong form-based collocation methods, which involve directly solving
PDEs by discretizing field variables in recent years. Developing high-order approximation techniques such as meshfree
methods has made this approach possible. Meshfree approximations, known for their high-order smoothing and
compatible shape functions, are particularly well-suited for strong form collocation methods. This makes them an
ideal choice, especially when dealing with high-order approximations—an aspect traditionally challenging for element-
based C0 type finite element approximation [25–28]. The node-based collocation methods are an attractive option
for solving PDEs because they do not require numerical integration, which improves computational efficiency and
simplifies the method. Since the non-self-adjoint nature of convection-diffusion problems, the common intuition is
to employ the Petrov-Galerkin numerical approaches for stabilization. While Petrov-Galerkin methods effectively
stabilize issues with strong convection effects, direct collocation methods, a subset of Petrov-Galerkin, employing
a Dirac delta test function, exhibit instability when directly applied to convection-dominated problems. To ensure
stability, an upwind treatment for the convection terms becomes essential.

This work will systematically develop a consistent stabilized meshfree collocation framework, particularly empha-
sizing the convection-dominated problems. The framework is initialized by connecting the finite difference scheme and
the gradient smoothing technique [10] in meshfree methods. The upwind finite difference approximation is identified
as equivalent to applying gradient smoothing over the upwind side of the nodal representative domain. It is then
revealed that the upwind treatment of the first-order gradient term is akin to evaluating the point over the upwind
side of the nodal representative domain. The selection of evaluation points of the upwind collocation method is
justified by the 1D FEM recursive gradient. Following this, the upwind collocation methodology is extended to the
reproducing kernel collocation method within a pure meshfree setting. The error analysis shows that the proposed
upwind reproducing kernel collocation method can achieve at least (p − 1)th order convergence rate, where p is the
order of basis function in reproducing kernel approximation. The essence of the present work is to treat the first-
order convection term by properly selecting the collocation points according to the flow direction and Péclet number.
The upwind effect is achieved without introducing artificial parameters, and its application to multi-dimensional and
transient cases is straightforward. The current collocation framework exhibits no cross-wind diffusion. Furthermore,
we establish that consistently collocating the governing equations is essential for achieving optimal convergence rate
and accuracy. This contrasts with many early-developed upwind approaches that focus solely on the treatment of
the first-order convection term. The effectiveness of the proposed algorithm is well demonstrated through a series of
steady and unsteady numerical examples.

The remainder of this paper is as follows. Section 2 reviews the basic formulation of convection-diffusion problems,
Bubnov-Galerkin and collocation schemes, and the numerical instability arising from those standard methods. The
upwind collocation technique is then introduced in Section 3, where the selection of collocation location is explained
by employing the distinct 1D recursive FEM shape function. The upwind collocation method is then extended to the
reproducing kernel particle method framework in Section 4 with detailed error analysis. In Section 5, several 1D and
2D numerical examples are provided to show the effectiveness of the proposed method in both steady and transient
problems, which is finally followed by concluding remarks in Section 6.
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2 Model problem

2.1 Bubnov-Galerkin approach for convection-diffusion equation

The multi-dimensional convection-diffusion problem is considered the model problem in this work:

a · ∇u = k∆u+ s x ∈ Ω
k∇u · n = h̄ x ∈ Γh

u = ug x ∈ Γg

, (1)

where a = {vx, vy} is the convection velocity vector, k is the diffusivity, s is the source term, u is the displacement or
potential. The constant diffusivity k is considered in the present work. Γg is the essential boundary of the problem
domain Ω with the prescribed value ug. Γh is the diffusive-type boundary with flux h̄.

The traditional weak form of Eq. (1) is to find u ∈ U such that for all w ∈W the following holds:

a(w, u)Ω = (w, s)Ω + (w, h̄)Γh
, (2)

where U and W are Sobolev spaces of degree one under properly satisfied essential boundary conditions, (·, ·)Ω and
(·, ·)Γh

represent the L2 inner product over the domain and Neumann boundary. In this work, we consider the
diffusion-type Neumann boundary condition. Furthermore, the bilinear form a(·, ·) reads as follows:

a(w, u)Ω = (k∇w,∇u)Ω + (w,a · ∇u)Ω. (3)

The Bubnov-Galerkin weak form considers the subspaces Uh ⊂ U and Wh ⊂ W and find uh ∈ Uh such that for
all wh ∈Wh the following holds:

a(wh, uh)Ω = (wh, s)Ω + (wh, h̄)Γh
. (4)

The matrix version of Eq. (4) is obtained through the approximation of field variable uh(x) =
∑NP

I=1NI(x)uI :

Ku = f , (5)

where u is the column vectors of {uI}NP
I=1, NI(x) is the shape function associated with Ith node, NP denotes the

total number of nodes in the discretization, K and f are so-called stiffness matrix and force vectors, respectively:

KIJ =

∫
Ω

NIa · ∇NJ +∇NI · k∇NJ dΩ, (6)

fI =

∫
Ω

NIsdΩ +

∫
Γh

NI h̄ dΓ. (7)

The Dirichlet boundary condition in Eq. (6) can be enforced by employing static condensation [1]. As can be observed
from Eq. (6), since the existence of convection term, the stiffness matrix does not preserve the symmetricity under
the Bubnov-Galerkin setting, i.e. K ̸= KT. Numerical instability is thus arrived due to this feature, which will be
introduced in the following section. A detailed illustration of building the shape functions will be presented in Section
4.

2.2 Point collocation approach for convection-diffusion equation

An alternative numerical approach for solving partial differential equations lies in the Petrov-Galerkin [1] setting.
The point collocation method, which considers the evaluation of the governing equation and boundary conditions
at several collocation points in the domain and boundaries, belongs to the scope of the Petrov-Galerkin approach.
Although in this method, the selection of collocation points is arbitrary, it is evident that choosing those as nodal
points to be the collocation points is simplest and can achieve optimal convergence rate [27]. The related formulation
statement is given as:

a(xI) · ∇u(xI) = k∆u(xI) + s(xI), xI ∈ Ω
k∇u(xI) · n = h̄(xI), xI ∈ Γh

u(xI) = ug(xI), xI ∈ Γg

, (8)

where xI denotes the location collocation points. The first row of Eq. (8) denotes that an evaluation point in the
interior domain is subjecting the governing equation. The second row corresponds to the collocation points located
at the Neumann boundary. Finally, the last row represents the Dirichlet boundary condition.

Substituting the approximation of field variable directly into Eq. (8) leads to the following discrete collocation
system of equations:

KCu = fC , (9)
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where the entries of the matrices and force vector are given by:

KC
IJ =

 a(xI) · ∇NJ(xI)− k∆NJ(xI), xI ∈ Ω
n · k∇NJ(xI), xI ∈ Γh

NJ(xI), xI ∈ Γg

, (10)

fCI =

 s(xI), xI ∈ Ω
h̄(xI), xI ∈ Γh

ūg(xI), xI ∈ Γg

. (11)

In contrast to the previous Bubnov-Galerkin weak form, the strong form collocation scheme requires higher order
continuous shape function as required by the direct approximation on the diffusion term. The C1 continuous shape
function is not easy to build in the traditional approach but is favorable in some advanced numerical techniques, e.g.,
meshfree, and IGA [29]. As noticed from (10), the stiffness matrix in such a system is intrinsically non-symmetric as
it employs the Dirac function as the test function.

2.3 Instability in solving non-self-adjoint problem with Bubnov-Galerkin and colloca-
tion methods

In general, the solution to (1) exhibits diffusion dominated when the Péclet number Pe = ∥a∥L/k becomes insignif-
icant. However, as the convection effect becomes intense, the high Péclet number leads to boundary layers, and
numerical instability will be observed when considering the traditional Bubnov-Galerkin approaches. When a 1D
version of Eq. (1) is considered without the contribution from the source term, the general solution is given as follows:

u(x) = C1 + C2e
v
kx, (12)

where C1 and C2 are arbitrary constants corresponding to the boundary conditions. Meanwhile, apply traditional
finite element or finite difference schemes apply to (1) without the source term, the numerical solution associated
with the I − th interior node is given as [30]:

uI = C1 + C2

(
1 + Peh

1− Peh

)I

, (13)

where the element Péclet number is defined as Peh := vh/(2k) and h denotes the element size. Comparing Eq. (13)
with (12), the numerical will exhibit oscillation for the case when Peh > 1. To demonstrate this, the comparison
of the 1D convection-diffusion problem is provided in Fig. 1 with the boundary condition u(0) = 0 and u(1) = 1.
No source term is considered in this case. Three numerical approaches have been employed in this comparison. The
finite element method (FEM) and reproducing kernel particle method (RKPM) are two representative numerical
methods under the Bubnov-Galerkin setting. The reproducing kernel collocation method (RKCM) is also added to
this comparison as a representative Petrov-Galerkin method. The element Péclet number is chosen as Peh = 2.5,
and severe oscillations are noticed from both FEM, RKPM, and RKCM.

Remark 1. Although the collocation method is considered a Petrov-Galerkin approach, numerical oscillation is still
observed when applying it to convection-dominated problems. It is well acknowledged that by properly designing the
test function, the Petrov-Galerkin approach serves as a numerical remedy to the instability. This motivates our
present work to systematically develop the collocation method for the convection-dominated problems.

3 Upwind collocation method for convection-dominated problems

The upwind treatment for the convection term can be considered a remedy for this instability. The idea of the upwind
scheme is to select different approximations particular for the convection term to enable consistent behavior between
the numerical solution and the exact solution.

3.1 Finite difference and an alternative interpretation

3.1.1 Central difference

In the traditional finite element or finite difference methods, the approximation for the first order derivative of the
field variable, denoted by uh,x, is given as:

uh,x(xI) =
uI+1 − uI−1

2h
, (14)
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Figure 1: Oscillatory behavior in FEM, RKPM, and collocation applied to the convection-diffusion equation with
element Péclet number Peh = 2.5.

which is so-called the central difference approximation. The related stencils of the central difference scheme are given
as

du

dx

∣∣∣∣
xI

∼ 1

2h
(−1, 0, 1) =

1

h
(0, 0.5, 0.5)− 1

h
(0.5, 0.5, 0). (15)

The motivation for the last step in (15) is to relate the stencils to the evaluation of shape function at the specific
points. For the central difference scheme, the approximation of the first-order derivative of the field variable is
rephrased as:

uh,x(xI) =
1

h
({0, 0.5, 0.5} − {0.5, 0.5, 0}) {uI−1, uI , uI+1}T

=
1

h

[
NFEM

(
xI + xI+1

2

)
−NFEM

(
xI−1 + xI

2

)]
u,

(16)

where NFEM(x) is a vector containing all the 1D finite shape functions evaluated at a spatial point. More specifically,
due to the existence of the compact support for the shape function, in this case,NFEM(x) = {NFEM

I−1 (x), NFEM
I (x), NFEM

I+1 (x)}.
As shown in Fig. 2 (a), the central difference is equivalent to taking the difference of the shape function vector eval-
uated at the center of downwind and upwind elements of point xI . By imposing the first fundamental theorem of
calculus, the central difference approximation of the first-order derivative of the field variable has been transferred to
an integral-type approach:

uh,x(xI) =
1

h

∫ (xI+xI+1)/2

(xI−1+xI)/2

NFEM
,x (x) dx u :=

∫
Ω

ψ(x;x− xI)N
FEM
,x (x) dx u, (17)

where ψ(x;x− xI) is the Heaviside function:

ψ(x;x− xI) =

{
1/h x ∈

[
xI−1+xI

2 , xI+xI+1

2

]
0 else

. (18)

From Eq. (16), we observe that the central difference approximation of the first order derivative of the field variable
in Eq. (17) is identical to the well-known strain smoothing technique introduced in the scope of meshfree methods
by Chen et. al. [10].

3.1.2 Upwind difference

When a positive velocity v is considered in the 1D problem, the solution can be interpreted as a traveling wave
propagating towards the right side. The left side of the domain is called the upwind side, whereas the right side is
the downwind side. Then the upwind approximation of field variable, denoted by ũh,x, reads as:

ũh,x(xI) =
uI − uI−1

h
, (19)
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Figure 2: Intepretation of finite difference stencils: (a) central difference stencils; (b) upwind difference stencils,
v(xI) > 0.

which can be interpreted as employing the first-order difference scheme to the convection term with the aid of the
upwind side point. The related stencils of the upwind difference scheme are given by:

dũ

dx

∣∣∣∣
xI

∼ 1

h
(−1, 1, 0) =

1

h/2
(0, 1, 0)− 1

h/2
(0.5, 0.5, 0). (20)

Similarly, from Fig. 2(b), it is evident that the upwind approximation in (20) can be rephrased as:

ũh,x(xI) =
1

h/2
({0, 1, 0} − {0.5, 0.5, 0})u

=
1

h/2

[
NFEM(xI)−NFEM(

xI−1 + xI
2

)

]
u

=
1

h/2

∫ xI

(xI−1+xI)/2

NFEM
,x (x) dx u :=

∫
Ω

ψ̄(x;x− xI)N
FEM
,x (x) dx u,

(21)

where the convolution function is defined as:

ψ̄(x;x− xI) =

{
ψ−(x;x− xI), v(xI) > 0
ψ+(x;x− xI), v(xI) < 0

, (22)

and for different directions, the convolution functions are given as:

ψ−(x;x− xI) =

{
1/(h/2), x ∈

[
xI−1+xI

2 , xI

]
0, else

, (23)

ψ+(x;x− xI) =

{
0, else

1/(h/2), x ∈
[
xI ,

xI+xI+1

2

]
. (24)

Consistently with the central difference scheme, the upwind approximation can also be interpreted as taking the
gradient smoothing of the shape function over the domain. Nevertheless, the domain of the convolution integral is
on the upwind side of the nodal representative region, which is no longer centered at the point of interest.

Finally, the upwind finite difference approximation for the first-order term has successfully been interpreted as
gradient smoothing in solid mechanics.

3.2 Upwind collocation method

Although the discovery of the upwind scheme with gradient smoothing in Eq. (21) is under the 1D assumption,
one can also generate the concept to the multi-dimensional case. First, the central difference representation in the
multi-dimensional case is:

∇uh(xI) =

∫
Ω

ψ(x;x− xI)∇N(x)dΩu, (25)

where

ψ(x;x− xI) =

{
1/VI , x ∈ ΩI

0, x /∈ ΩI
, (26)
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where ΩI is the representative domain of node xI as shown in Figure 3(a) obtained from Voronoi diagram with VI
being the volume of the representative domain ΩI . In the original work of gradient smoothing [10], the authors
considered the convolution operation on the right-hand side of Eq (25) serving as an alternative approximation of
the gradient of field variation at xI providing the shape function has high order smoothness, i.e.

∇uh(xI) = ∇N(xI)u ≈
(

1

VI

∫
ΩI

∇N(x) dΩ

)
u. (27)

If carrying out one point quadrature of the right-hand side with xI being the evaluation point, one immediately has:(
1

VI

∫
ΩI

∇N(x) dΩ

)
u ≈

(
1

VI

∫̂
ΩI

∇N(x) dΩ

)
u =

1

VI
{VI∇N(xI)}u = ∇uh(xI), (28)

where
∫̂
ΩI

□ dΩ denotes the numerical version of integration. From Eq. (27) to Eq. (28), it is clear that the smoothed
gradient over ΩI can be treated as the approximation of the first order gradient of the field variable. However, the
numerical integration to the smoothed gradient can be performed arbitrarily. Different selections of evaluation points
for the quadrature may finally yield different approximations of the field variable as indicated from Eq. (28).

Similar to the 1D case, the upwind approximation for the gradient of the field variable in the multi-dimensional
case is given as:

∇ũ(xI) =

∫
Ω

ψ̃(x;x− xI)∇N(x)dΩu, (29)

where:

ψ̃(x;x− xI) =

{
1/ṼI , x ∈ Ω̃I

0, x /∈ Ω̃I .
(30)

In the upwind convolution operation, as illustrated in Figure 3 (b) and (c), Ω̃I = {x ∈ ΩI |(x − xI) · n ≤ 0},
n(xI) = a(xI)/∥a(xI)∥ is the normalized flow speed vector and ṼI denotes the volume of upwind smoothing domain.
Creating the upwind smoothing domain involves finding the plane perpendicular to the flow direction, which contains
the particle xI . After finding the plane, the smoothing zone is the upwind side of the representative domain.

Once the upwind treatment of the first-order term is set up, the next important step is to carry out the quadrature
for the upwind smoothed gradient. The approximated version of Eq. (29) is obtained by performing the simplest
one-point quadrature in the upwind domain:

∇ũ(xI) =
1

ṼI

∫
Ω̃I

∇N(x)dΩu ≈ 1

ṼI

∫̂
ΩI

∇N(x)dΩu =
1

ṼI
(ṼI∇N(xC))u = ∇u(xC), (31)

where xC serves as the upwind collocation point for stabilizing the strong convection term. Finally, the most important
concept of this research work is introduced from Eq. (31). The upwind stabilization to the convection-dominated
problems is equivalent to evaluating the convection term within the upwind side of the particle. Consequently, the
upwind collocation formulation is given by modifying the traditional collocation method in Eq. (8) as follows:

a(xC) · ∇u(xC) = k∆u(xC) + s(xC), xC ∈ CI ⊆ Ω̃I

k∇u(xI) · n = h̄(xI), xI ∈ Γh

u(xI) = ug(xI), xI ∈ Γg

, (32)

where CI = {x ∈ Ω̃I |(x− xI) · n+ ∥x− xI∥ = 0} is the line formed by the reverse extension of flow direction n.
In the upwind collocation formula (32), the essential idea is to have the convection term treated in a stabilized

way when the problem is convection-dominated. A similar idea had been proposed in literature [31], which evaluated
the convection term differently than diffusion and source terms in the weak form setting to achieve the upwind
stabilization in a FEM way. Nevertheless, numerical inconsistency has been observed [3] in those upwind finite
element methods, and especially for the pure convection problem with source term, the traditional upwind treatment
does not yield good performance compared to the central difference schemes. In fact, although only the convection
response is properly treated, the remaining diffusion and source terms are not modified correspondingly. In the
present formulation (32), the upwind collocation formula considered the governing equation being evaluated at the
same location xC , which achieves the desired consistency. The importance of consistency will be further addressed
by error analysis in Section 4 and demonstrated through the numerical examples in Section 5.
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(a) Domain of a particle

(b) plane perpendicular to flow direction (c) Upwind subdomain

Figure 3: Representative domain of a particle xI

3.3 Selection of upwind collocation points

After formulating the upwind collocation method, the selection of the detailed location of upwind points will be
introduced since the previous section only defines the collocation point xC as the neighborhood of xI . In the present
work, to achieve the best accuracy, the selection of collocation points xC is based on the intensity of convection. By
substituting the approximation of the field variable, the collocation equation with respect to the interior evaluation
points in Eq. (32) becomes:

vuh,x (xC)− kuh,xx (xC) = v
∑
J

NJ,x (xC)uJ − k
∑
J

NJ,xx (xC)uJ = 0, (33)

where the source term is not considered. To express xC in terms of nodal space, diffusivity, and/or convection speed,
the following assumptions are made for the subsequent derivation in this section:

• The particles are under uniform discretization with the same nodal distance h.

• xI is the closest node to the collocation point xC .

• NI is at least C1 continuous shape function and xC is not evaluated on the location where the second order
derivative of NI does not exist.

• xC is covered by maximum 3 neighboring shape functions NI−1(x), NI(x), and NI+1(x) .

• The shape function used in approximation satisfies at least partition of unity and linear completeness, i.e.∑
J NJ(x) = 1 and

∑
J NJ(x)xJ = x.

With the aid of the first assumption i.e., uniform distribution xJ = Jh and u(xJ) = uJ , Eq. (33) becomes to:

C1

(
v
∑
J

NJ,x (xC)− k
∑
J

NJ,xx (xC)

)
+ C2

(
v
∑
J

NJ,x (xC) e
vh
k J − k

∑
J

NJ,xx (xC) e
vh
k J

)
= 0. (34)

Define λ = evh/k and by utilizing the partition of unity of shape function, one immediately gets the following from
Eq. (34):

v
∑
J

NJ,x (xC)λ
J − k

∑
J

NJ,xx (xC)λ
J = 0. (35)
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Introducing the third assumption that xC is covered by maximum 3 neighboring points, Eq. (35) can be written in
the explicit form:(v

k
NI−1,x(xC)−NI−1,xx(xC)

)
λI−1 +

(v
k
NI,x(xC)−NI,xx(xC)

)
λI +

(v
k
NI+1,x(xC)−NI+1,xx(xC)

)
λI+1 = 0.

(36)
Then, it is easy to compute the non-zero roots of Eq. (36), which are:

λ1 = 1, λ2 =
NI−1,xx(xC)− v

kNI−1,x(xC)

NI+1,xx(xC)− v
kNI+1,x(xC)

. (37)

Finally, the numerical solution of uI in terms of the shape function is expressed as follows:

uI = C1λ
I
1 + C2λ

I
2 = C1 + C2

(
NI−1,xx(xC)− v

kNI−1,x(xC)

NI+1,xx(xC)− v
kNI+1,x(xC)

)I

. (38)

Compare the numerical solution in Eq. (38) with the exact solution in Eq. (12), and the following statement
should hold for the best accuracy and consistency:

evh/k =
NI−1,xx(xC)− v

kNI−1,x(xC)

NI+1,xx(xC)− v
kNI+1,x(xC)

. (39)

The relationship between the location of collocation points xC , and the flow velocity is connected in Eq. (39) in an
implicit way. Once the explicit form of the shape function is provided, the collocation point can be directly connected
to the element Péclet number.

In order to provide a general strategy for selecting collocation points, the partition of unity and linear completeness
of shape function is invoked: ∑

J

NJ (x) = 1,
∑
J

NJ (x)xJ = x. (40)

The variants of Eq. (40) hold under the uniform distribution assumption:

NI+1,x (xC) =
1

h
+NI−1,x (xC) , NI+1,xx (xC) = NI−1,xx (xC) . (41)

By substituting Eq. (41) back to Eq. (39), one has:

h2

2
NI−1,xx (xC)− PehhNI−1,x (xC) =

Peh

e2Peh − 1
+ Peh. (42)

An implicit relationship between the collocation points xC and element Péclet number Peh was built by Eq.
(42). Furthermore, different shape functions may yield different relationships for xC and Peh, i.e. the IGA shape
function [29] built with splines and the RKPM shape function [14], which is a rational function.

3.3.1 Design an explicit relationship between collocation points and element Péclet number by design
a C1 polynomial shape function

To generate an explicit expression, the goal is to define a shape function where the second-order derivatives are
piecewise constant in space and the first-order derivative is linear. Nevertheless, the traditional FEM shape function
has only a piecewise constant in its first-order derivative, which is not feasible for locating xC . The concept of
recursive gradient [28] provides an alternative way to build high order smoothed gradient of the shape function by
using the lower order derivatives. First, the 1D FEM linear shape function, denoted by NFEM

I (x) reads as:

NFEM
I (x) =


0, x ⩽ xI−1

(x− xI−1) / (xI − xI−1) , xI−1 < x ⩽ xI

(xI+1 − x) / (xI+1 − xI) , xI < x < xI+1

0, xI+1 ⩽ x

. (43)

The recursive first-order FEM gradient of the shape function is computed by interpolating some sampling first-order
FEM gradient data with the FEM shape function itself:

ÑI,x(x) = NFEM
J1

(x)NFEM
I,x (xJ1

) +NFEM
J2

(x)NFEM
I,x (xJ2

) =
1

h
(NFEM

J1
(x)−NFEM

J2
(x)), (44)
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where xJ1
∈ (xI−1, xI) and xJ2

∈ (xI , xI+1) are some sampling points. Eq. (44) can also be viewed as taking the
central difference of two finite element shape functions. Next question is how to build NJ1(x) and NJ2(x). In this
work, the most straightforward case is selected i.e. xJ1 and xJ2 are at the center of each element:

xJ1 = (xI−1 + xI)/2, xJ2 = (xI + xI+1)/2. (45)

(a) Recursive finite element first order gradient (b) Recursive finite element second order gradient

Figure 4: Recursive finite element gradients.

Meanwhile, the element shape function is built under the same element size h with the node located at the center
of each element. A detailed illustration of this recursive FEM gradient is provided in Figure 4. Finally, the explicit
form of 1D recursive FEM first order gradient of function states as:

ÑI,x(x) =
1

h2



0, x ⩽ xI−2+xI−1

2(
x− xI−2+xI−1

2

)
, xI−2+xI−1

2 < x ⩽ xI−1+xI

2

2 (xI − x) , xI−1+xI

2 < x ⩽ xI+xI+1

2(
x− xI+1+xI+2

2

)
, xI+xI+1

2 < x ⩽ xI+1+xI+2

2

0, x > xI+1+xI+2

2

. (46)

The second-order gradient is given by directly differentiating:

ÑI,xx(x) =
1

h2



0, x < xI−2+xI−1

2

1, xI−2+xI−1

2 < x < xI−1+xI

2

−2, xI−1+xI

2 < x < xI+xI+1

2

1, xI+xI+1

2 < x < xI+1+xI+2

2

0, x > xI+1+xI+2

2

. (47)

We should notice that with the operation, the shape function derivative passing the nodal point is continuous. The
jump happened in the mid of each element, which is acceptable in the point collocation approach. It is easy to
show that the recursive first and second-order FEM gradient satisfy the partition of unity and linear completeness
properties [27], which are the key requirement in determining the collocation point. Now since xC ∈ [xI−1+xI

2 , xI+xI+1

2 ]
is the point in the representative domain of xI , the (I−1)th recursive FEM gradient evaluated at xC reads as follows:

ÑI−1,x(xC) =
2xC − (xI + xI+1)

2h2
, ÑI−1,xx(xC) =

1

h2
. (48)

Finally, substitute Eq. (48) back to Eq. (42), one has:

ξ = coth
(
Peh

)
− 1

Peh
, (49)
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where ξ = (xI − xC)/(h/2) is the normalized collocation distance. As xC ∈ [xI−1+xI

2 , xI+xI+1

2 ], the corresponding

range of ξ will be [−1, 1]. In the meantime, when ξ ∈ [−1, 1], it automatically defines the domain of Peh ∈ [−∞,∞]
from right hand side of Eq. (49). The following special cases for ξ are:

ξ =

{
0, P eh = 0

±1, P eh = ±∞ ⇒ pure diffusion
pure convection

, (50)

where the corresponding xC becomes:

xC =

{
xI , P eh = 0
1
2 (xI + xI∓1), P eh = ±∞ ⇒ pure diffusion

pure convection
. (51)

From Eq. (49), the location of the upwind collocation point is connected to the element Péclet number. In the final
conclusion (51), as the Péclet number goes to 0, corresponding to the pure diffusion problem, then the collocation
point is chosen to be the same as the nodal position. When the Péclet number goes to infinity, the collocation point
is suggested as the boundary of the representative upwind domain of the particle.

Remark 2. The hyperbolic type function on the right-hand side of Eq. (49) is well acknowledged in the literature as a
stabilization measure used to control the level of artificial diffusivity added to stabilize the simulation. However, in the
practical application, alternative strategies may also apply in finding ξ such as ”Doubly Asymptotic Approximation”
and ”Critical Approximation” [2,3].

The 1D strong convection problem 0.1ux = uxx is simulated by the upwind collocation method. The comparison
of the results with the different collocation point locations is provided in Figure 5, where the 1D recursive FEM
gradients are employed to verify the collocation distance formulation in Eq. (49). Several cases are presented in
this study by varying the position of the collocation points. ξ = 0, where the collocation points are identical to the
nodes, yields a severe oscillatory result; next, when shifting the collocation point to the middle of the upwind nodal
representative domain (it is equivalent to shifting 1/4 of the nodal space in this case), as represented by ξ = 0.5,
exhibits a mild diffusive result; furthermore, the collocation points are moved to the boundary of node representative
domain (it is the same as the middle of two neighboring nodes), i.e. ξ = 1, where the points are located at, exhibits
no wiggles while the result is not accurate. Finally, ξ = 0.61 based on Eq. (49) serves the optimal collocation point
location, which yields a nodally exact solution. The detailed error comparison is further given in Table 1 which
confirms that the nodally exact result is achieved by (49).

It is worth noticing that the nodally exact result by the upwind collocation approach only applies to the 1D
problem by using the special recursive FEM gradient in Eqs. (46) and (47). For the general case, as one may use
different shape functions like IGA and reproducing kernel (RK) approximations, the relationship of collocation point
reflected by Eq. (42) may exist in an implicit form. However, using Eq. (49) can still provide a reasonable reference
for choosing the collocation points for arbitrary shape functions with acceptable error, which will be later shown in
numerical examples from Section 5.

Table 1: Absolute error u(xI)− dI for the 1D collocation with recursive FEM gradients

Point location x = 8 x = 8.5 x = 9 x = 9.5
ξ = 0 3.373E-2 7.871E-2 1.836E-1 4.353E-1
ξ = 0.5 7.671E-6 1.461E-4 2.724E-3 5.936E-2
ξ = 1 9.613E-5 9.705E-4 9.759E-3 9.228E-2
ξ = 0.61 1.849E-19 2.213E-19 3.815E-18 2.688E-16

4 Upwind reproducing kernel collocation method

Since the existence of the second-order diffusion term in the governing equation, using traditional FEM-type ap-
proximation requires special treatment for the second-order derivatives. Although the smoothed FEM gradients
introduced in Section 3 can be viewed as an approach to simulate the model problem under a collocation setting,
it is non-trivial in generating the concept of second-order FEM gradient into the multi-dimensional situation. The
higher order compatibility and smoothness of the meshfree shape function are favorable in developing the upwind
collocation scheme in a more general way.

4.1 Reproducing Kernel (RK) Approximation

This work employs the reproducing kernel (RK) [8,14] as a model approximation for the simulation under the upwind
collocation framework. In RK approximation, the problem domain Ω with boundary Γ is discretized by a set of NP
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Figure 5: Comparison of different upwind collocation locations by using 1D recursive FEM gradients.

particles. According to the reproducing kernel methodology, the approximation of field variable u(x), denoted by
uh(x), is expressed as follows:

u(x) ≈ uh(x) =
∑
I∈Sx

ΨI(x)uI , (52)

where ΨI(x) is the RK shape function associated with the Ith meshfree particle under the associated compact
support inducing a set of neighbors Sx = {I|ΨI(x) ̸= 0} local to x. The RK approximation is first assumed to take
the following formulation:

ΨI(x) = HT(x− xI)b(x)ϕa(x− xI), (53)

where H(x) = [ 1, x, y, x2, · · · , yp ]T is a column vector of complete pth order monomials, b(x) is a column
vector containing all the associated unknown variable coefficients of each component in H, and ϕa(x − xI) is the
kernel function with measure a, which defines both the locality and order of smoothness in the approximation. The
cubic B-spline function is employed in this work to enable a C2 continuous field:

ϕa(r) =
1

6

 (2− 2r)3 − 4(1− 2r)3, r ≤ 1
2

(2− 2r)3, 1
2 < r ≤ 1

0, r > 1
, (54)

where r ≡ ∥x− xI∥ /a is the normalized relative distance. To obtain the unknown coefficient vector b(x), the
following so-called reproducing conditions of the RK shape function Ψ(x) is enforced to the shape function:∑

I∈Sx

ΨI(x)H(xI) = H(x), (55)

which is equivalent to the following form with shifted basis:∑
I∈Sx

ΨI(x)H(x− xI) =H(0). (56)

Then, the unknown coefficient vector b(x) is arrived at by substituting Eq. (53) into Eq. (56), which yields:

b(x) = M−1(x)H(0), (57)

where M(xI) =
∑

I∈Sx

H(x− xI)H
T(x− xI)ϕa(x− xI) is the so-called moment matrix. After determining the

unknown vector in Eq. (57), substitute it back into the assumed form of the RK shape function (53), one obtains:

ΨI(x) = HT(0)M−1(x)H(x− xI)ϕa(x− xI). (58)
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Note that the order of smoothness of ΨI(x) is inherited related by the kernel function ϕa(x−xI). Since the cubic
spline kernel function employed is C2, the shape function is also C2, which is favorable for formulations that require
higher-order regularity or smoothness such as strong form collocation.

Substitute the reproducing kernel approximation in (52) to the upwind collocation formulation (32), and the
following matrix form is obtained for the upwind reproducing kernel collocation method

K̃Cu = f̃C , (59)

where the entries of the upwind stiffness matrices and force vector are given by

K̃C
IJ =

 a(xC) · ∇ΨJ(xC)− k∆ΨJ(xC), xC ∈ CI ⊆ Ω̃I

n · k∇ΨJ(xI), xI ∈ Γh

ΨJ(xI), xI ∈ Γg

, (60)

f̃CI =

 s(xC), xC ∈ CI ⊆ Ω̃I

h̄(xI), xI ∈ Γh

ūg(xI), xI ∈ Γg

. (61)

4.2 Error analysis of upwind reproducing kernel collocation method

The error analysis of the upwind reproducing kernel collocation method is fulfilled by the local truncation error of
the discrete system.

Definition 1. The local truncation error eI associated an interior node xI from Eq. (59) is defined as follows:

eI = a · ∇uh (xC)− k∆uh (xC)− s (xC) = K̃C
IJuJ − f̃CI ≈ O (hp) . (62)

where xC ∈ CI ⊆ Ω̃I denotes the collocation points for the I-th row of the system of equations.

Lemma 1. The α-th order derivative of a p-th order complete reproducing kernel shape function satisfies:∑
J∈Sx

DαΨJ(x)x
n
J = Dαxn =

n!

α!
xn−α,

∑
J∈Sx

DαΨJ(x) (xJ − x)
n
=

{
0 n ≤ p, α ̸= n
α! n ≤ p, α = n

, (63)

where Eq. (63) comes from the direct differentiation of the reproducing conditions of shape function in Eqs. (55) and
(56) and α is the multi-index notation.

Theorem 1. For a regular solution u ∈ Cm(Ω), the local truncation error associated with an interior node for the
convection-diffusion problems with the upwind reproducing kernel collocation method with a p-th order complete shape
function is:

eI ≈ O (hq) , q = min{p− 1,m}. (64)

Proof. The local truncation error can be expressed as:

eI = a · ∇uh (xC)− k∆uh (xC)− s (xC)

=
[
a · ∇uh (xC)− k∆uh (xC)− s (xC)

]
− [a · ∇u (xC)− k∆u (xC)− s (xC)]︸ ︷︷ ︸

=0

= a ·
[
∇uh (xC)−∇u (xC)

]
− k

[
∆uh (xC)−∆u (xC)

]
= a ·

[∑
J∈Sx

∇ΨJ (xC)uJ −∇u (xC)

]
− k

[∑
J∈Sx

∆ΨJ (xC)uJ −∆u (xC)

]
.

(65)

Taylor’s series expansion of uJ referring to uC gives:

uJ =
∑

0≤|α|≤m

1

α!
DαuC (xJ − xC)

α
. (66)

The truncation error is then linked with the reproducing condition (56) by bringing Eq. (66) into Eq. (65):

eI =a ·

 ∑
0≤|α|≤m

1

α!
DαuC

∑
J∈Sx

∇ΨJ (xC) (xJ − xC)
α −∇u (xC)


− k

 ∑
0≤|α|≤m

1

α!
DαuC

∑
J∈Sx

∆ΨJ (xC) (xJ − xC)
α −∆u (xC)

 ,
(67)
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with the aid of Lemma 1, Eq. (67) reduces to the follows:

eI = a ·

 ∑
p+1≤|α|≤m

1

α!
DαuC

∑
J∈Sx

∇ΨJ (xC) (xJ − xC)
α

− k

 ∑
p+1≤|α|≤m

1

α!
DαuC

∑
J∈Sx

∆ΨJ (xC) (xJ − xC)
α


=

∑
p+1≤|α|≤m

1

α!
DαuC

a ·
∑
J∈Sx

∇ΨJ (xC)︸ ︷︷ ︸
∼h−1

(xJ − xC)
α︸ ︷︷ ︸

∼hα

−k
∑
J∈Sx

∆ΨJ (xC)︸ ︷︷ ︸
∼h−2

(xJ − xC)
α︸ ︷︷ ︸

∼hα


≈ O (hq) , q = min{p− 1,m}.

(68)

For the problem with smooth solution, Eq. (68) states that the local truncation error for the Ith collocation
equation is O(hp−1), where p is the order of reproducing condition of shape function. At least (p − 1)th order
convergence rate is guaranteed in the upwind reproducing kernel collocation method regardless of the choice of xC .
Furthermore, for the convection-diffusion problems, the special convergence rate can be achieved if the collocation
points are the same as the nodal location, i.e. xC = xI .

Lemma 2. Under uniform meshfree discretization, the periodicity of reproducing kernel shape function yields the
following condition regardless of the order of completeness [27]:∑

J∈Sx

DαΨJ (xC) (xJ − xC)
n
= 0, if (n+ α) is odd, and xC = xI . (69)

Theorem 2. For a regular solution u ∈ Cm(Ω), when the collocation points become the nodes, a one-order higher
convergence rate is achieved for the convection-diffusion problems when the order of completeness of the shape function
p is an even number:

eI≈O (hq) , q = min{p,m},xC = xI and p is even. (70)

Proof. With Lemma 2 and substitute Eq. (69) back to Eq. (68), one has:

eI = a ·

 ∑
p+1≤|α|≤m

1

α!
DαuI

∑
J∈Sx

∇ΨJ (xI)︸ ︷︷ ︸
∼h−1

(xJ − xI)
α︸ ︷︷ ︸

∼hα

− k

 ∑
p+2≤|α|≤m

1

α!
DαuI

∑
J∈Sx

∆ΨJ (xI)︸ ︷︷ ︸
∼h−2

(xJ − xI)
α︸ ︷︷ ︸

∼hα


≈ ∥a∥

∑
p+1≤|α|≤m

O
(
hα−1

)
+ k

∑
p+2≤|α|≤m

O
(
hα−2

)
≈ O (hq) , q = min{p,m}.

(71)

Finally, for the problem with a smooth solution, by combining Eqs. (68) and (71) the local truncation error of
the upwind reproducing kernel collocation method can be summarized as follows:

eI =

{
O(hp), xC = xI and p is even
O(hp−1), else

. (72)

Theorem 3. For a regular solution u ∈ Cm(Ω), the local truncation error associated with an interior node for the
pure convection problems with the upwind reproducing kernel collocation method with a p-th order complete shape
function is:

eI =

{
O(hp+1), xC = xI and p is odd
O(hp), else

. (73)

The proof for Theorem 3 is straightforward and followed by setting k = 0 in Eqs. (68) and (71). It can be
noticed from Eq. (72) that the convergence rate is reduced when shirting the collocation points from the nodes to
the nearby location. To obtain better accuracy, the collocation points are suggested to be the same as the meshfree
points if no special stabilization is required for the convection term. According to Eq. (13), the upwind stabilization
is necessary when the element Péclet number Peh > 1. Therefore, in practice, the following function is recommended
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for turning the upwind stabilization (shifting collocation point from the center to the upwind region) to maintain the
entire algorithm as a high-order convergent method when the convection effect is insignificant:

ξ =


−1 + 1/Peh, P eh < −1

0, −1 ≤ Peh ≤ 1

1− 1/Peh, P eh > 1

. (74)

4.3 Alternative treatment of second order diffusion term by finite volume approxima-
tion

Since the existence of the diffusion term, the second-order reproducing condition is necessary to have a convergent
result. However, the requirement of higher order completeness causes additional effort for building shape functions.

In the collocation framework, significant efforts have been devoted to the development of the collocation approach
by only employing the linear shape functions. In [27], Wang et. al. classified the convergence of the collocation
method with linear shape function as a special property called ”Superconvergent” in the collocation method. It has
been identified that the extra higher-order reproducing condition is possessed by the low-order shape function under
whatever special treatments enable this superconvergent behavior.

Similarly, the treatment of second-order diffusion term can also be treated by a finite volume type technique with
the use of only linear shape function. Thus, the reproducing kernel finite volume method is obtained by approximating
the second-order derivative of the shape function in Eq. (60) by:

∆Ψ(xC) ≈ ∆̃Ψ(xC) =
1

VI

∫
ΩI

∆Ψ(x)dΩ =
1

VI

∫
ΓI

∇Ψ(x) · ndΓ, (75)

where the divergence theorem has been employed to Eq. (75). Thus, the entire collocation equation does not need
the calculation of the second-order derivatives of the shape function.

Theorem 4. Eq. (75) satisfies extra quadratic reproducing conditions under uniform node distribution when only
the linear basis function is employed for computing the shape function under uniform node distribution:∑

J∈Sx

∆Ψ̃J (x) H̃ (xJ) = ∆H̃ (x) , (76)

where
H̃(x) =

{
x2, xy, y2

}T
. (77)

Now for the smooth problem, the RKFM formulation can achieve eI = O(h) when only the linear basis is employed.
The proof of Theorem 4 will be provided in the Appendix.

5 Numerical Examples

In this section, several 1D and 2D numerical examples will be presented to validate the effectiveness of the proposed
upwind collocation scheme. The related formulations that will be employed in numerical comparisons are provided
in Table 2. The reproducing kernel collocation method is abbreviated as RKCM, in which the collocation points
are meshfree nodes themselves. The inconsistent RKCM refers to the formulation with only the first-order gradients
of the field variable treated by the upwind way. The rest of the terms are all collocated at the original nodal
position. The consistent upwind reproducing kernel collocation method is termed ”Upwind RKCM”, which is the
proposed formulation to provide stabilized simulation results. Last, the upwind reproducing kernel finite-volume
method (Upwind RKFM) represents an alternative approach where the diffusion term is approximated by the finite-
volume type approximation. The choice of support size in the reproducing kernel approximation has been studied
over the years. In general, the order of convergence in the Galerkin type meshfree method and the point collocation
meshfree method does not depend on the choice support size [27, 32, 33]. The minimum requirement of support size
in RK approximation is given in [32]. Sometimes, a slightly larger support may deliver better accuracy. Nevertheless,
excessively large support sizes may lead to a much more diffusive result. In the present work, our major concentration
is the selection of the evaluation points. When a nonuniform layout of collocation points is determined, a relatively
larger support size may be applied to meet the minimum requirement in [32].
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Table 2: List of abbreviations

Abbreviation Formulation
RKCM a(xI) · ∇uh(xI) = k∆uh(xI) + s(xI)

Inconsistent upwind RKCM a(xI) · ∇uh(xC) = k∆uh(xI) + s(xI)
Upwind RKCM a(xC) · ∇uh(xC) = k∆uh(xC) + s(xC)

Upwind RKFM a(xC) · ∇uh(xC) = k∆̃uh(xC) + s(xC)

5.1 1D pure convection problem with piecewise linear source

The first numerical example is the pure convection problem taken from [34] with the infinite element Péclet number
Peh = ∞ as the consequence of zero diffusivity. This test aims to verify the consistency of the proposed upwind
RKCM. It will address a long-standing concern regarding upwind techniques, which tend to demonstrate reduced
accuracy when handling source terms. The strong form of the problem is:{

vu,x = s, x ∈]0, L]
u(0) = 0

, (78)

where L = 15, and v = 1 are employed in this example. The body force s is given as a piecewise linear function:

s =


1− 15

4Lx, x ⩽ 2
5L

15
4L (x− 8L

15 ),
2
5L < x ⩽ 8

15L

0, 8
15L < x ⩽ L

. (79)

The three different collocation schemes that will be used in the simulation are illustrated in Figure 6(a), where the
case ξ = 0 brings the upwind RKCM back to the traditional RKCM. Since the absence of diffusion term, the suggested
collocation point for this problem is ξ = 1, which indicates that the collocation points should be located on the
boundary of the nodal representative domain. The inconsistent upwind RKCM is added to represent the collocation
scheme with only the treatment to the first-order gradients of the field variable, and another upwind RKCM case
with ξ = 0.5 is provided as the consistent upwind RKCM without the proper selection of collocation points. The
linear basis function with normalized support size 1.6 is employed in the reproducing kernel approximation. From
Figure 6(b), the inconsistent upwind yields the worst result, which produces the same phenomenon as results in [34].
The RKCM, which is analogous to the central difference scheme, yields good agreement of the exact solution as it
is supposed to be, and no oscillation has been observed as a consequence of lacking the diffusion term. The upwind
RKCM with ξ = 0.5 represents yields a relatively large error, which confirms the fact that the collocation point in
this case is not the optimal choice. Finally, when ξ = 1, the simulation yields the best result, which verifies the
consistency of the proposed methodology and the concept of choosing the collocation point based on the element
Péclet number. A convergence comparison for this 1D pure convection problem with source term is illustrated in
Figure 7, where 16, 31, 46, 61, and 76 uniformly distributed particles are employed in this study. As expected, due
to the inconsistency formulation, the upwind RKCM without collocating the source term on the evaluation points
yielded the worst accuracy. Meanwhile, the upwind RKCM with ξ = 0.5 gives a convergent solution but lost accuracy.
Since the absence of diffusivity, the RKCM without shifting collocation points to the upwind side also delivered a
good result, which is comparable to the upwind RKCM with ξ = 1. The L2 rate of RKCM is one order higher
than the others, which is consistent with the error analysis (73). H1 error norm remains as the first order, which
is a result of the interpolation error with linear complete shape function [32, 35]. It is worth noticing that upwind
RKCM with ξ = 1 also delivered a one-order higher convergence rate. The reason behind this phenomenon is that
the collocation points in this case are set to be the middle of each neighbor node pair, which makes the formulation
satisfy (69). However, we claim that this only belongs to a special case of (69), as the constant convection speed and
zero diffusivity in this problem have made the evaluation points to be the mid-points.
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(a) Layout of the collocation points for the pure convec-
tion problem.

(b) Comparison of the numerical results.

Figure 6: Comparison of numerical results for the 1D pure convection problem by different collocation schemes.

Figure 7: Comparison of the convergence rate for the 1D pure convection problem by different collocation schemes.
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5.2 1D convection-diffusion problem

Reconsider the 1D convection-diffusion problem with the following governing equation: vu,x = ku,xx, x ∈]0, L[
u(0) = 0
u(L) = 1

, (80)

where L = 10, k = 0.05, and v = 1. The element Péclet number is Peh = 5 based on the 21 uniformly distributed
meshfree particles. The linear basis with normalized support size 1.5 is employed in building the RK shape function in
Galerkin-based RKPM and collocation-based RKFM. For RKCM, since the minimum requirement of approximation
basis is quadratic, we employ the quadratic basis with normalized support size 2.3 in this case. The selection of
the location of the collocation is based on (74). As shown in Figure 8, both RKPM, RKCM, and RKFM exhibit
oscillatory results as the stability requirement is not satisfied. By shifting the collocation points from the nodal points
to the desired upwind points, the solutions become stable and are closer to the exact solution for both upwind RKCM
and RKFM.

A convergence study for the different choices of the upwind collocation points is provided in Figure 9, where
11, 21, 41, 81, and 161 uniformly distributed meshfree particles are employed for the calculation of the error norms.
We term Eq. (49) as ”Hyperbolic tangent” and Eq. (74) as ”Critical approximation”. Both approaches deliver at
least a linear convergence rate in L2 and H1, which is consistent with the error analysis in Section 4.2. As observed
from Figure 9(a), these two approaches yield identical results when the discretization is coarse. As the model is
refined, ”critical approximation” gives the better accuracy. This is because when the element Péclet number is
smaller than 1, Eq. (74) will lead the collocation points to be the same as the nodal location. From Eq. (70), one
has better accuracy when xc = xI . The relative collocation distance is depicted in Figure 9(b), which confirms the
error analysis provided in Section 4.2.

(a) Traditional collocation (b) Upwind collocation

Figure 8: Comparison of unstabilized numerical schemes (left) with the upwind stabilized schemes (right) for the 1D
convection-diffusion problem with 21 uniformly distributed particles, ξ = 0.8.

5.3 2D strong convection problem: flow skew to mesh

Next, the 2D example is presented to examine the crosswind wiggles in the proposed upwind collocation method.
The 2D problem is defined in [0, 1] × [0, 1] with zero source term. The diffusivity is set as k = 10−6 to present a
strong convection setup [31]. The velocity is given by a = {cos θ, sin θ}, where θ is the flow direction. The quadratic
basis function with normalized support size 2.3 is adopted in RKCM, and the linear basis function with support size
1.5 is used for RKFM in this example. Uniformly distributed 41× 41 particles is utilized to test three cases with flow
direction θ = π/6, θ = π/4, and θ = π/3. The layout for the collocation point is provided in Figure 10.

The first case is shown in Figure 11, where the Dirichlet boundary conditions are enforced on x = 0 and y = 0 and
the outflow boundaries are given on x = 1 and y = 1. The exact solution to this problem is the advection of the inflow
boundary condition in the flow direction [3]. The comparison of simulation results under different flow directions is
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(a) Error norm of upwind RKCM (b) Relative collocation distance by different evaluation func-
tions

Figure 9: Comparison of the convergence rate for the 1D convection-diffusion problem with upwind RKCM.

(a) θ = π/6 (b) θ = π/4 (c) θ = π/3

Figure 10: Collocation schemes of 2D strong convection problem for the different flow angles.

given in Figure 12. The traditional RKCM with the collocation points being the RK nodes yields oscillations and
large errors. By using the upwind treatment to the convection term, stable results can be found from both upwind
RKFM and upwind RKCM.

The second case considers the same problem setup but with all the boundaries being the Dirichlet boundary
conditions, which are shown in Figure 13. The existence of the boundary layer makes severe oscillations for the
traditional collocation RKCM, which is illustrated in Figure 14. Both upwind RKCM and RKFM yield stable
results, and no crosswind effect is observed in the present algorithm. Meanwhile, RKCM exhibits less diffusive results
than RKFM.
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Figure 11: Description of the 2D strong convection problem with convection skew to mesh: outflow boundary at
x = 1 and y = 1.

Figure 12: Comparison of 2D strong convection problem: outflow boundary at x = 1 and y = 1.
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Figure 13: Description of the 2D strong convection problem with convection skew to mesh: Dirichlet boundary at
x = 1 and y = 1.

Figure 14: Comparison of 2D strong convection problem: pure Dirichlet boundary conditions.

21



5.4 2D cosine hill in a rotating field

A rotation field with variable velocity a = {−y, x} on the bi-unit domain [−0.5, 0.5]×[−0.5, 0.5] is considered in Figure
15 with s = 0 and a constant diffusivity k = 10−6 to make problem as convection-dominated. The homogeneous
Dirichlet boundary conditions are prescribed on the boundary of the domain. In addition, a prescribed essential
boundary condition is enforced along section O-A, as given in Fig. 15(a). The layout of the collocation points for the
21× 21 uniformly distributed particles is illustrated in Figure 15(b). The cosine hill along O-A is given as:

ū(x) = 0.5(cos(4πy + π) + 1.0). (81)

The convection term makes the internal boundary O-A transport along the circular streamline. A quadratic basis
function with a normalized support size of 2.5 is used for reproducing kernel approximation.

The comparison of field variables is provided in Figure 16. The RKCM exhibits acceptable results with slight
oscillation near the boundary, as shown in Figure 16(a). Another simulation is performed with only the convection
term being treated by upwind methodology; the flow velocity is still evaluated at the nodal location, which is termed
as inconsistent upwind RKCM. In Figure 16(b), the crosswind diffusion effect can be observed under the inconsistent
upwind RKCM. Finally, the upwind RKCM produces very good simulation results, as shown in Figure 16(c).

Next, a convergence test is performed for the cosine hill problem with 11 × 11, 21 × 21, 41 × 41, and 81 × 81
particles, where an initial random perturbation of particles (15% nodal space) is applied on 11 × 11 case. Both
uniform and nonuniform cases are considered and the nonuniform particle refinement is shown in Figure 17. The
related collocation points for the nonuniform case are selected based on characteristic nodal space, which is obtained
by calculating the distance of the nearest neighbor point to each node. The analytical solution can be approximately
considered as follows:

u(x) =

{
0.5(cos(4πr + π) + 1.0), r < 0.5

0, else
, (82)

where r = (x2 + y2)0.5 is the radius from the origin. From Figure 18(a), RKCM and upwind RKCM both yield
convergent results for the uniform refinement, which are consistent with the error analysis. Since the quadratic
complete RK shape functions are employed in both cases, L2 error norms are second order as a result of small
diffusivity. The upwind RKCM produces better accuracy than the traditional RKCM, which is consistent with the
observation from Figure 16. The first-order convergent results are also observed from the nonuniform convergence
test, which is shown in Figure 18(b). The upwind RKCM demonstrated better accuracy compared to the traditional
RKCM.

(a) Problem statement (b) Layout of the collocation points for the case
with 21× 21 discretization

Figure 15: Problem statement of the 2D cosine hill in a rotating flow field.

5.5 Cone impinging on a natural boundary

The previously derived upwind reproducing kernel collocation method can be easily extended to the transient case.
The collocation formulation for an interior point is then stated as:

u̇(xC , t) + a(xC , t) · ∇u(xC , t) = k∆u(xC , t) + s(xC , t). (83)

The unconditionally stable generalized trapezoidal rule [1, 3] (GTR) is employed for the time integration:

un+1 = un +
∆t

2
(u̇n + u̇n+1). (84)
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(a) RKCM (b) Inconsistent upwind RKCM (c) Upwind RKCM

Figure 16: Comparison of rotating flow field for the 2D cosine hill problem for the case with 21× 21 discretization.

Figure 17: Nonuniform discretizations for the convergence test of the 2D cosine hill problem: (a) 11 × 11 particles;
(b) 21× 21 particles; (c) 41× 41 particles; (d) 81× 81 particles.

where un+1 = u(x, tn+1) and ∆t is the time step. The transient problem is therefore solved by the implicit setting.
The problem is setup in Figure 19 and modeled in [−1.5, 1.5]× [−0.5, 0.5] with 61× 21 reproducing kernel particles.
The diffusivity and source term are set as 0 to make the problem diffusion-free. The convection velocity is a = {1, 0}.
The time step is chosen as ∆t = 0.01, which finally makes the Courant number to the fully discretized problem
as Cr = 0.2. The cosine cone provided in section 5.3 is employed as the initial condition centered at (−1, 0). The
reproducing kernel approximation adopts the linear basis function with normalized support size 2.0.

The comparison between the traditional RKCM and upwind RKCM is detailed in Figure 20. The oscillation
appears at the upwind side of traditional RKCM and exists after the cone hits the natural boundary (3.5% of the
height of the cone). The relatively small oscillation can be observed from the upwind RKCM at the downwind side
when the cone is translating over the interior domain. No oscillation remains in the problem domain after impinging
on the natural boundary (10−8% of the height of the cone remains in the problem domain).

Next, the convergence study is provided in Figure 21. First, the effect of temporal discretization is investigated.
Since the time integration is unconditionally stable, we decrease the time step of the problem with discretization
provided in Figure 19(b). Although no blowing-up simulation results are observed, the dissipation error is evidently
shown in the case with a larger time step ∆t = 0.05. The Courant number associated with this case is Cr = 1. With
a decreased time step, the wiggles are shifted from the upwind side to the downwind side. The downwind wiggles
can occasionally be observed in the linear upwind scheme with high-order accuracy and can be reduced by refining
the discretization. Next, we employed a small time step to the problem and studied the refinement in space for this
problem, where hx denotes the nodal space over x−direction. Three uniformly distributed particle sets with the
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(a) Uniform discretization (b) Non-uniform discretization

Figure 18: Comparison of the convergence rate for the 2D cosine hill problem.

discretization 61 × 21, 121 × 41, and 181 × 61 are utilized. As observed in Figure 21, a series of decreased spatial
discretizations can successfully reduce the downwind wiggles and again, no upwind wiggles are presented, which is
further confirmed by the comparison of the height of the cone in Table 3, where the reference height value is 1.

(a) Problem setup

(b) Uniform discretization by 61× 21 particles

Figure 19: Problem description of the cone impinges a natural boundary.

5.6 2D rotating field

Finally, the 2D transient problem with a rotating field is provided. The problem setup is shown in Figure 22 in
domain [−0.5, 0.5]× [−0.5, 0.5]. The discretization and collocation points are chosen as in 5.4. The velocity is given
by a = (−y, x) with zero diffusivity. The initial condition is identical to the cosine cone used in the example section
5.5. The linear basis function with normalized support size 2.0 is employed in RK approximation. No source term is
considered and the time step is selected as ∆t = 0.01.
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Figure 20: Comparison of cone impinging a natural boundary at various time.

Table 3: Comparison of the height of the cone impinging a natural boundary problem at time t = 1.11 using upwind
RKCM (reference value 1)

Upwind RKCM hx = 0.05 hx = 0.025 hx = 0.017
∆t = 0.05 0.7480 0.7975 0.8145
∆t = 0.01 0.8641 0.9508 0.9833
∆t = 0.002 0.8568 0.9802 0.9854
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Figure 21: Comparison of cone impinging a natural boundary at time t = 1.11 under spatial and temporal refinements.

Figure 22: Problem statement of a cosine cone in a rotating field.
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The results comparison of RKCM and upwind RKCM is shown in Figure 23. The traditional RKCM yields
virtually no dissipation, but the phase error is present after two full rotations. The upwind oscillations are observed
and exist in the problem domain during the rotation. On the contrary, upwind RKCM delivers good results. No
upwind wiggles exist in the problem domain, and a slight downwind effect is presented. The comparison of the height
of the cone for the upwind RKCM is given in Table 4, where the reference height is 1. As observed in the table,
the dissipation is observed when the discretization of the problem is coarse. As the model is refined, upwind RKCM
delivers little dissipation error.

Figure 23: Comparison of 2D rotating cone problem after two full rotations.

Table 4: Comparison of the height of the rotating cone problem under various discretizations using upwind RKCM
(reference value 1)

Upwind RKCM t = 2 t = 8 t = 14
hx = 0.01 0.8610 0.7598 0.6953
hx = 0.05 0.9529 0.9885 0.9936
hx = 0.025 0.9895 0.9936 0.9939

6 Conclusions and discussions

A general upwind reproducing kernel collocation method is proposed for convection-dominated problems. The non-
self-adjoint nature of these problems necessitates Petrov-Galerkin approaches. However, it’s worth noting that, when
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using the traditional meshfree collocation method, severe oscillations can still occur if upwind stabilization is not
applied.

We began with a 1D finite difference scheme and established a connection between finite differences and the
concept of gradient smoothing in the meshfree method literature. Our systematic analysis has demonstrated that
traditional finite difference stencils can be reinterpreted as contour integrals of finite element shape functions over
a representative domain. This innovative perspective brings the connection between the finite difference and the
continuous approximation in these numerical methods.

Subsequently, we developed a specialized upwind stabilization technique for convection-dominated problems by
employing gradient smoothing over the convection term. Our analysis revealed that selecting the smoothing domain
as the upwind region of each nodal representative domain is crucial for achieving upwind stabilization. We then
designed the upwind reproducing kernel collocation method, utilizing evaluation points at the upwind side of each
nodal representative domain. The precise location of these collocation points is determined by the element Péclet
number, eliminating the need for artificial parameters in the entire upwind collocation framework. An error analysis
demonstrated that the upwind reproducing kernel collocation method possesses O(hp−1)th order convergence rate,
where p is the degree of basis function in approximation. Finally, our proposed upwind reproducing kernel collocation
method demonstrated strong performance in both steady and unsteady convection-dominated examples.

We’ve identified that our proposed method’s stabilization structure is linear (independent of the numerical solu-
tion), setting it apart from nonlinear schemes like SUPG. The choice of order of completeness in the shape function
can be arbitrary. This linear scheme offers flexibility in choosing the order of completeness for shape functions, mak-
ing it adaptable for high-order accuracy. The choice of support size in reproducing kernel approximation extends the
connection between particles and their neighbors. Larger support sizes can occasionally lead to slight downwind oscil-
lations in coarse discretizations, which can be mitigated by increasing the number of discretization points. Moreover,
our method shows potential for application in modeling the Navier-Stokes equation and fluid-structure-interaction
(FSI) problems. The convection term in the N-S equation is time-dependent and may require additional effort to
shift the evaluation points in time, which will be considered as part of our future plans.
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Appendix

In this Appendix, we would like to show that the second-order gradients produced by the RKFM formulation satisfy
the relevant consistency condition and thus can achieve eI = O(h) when only the linear basis is employed. First, Eq.
(75) can be rewrite as follows:

∆̃ΨJ (x) =
1

VI

∫
ΓI

n · ∇ΨJ(x) dΓ :=
∑
K

χK(x) · ∇ΨJ (xJ) =
∑
K

(
AK

VI
n (xK)

)
· ∇ΨJ(xJ), x ∈ ΩI , (85)

where the numerical quadrature has been carried out to (85), the quadrature points are denoted by xK , and AK

represents the area of the Kth surface or weight of xJ .

Lemma 3. When the numerical quadrature to (85) is sufficiently accurate, the following special properties can be
derived for χK(x): ∑

K

χK(x) =
1

VI

∑
K

n (xK)AK =
1

VI

∫
ΓI

n dΓ = {0, 0}T, (86)

∑
K

χK(x)xK =
1

VI

∑
K

n (xK)AKxK =
1

VI

∫
ΓI

xn dΓ =
1

VI

∫
ΩI

{1, 0}TdΩ = {1, 0}T. (87)

The proof of Theorem 4 is given as follows:

Proof. Consider the second-order consistency condition of Ψ̃I,xx with only the employment of linear basis function,
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we have: ∑
J∈Sx

Ψ̃J,xx(x)x
2
J =

∑
J∈Sx

∑
K

χK1(x)ΨJ,x (xK) (xJ − xK + xK)
2

=
∑
J∈Sx

∑
K

χK1(x)ΨJ,x (xK)x2K + 2
∑
J∈Sx

∑
K

χK1(x)ΨJ,x (xK) (xJ − xK)xK

+
∑
J∈Sx

∑
K

χK1(x)ΨJ,x (xK) (xJ − xK)
2

=
∑
K

χK1(x)x
2
K

∑
J∈Sx

ΨJ,x (xK︸ ︷︷ ︸
=0

) + 2
∑
K

χK1(x)xK
∑
J∈Sx

ΨK,x (xK) (xJ − xK)︸ ︷︷ ︸
=1

+
∑
J

χJ1(x)
∑
I∈Sx

ΨI,x (xJ) (xI − xJ)
2

=2
∑
K

χK1(x)xK︸ ︷︷ ︸
=1 from (87)

+
∑
K

χK1(x)
∑
J∈Sx

ΨJ,x (xK) (xJ − xK)
2

=2 +
∑
K

χK1(x)
∑
J∈Sx

ΨJ,x (xK) (xJ − xK)
2
,

(88)

where χK1(x) = n1(xK)AK/VI denotes the first component of χK(x) and Eq. (87) has been employed. Now, if the
shape function Ψ is building under the quadratic basis function, the last term in Eq. (88) is exactly 0. However, when
only a linear basis is employed, if the particle discretization is uniform without the boundary truncation effect, the
summation

∑
I∈Sx

ΨI,x (xJ) (xI − xJ)
2
remains a constant value over the interior domain. Thus, Eq. (88) becomes

to: ∑
J∈Sx

Ψ̃J,xx(x)x
2
J = 2 +

∑
J∈Sx

ΨJ,x (xK) (xJ − xK)
2
∑
K

χK1(x)︸ ︷︷ ︸
=0 from (86)

= 2. (89)

The consistency condition of the second-order finite-volume type gradients with respect to xy and y2 can also be
obtained by a similar procedure.

Since the derivation of Eq. (89) does not require the quadratic basis function, the condition provided via (89)
is so-called extra high order consistency [27]. Finally, with the extra high-order reproducing condition, the upwind
collocation method with finite-volume type treatment of the second-order diffusion term under only linear basis
function can achieve a similar convergence rate as the upwind RKCM with quadratic basis function.
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