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SUMMARY

Because most approximation functions employed in meshfree methods are rational functions with overlap-
ping supports, sufficiently accurate domain integration becomes costly, whereas insufficient accuracy in the
domain integration leads to suboptimal convergence. In this paper, we show that it is possible to achieve
optimal convergence by enforcing variational consistency between the domain integration and the test func-
tions, and optimal convergence can be achieved with much less computational cost than using higher-order
quadrature rules. In fact, stabilized conforming nodal integration is variationally consistent, whereas Gauss
integration and nodal integration are not. In this work the consistency conditions for arbitrary order exact-
ness in the Galerkin approximation are set forth explicitly. The test functions are then constructed to be
variationally consistent with the integration scheme up to a desired order. Attempts are also made to correct
methods that are variationally inconsistent via modification of test functions, and several variationally con-
sistent methods are derived under a unified framework. It is demonstrated that the solution errors of PDEs
due to quadrature inaccuracy can be significantly reduced when the variationally inconsistent methods are
corrected with the proposed method, and consequently the optimal convergence rate can be either partially
or fully restored. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent decades, meshfree methods have become of growing interest due to the applicability of the
method to classes of problems that present difficulty in traditional mesh-based methods. Examples
include large deformation problems such as metal forming processes [1], moving discontinuities
in fracture mechanics [2, 3], penetration processes [4], and earth moving simulations [5], among
others. Although significant progress in meshfree methods has been made over the years, issues in
domain integration remain to be addressed.

In meshfree methods, the shape functions are typically rational, and their supports overlap.
Therefore it is difficult to develop accurate and efficient numerical integration for these methods.
Roughly speaking, this results in two major issues in meshfree methods with inappropriate domain
integration: the deterioration of accuracy and convergence rates, and a spatial instability in some
node-based integration techniques.

In early literature [6, 7], background cells were used for Gauss integration and no special treat-
ment was taken to alleviate the problems associated with integration. Dolbow and Belytschko [8]
first investigated the integration issue in the element-free Galerkin method and showed that although
moving least squares (MLS) shape functions are rational and thus more difficult to integrate, the
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main source of error in domain integration with Gauss quadrature is the misalignment of shape
function supports with integration cells. They proposed an integration scheme where supports and
integration cells are aligned for enhanced accuracy and convergence. Various other methods have
been proposed to address integration in meshfree methods. The meshless local Petrov–Galerkin
method [9] uses the local weak form such that the support of each shape function can be used as
integration cells with proper quadrature rules for the local integration domain. A similar technique
has been used in the method of finite spheres, as introduced in [10,11]. However, these methods are
expensive, as many integration points are repeatedly evaluated. More recently, Liu and Belytschko
[12] devised a method on the basis of this idea, combined with satisfaction of the linear patch test.
Methods based on the partition of unity have also been proposed [13, 14] to construct a method that
is free of background integration cells. In these methods, the domain integration is separated into a
series of integrands that cover the domain, each weighted by the partition of unity function.

If nodal integration is employed for domain integration to maintain the meshfree character of the
method, a well-known spatial instability arises [15, 16]. This is because first derivatives of shape
functions are zero or nearly zero at nodes, resulting in spurious modes from underestimating the
energy associated with small (two times the nodal spacing) wavelength modes. In this situation,
modes of alternating nodal displacements are left virtually unchecked as their contribution to the
bilinear form is small. Beissel and Belytschko [15] introduced a least squares residual-based method
where the second-order derivatives stabilize the rank instability. The approach eliminates the oscil-
latory behavior but at the cost of increasing the completeness of the basis functions to quadratic, and
thus requiring a larger support and further increasing computational cost. Chen et al. [16] introduced
a stabilized conforming nodal integration method (SCNI) that uses strain smoothing to achieve
Galerkin linear exactness and to take derivatives away from the nodes to circumvent rank instabil-
ity. More recently, it has been shown that SCNI generates nonzero low energy modes because of the
loss of coercivity in the limit of discretization, and a correction has been proposed to enhance the
stability [17, 18]. The SCNI approach has also been introduced as a nodal integration technique in
finite elements [19]. Stress point methods have also been proposed [20] for SPH where derivatives
are taken away from the nodes so that the spurious modes are not present.

To address the error induced by quadrature, a model problem of interest has been the patch test.
The conditions on the domain and boundary integration for passing the linear patch test as to yield
linear exactness in the Galerkin approximation have been investigated in [16, 21, 22] and were
termed integration constraints [16]. Several corrections based on these conditions have been pro-
posed. Bonet and Kulasegaram [22] have arrived at the condition for SPH, and a correction of the
bilinear form was proposed based on the satisfaction of the integration constraints which involved an
iterative procedure. Chen et al. [16] derived the integration constraint by enforcing linear exactness
in the Galerkin approximation with quadrature and proposed SCNI where the strains are smoothed
with divergence operation on a set of conforming subdomains such that the integration constraint
is satisfied. SCNI has been applied to various problems such as plate and shell problems [23–25],
where an integration constraint to achieve bending exactness so as to avoid shear locking has been
derived, and a strain smoothing on the curvature has been proposed. This approach was further
extended by Wang and Chen [25] to introduce a subdomain stabilized conforming integration to
achieve a locking free solution while maintaining spatial stability. Duan et al. [26] extended the
linear exactness of SCNI to quadratic exactness by solving for the shape function derivatives at each
integration point. Similar to SCNI, conforming integration cells are adapted to meet integration con-
straints. Error analysis of quadrature in meshfree methods has been carried out in [27, 28], where a
zero row-sum condition for improving convergence behavior has been introduced, and a correction
on diagonal terms of the stiffness matrix to achieve the zero row-sum condition has been proposed.

In this work, we focus on obtaining the requirements in domain integration to achieve arbitrary
order exactness in the Galerkin meshfree methods as an extension of linear integration constraints
[16] to higher-order constraints. Assuming the nth order completeness of the trial functions is
attained, close examination reveals that the conditions for nth order exactness are related to both
the integration scheme and the choice of test functions. These conditions state that using the cho-
sen numerical integration, integration by parts holds for the inner product of the test functions and
the differential operator acting on the nth order monomials. The domain integration methods that
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meet these conditions are referred to as variationally consistent integration (VCI) methods herein.
By using this as a basis, we construct a set of test functions consistent with the integration scheme
for satisfaction of the integration constraints. The method allows for arbitrarily high order exact-
ness for arbitrary types of integration methods, and it is demonstrated numerically that convergence
rates predicted by exact integration are either partially or fully restored, and the integration error is
significantly reduced when the integration constraints are met.

The outline of the paper is as follows. Section 2 gives a basic overview of domain integration
for Galerkin meshfree methods, and demonstrates that some commonly used numerical integration
methods can severely deteriorate accuracy and convergence. In Section 3 the integration constraints
for nth order exactness are derived and applied to several BVPs. Section 4 introduces ways to con-
struct test functions consistent with the integration scheme and proposes an assumed strain method
to satisfy the nth order integration constraints. Section 5 discusses the stability of the proposed
method for meeting integration constraints. In Section 6, the method is applied to several problems
demonstrating improved error and convergence over standard methods. Finally, concluding remarks
are given in Section 7.

2. BACKGROUND

In this section, we identify the issues in the domain integration of Galerkin meshfree methods. We
show how several commonly used domain integration methods such as nodal integration and Gauss
integration exhibit suboptimal convergence behavior under certain discretizations. The reproducing
kernel particle method (RKPM) will be used to demonstrate the integration issues, but the same
applies to other Galerkin meshfree methods. The discussions in this section serve as the motivation
of the present work.

2.1. Reproducing kernel approximation

We consider the reproducing kernel (RK) approximation herein to demonstrate the nature of approx-
imation functions commonly used in meshfree methods. Let the closed domain N� � Rd with
dimension d be discretized by a set of NP nodes ¹xI jxI 2 N�ºNPID1. The RK approximation of a
function u.x/ in N� denoted by uh.x/ is constructed by the product of a kernel functionˆa.x�xI /
with compact support and a correction function composed of a linear combination of basis functions
in the following form [29]:

uh.x/D

NPX
ID1

8<
:
X
j˛j6n

.x � xI /
˛b˛.x/

9=
;ˆa.x � xI /uI �

NPX
ID1

‰I .x/uI . (1)

Here we have introduced the multi-index notation ˛ D .˛1,˛2, : : : ,˛d / with the length of ˛ defined
as j˛j D

Pd
iD1 ˛i , x

˛ � x
˛1
1 � x

˛2
2 � : : : � x

˛d
d

, x˛I � x
˛1
I1 � x

˛2
I2 � : : : � x

˛d
Id

, b˛ D b˛1˛2���˛d , and uI
are the coefficients of approximation. The term ¹.x � xI /˛ºj˛j6n is the set of basis functions, and
¹b˛.x/ºj˛j6n are coefficients that are determined by meeting the reproducing conditions

NPX
ID1

‰I .x/x
˛
I D x

˛ , j˛j6 n. (2)

With ¹b˛.x/ºj˛j6n obtained from (2), the RK shape functions are obtained as

uh.x/D

NPX
ID1

‰I .x/uI (3)
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where

‰I .x/DH .0/
TM�1.x/H .x � xI /ˆa.x � xI / (4)

M .x/D

NPX
ID1

H .x � xI /H
T .x � xI /ˆa.x � xI /. (5)

Here, the vectorH T .x�xI / is the corresponding row vector of ¹.x�xI /˛ºj˛j6n andM .x/ is the
moment matrix. In this construction, the reproducing conditions (2) are met provided the moment
matrix (5) is invertible, and this requires sufficient nodes under the cover of ˆa so that the repro-
ducing equations are linearly independent [30]. By direct differentiation, the shape functions also
satisfy the gradient property

NPX
ID1

r‰I .x/x
˛
I Drx

˛ , j˛j6 n. (6)

The gradient completeness in (6) is one of the necessary conditions to pass the patch test. It is impor-
tant to note that meshfree shape functions such as the RK shape functions in (3) can be rational
functions, and the shape function supports are often overlapping. This adds complexity to domain
integration in meshfree methods.

2.2. Issues in domain integration

When shape functions are rational such as the RK shape functions in (3), exact domain integration
may not be possible. Exactness in the Galerkin approximation is not guaranteed even if the test
functions possess sufficient completeness to represent the solution. As shown in [16], the exactness
in the Galerkin approximation is guaranteed provided additional integration constraints are met.
For first order Galerkin exactness, the linear integration constraint is the condition to numerically
integrate the divergence equality [16]:

hr‰I i� D h‰Ini@� 8I , (7)

where h�i� D
RO
�
� d� and h�i@� D

RO
@�
� d� denote numerical versions of domain and boundary

integrals, respectively, with ‘ O ’ denoting numerical integration, and ‰I is a shape function with
first-order completeness used in the Galerkin equation. Passing the patch tests (Galerkin exactness)
for meshfree methods is in general not straightforward. Even high order Gauss integration (GI) is in
general unable to meet the integration constraint, and therefore it cannot provide Galerkin exactness
in meshfree methods. Methods such as stabilized conforming nodal integration [16, 23, 24, 31, 32]
have been proposed that are specifically formulated to meet the integration constraints and therefore
pass the associated patch tests.

Let us examine the effect of various conventional domain integration techniques on the accuracy
of Galerkin meshfree methods. The patch test requires that the exact solution of a certain order be
obtained for the BVP at hand. If the shape functions possess sufficient completeness, then this is
achievable provided the additional integration constraints are met.

As an example, consider a linear patch test for the Poisson equation:

r2uC s D 0 in � (8a)

ru � nD h on @�h (8b)

uD g on @�g , (8c)

where � W .�1, 1/ � .�1, 1/, @�h W �1 6 x 6 1, y D 1, @�g D @� n @�h. Let the prescribed
conditions to (8) be

s D 0 (9a)

hD n1C 2n2 (9b)

g D xC 2y. (9c)
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The solution to the BVP (8) with conditions (9) is uD xC 2y.
The domain � is discretized with uniform and nonuniform node distributions. For the genera-

tion of the nonuniform discretization, a perturbation parameter ˇ is introduced to perturb the nodes
away from a uniform distribution with spacing �xi by xiI D x0iI C �I i�xi , �ˇ 6 �I i 6 ˇ, where
x0iI is the uniform nodal position, xiI is the perturbed node position, and �I i is generated ran-
domly for each node in each direction. In nonuniform node distributions, the integration constraint
tends to be violated more because of the asymmetry of the location of the integration points with
respect to nodes and the asymmetry of the shape functions themselves. Figure 1 shows the domain
discretizations used with integration schemes for GI and direct nodal integration (DNI).

Because both Gauss integration and direct nodal integration fail to meet the linear integration
constraint, they fail the patch test as seen in Table I. Although linear bases are used, meeting the
linear completeness requirement alone is not sufficient for passing linear patch test. DNI performs
poorly, whereas GI is seen to provide better results as the number of integration points increases.
However, when the number of Gauss points is increased from 1� 1 to 5� 5, the error still remains.
Although the patch test can be ‘nearly’ passed for high order integration, the cost increase can be
significant. Here, it is seen that for ˇ D 1, the error is reduced by an order of magnitude from 1� 1
GI to 3� 3 GI and an additional order from 3� 3 to 5� 5 GI. Lastly, it can be seen that for irregular
node distributions, the error can be several orders of magnitude larger than in the uniform case.

DNI, = 0.0 DNI, = 0.5 DNI, = 1.0

1x1 GI, = 0.0 1x1 GI, = 0.5 1x1 GI, = 1.0

Integration point

RKPM node

Gauss cell

Figure 1. Integration schemes for direct nodal integration (DNI) and 1�1Gauss integration (GI) for uniform
and nonuniform node distributions.

Table I. L2 norm of error for various integration methods.

ˇ

Method 0.0 0.5 1.0

DNI 0.0236688 0.7213156 0.6750119
1� 1 GI 0.0071572 0.3163669 1.6402035
2� 2 GI 0.0001916 0.0649164 0.0782014
3� 3 GI 0.0000333 0.0115104 0.0241756
4� 4 GI 0.0000087 0.0053343 0.0066763
5� 5 GI 0.0000013 0.0015578 0.0019404

DNI, direct nodal integration; GI, Gauss integration.
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Under integration can result in suboptimal convergence. To demonstrate this, consider a conver-
gence study for the same BVP (8) with the source term and pure essential boundary condition:

s D sin. x/ sin. y/ (10a)

g D 0. (10b)

Here, the entire boundary is subjected to g D 0. The exact solution of this problem is

uD
1

2 2
sin. x/ sin. y/. (11)

First, the domain is discretized uniformly with 36, 121, 441, and 1681 nodes, and an RK approx-
imation with linear bases and a normalized support of 1.75 is employed. In this case, the integration
constraint is met for nodes with kernel functions that do not cover the boundary of the domain,
because GI and direct integration points are symmetric with respect to the shape functions. Conse-
quently, as seen in Figure 2 (numbers in the legends indicate rates of convergence), the convergence
behavior is optimal. It is noted here that the H 1 semi-norm turns into the energy norm for this
particular problem.
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Figure 2. Convergence of error in (a) the L2 norm and (b) the H1 semi-norm for uniform discretization for
Gauss integration (GI) and direct nodal integration (DNI).

Figure 3. Uniform refinement of irregular node distribution.
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Figure 4. Convergence of error in (a) the L2 norm and (b) theH1 semi-norm for nonuniform discretization
for Gauss integration (GI) and direct nodal integration (DNI).

The domain is then discretized with a nonuniform node distribution with the random generation
parameter ˇ D 0.2 in the coarse discretization and refined uniformly as shown in Figure 3. Herein,
the characteristic length for convergence h is taken as the maximum nodal spacing for the first
discretization and halved for each subsequent discretization.

Direct nodal integration and GI are again employed; the error in the L2 norm and H 1 semi-norm
are shown in Figure 4. In nonuniform convergence studies, when the convergence is erratic, the aver-
age rate is taken as indicated in the figure. It can be seen that although the shape functions possess
linear completeness, the optimal convergence rates of 2 in the L2 norm and 1 in the H 1 semi-norm
are not obtained, and can in fact be much lower than these optimal rates. The two methods of simple
integration (1 � 1 GI and DNI) behave erratically with respect to the convergence and accuracy, as
it is seen that the H 1 semi-norm of the error actually diverges with refinement. It is also seen that
the convergence rate can be partially restored, but even with 5� 5 GI, the rate is not full in the H 1

semi-norm.

2.3. Stabilized conforming and nonconforming nodal integration

Stabilized conforming nodal integration has been introduced [16] to meet the linear integration
constraint (7) and to remedy rank instability in DNI. In this method, gradients are smoothed over
conforming cells that partition the domain as shown in Figure 5(a). The cells can be generated
by using Voronoi diagrams or Delaunay triangulations. SCNI considers gradient smoothing with
divergence in each nodal representative domain by

Qruh.xL/D
1

AL

Z
�L

ruh.x/ d�D
1

AL

Z
@�L

uh.x/n.x/ d� . (12)

Here AL D
R
�L

d� and �L is the representative domain of node L.

L

L
ΩL

L

L

ΩL

(a) (b)

Figure 5. Nodal representative domain (a) by Voronoi diagram for stabilized conforming nodal integration
(b) for stabilized nonconforming nodal integration smoothing scheme.
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With (3), the approximation of the gradient at each node can be expressed in terms of the averaged
(smoothed) shape function gradient

Qruh.xL/D

NPX
ID1

Qr‰I .xL/uI , (13)

where

Qr‰I .xL/D
1

AL

Z
@�L

‰I .x/n.x/ d� . (14)

If numerical integration is employed, (14) is expressed as

Qr‰I .xL/D
1

AL
h‰Ini@�L . (15)

It is easily shown that nodal integration with the smoothed gradient in (15) meets the integration
constraint (7) if the smoothing domains ¹�LºNINTLD1 are conforming [16]:

h Qr‰I i� D

NINTX
LD1

Qr‰I .xL/AL D

NINTX
LD1

h‰Ini@�L D h‰Ini@�, (16)

where NINT is the number of integration points. To yield linear exactness in the Galerkin approx-
imation of second-order PDEs by using SCNI, the boundary integration rules used in h‰Ini@�L in
(15) should be used for natural or essential boundary terms in the weak form as can be understood
from (7) and the Galerkin weak form of (8).

The formation of conforming strain smoothing domains in SCNI can be cumbersome in prob-
lems subjected to topological change in geometry, and stabilized nonconforming nodal integration
(SNNI) has been introduced [4,5] as a simplification of SCNI. Figure 5(b) depicts a typical smooth-
ing scheme for SNNI where the smoothing zones are nonconforming. For illustration, SCNI and
SNNI are employed for solving the patch test problem described by (8) and (9). Figure 6 shows
the gradient smoothing schemes by conforming Voronoi cells and nonconforming cells for the
discretizations. The integration weights used in both methods are the nodal areas in the Voronoi
diagram.

SCNI, = 0.0 SCNI, = 0.5 SCNI, = 1.0

SNNI, = 0.0 SNNI, = 0.5 SNNI, = 1.0

RKPM node

Smoothing zone

Figure 6. Gradient smoothing domains in smoothed nodal integration methods.
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Table II. L2 norm of error for smoothed integration methods.

ˇ

Method 0.0 0.5 1.0

SCNI 1.34E-15 3.51E-14 1.06E-14
SNNI 0.0259761 0.4509896 0.9459201

SCNI, stabilized conforming nodal integration; SNNI, stabilized nonconforming nodal
integration.
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Figure 7. Convergence of error in (a) the L2 norm and (b) the H1 semi-norm for nonuniform
discretization for stabilized conforming nodal integration (SCNI) and stabilized nonconforming nodal

integration (SNNI).

Table II shows the error of patch test by using nodal integration with the two gradient smoothing
methods. For SCNI, the result passes the patch test to machine precision, whereas SNNI does not
pass the patch test. The consequence of passing or violating patch test can be demonstrated in the
convergence test described by Equations (8) and (10), with the nonuniform discretizations shown
in Figure 3. The L2 norm and H 1 semi-norm of the errors are plotted in Figure 7, showing that
SCNI provides optimal convergence in the L2 norm and in derivatives, whereas SNNI converges at
a much lower rate in the L2 norm and in the H 1 semi-norm. It is noted that, similar to the cases of
DNI and GI, optimal convergence can be obtained when a uniform discretization is employed.

Remarks 2.1

(1) To satisfy linear completeness, which is the first requirement to meet Galerkin exactness, it is
sufficient to take single point integration on each boundary face in the smoothed methods so
that

hni@�L D hr1i�L (17a)

hnxi@�L D hrxi�L (17b)

hnyi@�L D hryi�L . (17c)

Using (17a), the smoothed gradients meet the gradient partition of nullity

NPX
ID1

Qr‰I .xL/D
1

AL

* 
NPX
ID1

‰I

!
n

+
@�L

D
1

AL
hni@�L D 0. (18)

Similarly, the smoothed gradients meet the first-order gradient reproducing condition by using
(17b) and (17c) and if the approximation is first-order complete

NPX
ID1

Qr‰IxI .xL/D
1

AL

* 
NPX
ID1

‰IxI

!
n

+
@�L

D
1

AL
hnxi@�L D

²
1

0

³
(19a)
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and

NPX
ID1

Qr‰IyI .xL/D
1

AL

* 
NPX
ID1

‰IyI

!
n

+
@�L

D
1

AL
hnyi@�L D

²
0

1

³
. (19b)

(2) For smoothed integration methods, an additional condition analogous to (17) is required to
meet quadratic gradient reproducing conditions:

hnx2i@�L D hrx
2i�L (20a)

hny2i@�L D hry
2i�L (20b)

hnxyi@�L D hrxyi�L . (20c)

Further, let the nodes coincide with the centroid xc of the smoothing zones defined by

xc D
1

AL
hxi�L D

1

2AL
hx2n1i@�L (21a)

yc D
1

AL
hyi�L D

1

2AL
hy2n2i@�L . (21b)

Here, (20) has been used to result in (21). By using (20) and (21), the second-order gradient
reproducing conditions are satisfied at each nodal position xc by

NPX
ID1

Qr‰Ix
2
I .xc/D

1

AL
hnx2i@�L D

²
2xc
0

³
(22a)

NPX
ID1

Qr‰Iy
2
I .xc/D

1

AL
hny2i@�L D

²
0

2yc

³
(22b)

NPX
ID1

Qr‰IxIyI .xc/D
1

AL
hnxyi@�L D

²
yc
xc

³
. (22c)

In two dimensions, the above relationships can be satisfied by using the two-point GI for each
boundary segment of arbitrary polygon smoothing zones and single point integration for each
boundary segment of square smoothing zones, provided the nodal location is at xc for both
cases.

3. VARIATIONALLY CONSISTENT INTEGRATION FOR HIGH ORDER EXACTNESS IN
THE GALERKIN APPROXIMATION

In this section, we demonstrate how arbitrary order exactness in the Galerkin approximation can be
achieved if the test function and domain integration are variationally consistent. This concept is a
generalization of the integration constraint for first-order Galerkin exactness for the second-order
PDE as introduced in [16]. These constraint conditions serve as the basis for deriving variationally
consistent domain integrations to be discussed in Section 4.

3.1. Model problem

Here, the integration constraint for linear exactness in the Galerkin approximation of second-order
PDEs (7) is generalized to high order solutions and general PDEs. Consider the following abstract
boundary value problem:

LuC s D 0 in � (23a)

BuD h on @�h (23b)

uD g on @�g . (23c)
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In the above, L is a differential operator acting in the domain � � Rd , s is a source term, g is the
prescribed values of u on the essential boundary @�g , B is a boundary operator acting on the natu-
ral boundary @�h, and the boundary of the domain @� admits the decomposition @�g \ @�h D ;
and @�D @�g [ @�h.

Although traditionally essential boundary terms are omitted in the weighted residual because of
the availability of the kinematically admissible trial space, in meshfree methods this may not be
the case and the essential boundary conditions should be imposed as constraints by, for example,
Lagrange multiplier methods, Nitsche’s method, or the modified variational principle. To keep the
formulation general, Lagrange multipliers shall be employed for the enforcement of boundary con-
ditions herein, but what follows applies to all consistent weak forms, that is, all weak forms that
attest to the strong form (23).

The weak form of the BVP seeks .u,�/ 2 U �ƒ such that for all .v, �/ 2 V � � the following
equation holds:

a.v,u/� D .v, s/�C .v, h/@�h C .v,�/@�g C .� ,u� g/@�g , (24)

where U , ƒ, V , and � are adequate Sobolev spaces associated with the differential operator L.
Here .v, s/� D

R
�
vs d� denotes the L2 inner product in �, .v, h/@�h D

R
@�h

vh d� and

.v,�/@�g D
R
@�g

v� d� denote L2 inner products on the natural and essential boundaries of
�, respectively, and a is a bilinear form which results from the integration by parts formula
.v,Lu/� D .v,Bu/@� � a.v,u/�. Note that using the equivalence of the weak and strong forms,
the Lagrange multiplier is obtained as

�D Bu on @�g . (25)

Substitution of (25) into (24) gives the modified variational principle [33]. However for illustration,
the Lagrange multiplier form shall be used.

3.2. Variational consistency condition: a generalization of the linear integration constraint

Consider the abstract boundary value problem (23) where the solution is complete monomials with
degree n:

uD
X
j˛j6n

c˛x
˛ � un, (26)

where the multi-index notation is that used in (1). The source term and boundary conditions
consistent with this solution are

s D�Lun in � (27a)

hD Bun on @�h (27b)

g D un on @�g . (27c)

That is, when the boundary conditions and source term are prescribed as (27), the solution to the
BVP of (23) is (26). For this solution the Lagrange multiplier takes the form

�n D Bun on @�g . (28)

The Galerkin approximation seeks .uh,�h/ 2 U h � ƒh such that for all .vh, �h/ 2 V h � �h the
following equation holds:

a.vh,uh/� D .v
h, s/�C .v

h, h/@�h C .v
h,�h/@�g C .�

h,uh � g/@�g , (29)
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where U h � U , V h � V , ƒh � ƒ, and �h � � are suitable finite-dimensional subspaces. Let the
trial and test functions be approximated as

uh D

NPX
ID1

‰IuI (30a)

vh D

NPX
ID1

O‰IvI (30b)

�h D

NCX
ID1

'I�I (30c)

�h D

NCX
ID1

O'I�I , (30d)

whereNC is the number of constraint nodes associated with the essential boundary condition. Note
that in the Bubnov–Galerkin method, O‰I D ‰I and O'I D 'I , and for a Petrov–Galerkin method
they are different from each other. Consider the nth order completeness in uh in (2):

NPX
ID1

‰Iu
n
I D u

n, (31)

where un is the complete nth order monomial defined in (26), and unI D
P
j˛j6n c˛x

˛
I . By using

the approximations (30), inserting uJ D unJ into the last term in (29), using the essential boundary
condition (27c), and the completeness condition (31), we have

NPX
JD1

a. O‰I ,‰JuJ /� D . O‰I , s/�C . O‰I , h/@�h C
NCX
JD1

. O‰I ,'J�J /@�g 8I . (32)

By taking �I D �nI D .Bun/I , inserting uJ D unJ , and using the completeness condition in the

approximation of �h D
PNC
ID1 'I�

n
I D

PNC
ID1 'I .Bu

n/I D Bu
n we arrive at

NPX
JD1

a. O‰I ,‰Ju
n
J /� D .

O‰I , s/�C . O‰I , h/@�h C . O‰I ,Bun/@�g 8I . (33)

Finally, by using the source term (27a) and boundary conditions (27b) and (27c), considering all
orders of completeness from 1 to n, and employing numerical integration in (33), we have

ah O‰I ,x˛i� D�h O‰I ,Lx˛i�C h O‰I ,Bx˛i@� 8I , j˛j D 0, 1, : : : ,n, (34)

where ah�, �i� is the quadrature version of a.�, �/�, and h�, �i� and h�, �i@� are the quadrature versions
of .�, �/� and .�, �/@�, respectively. The equations in (34) are a generalization of the linear integra-
tion constraints to arbitrary order of Galerkin exactness. Domain integration that meets (34) yields
Galerkin exactness with a desired order and is called VCI herein.

Remarks 3.1

(1) To arrive at the nth order integration constraints in (34), nth order completeness in the trial
functions has been used. The integration constraint states that the numerical integration of the
domain and boundary integrals for Galerkin approximation of a PDE with differential operator

L has to be consistent with the test functions O‰I in the form of (34) for an nth order complete
numerical method to achieve the nth order exactness in the Galerkin approximation (passing
the nth order patch test).
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(2) For n D 1, (34) is the integration constraint for the linear patch test as given in [16], which
reduces to a divergence condition for a second-order differential operator L such as the elas-
ticity or Poisson problem. Further, stabilized conforming nodal integration introduced in [16]
meets the constraint for nD 1.

(3) The constraint for constant exactness for self-adjoint PDEs is automatically satisfied when the
trial functions possess the partition of unity property.

(4) The integration constraints in (34) act on the test functions O‰I . It is therefore possible, for a
given set of nth order complete trial functions and numerical integration methods, to construct
test functions, different from the trial functions, to meet the integration constraints. This is
demonstrated in Section 4.

3.3. Integration constraint for the Poisson equation

For illustration, consider the two-dimensional Poisson equation, where the operators in (23) and the
bilinear form in (24) are defined by

LDr2 (35a)

B D n � r (35b)

a.v,u/� D .rv,ru/�, (35c)

and the trial and test spaces are defined as U D V DH 1.�/ and ƒD � D L2.@�g/. Substitution
of (35) into (34) gives

ah O‰I ,x˛i� D�h O‰I ,r2x˛i�C h O‰I ,rx˛ � ni@� 8I , j˛j D 0, 1, : : : ,n. (36)

By letting nD 1, the linear constraints are obtained as

hr O‰I i� D h O‰Ini@� 8I . (37)

The integration constraint in (37) is a divergence condition with numerical integration acting on O‰I .
Similarly, the quadratic integration constraints are obtained as

h O‰I ,1xi� D�h O‰I i�C h O‰Ixn1i@� 8I (38a)

h O‰I ,2yi� D�h O‰I i�C h O‰Iyn2i@� 8I (38b)

h O‰I ,1y C O‰I ,2xi� D h O‰I .yn1C xn2/i@� 8I , (38c)

and the third order integration constraints are

h O‰I ,1x
2i� D�h2 O‰Ixi�C h O‰Ix

2n1i@� 8I (39a)

h O‰I ,2y
2i� D�h2 O‰Iyi�C h O‰Iy

2n2i@� 8I (39b)

h2 O‰I ,1xy C O‰I ,2x
2i� D�h2 O‰Iyi�C h O‰I .2xyn1C x

2n2/i@� 8I (39c)

h O‰I ,1y
2C 2 O‰I ,2xyi� D�h2 O‰Ixi�C h O‰I .y

2n1C 2xyn2/i@� 8I . (39d)

Note that for high order exactness, the constraints of each lower order should be satisfied.

3.4. Integration constraint for linear elasticity

The elasticity boundary value problem is stated as:

r � � C bD 0 in � (40a)

� � nD h on @�h (40b)

uD g on @�g . (40c)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 95:387–418
DOI: 10.1002/nme



400 J-S. CHEN, M. HILLMAN AND M. RÜTER

Here, u is the displacement field, � DC W rsu is the Cauchy stress tensor, where C is the elasticity
tensor and rsuD 1=2.r˝uCu˝r/ is the strain tensor. Thus for elasticity we have the following
tensorial operators:

LDr �C W rs (41a)

B D n � .C W rs/. (41b)

The weak form asks to find .u,�/ 2 U�ƒ such that for all .v,�/ 2 V �� , withU D V D ŒH 1.�/	d

and ƒD � D ŒL2.@�g/	d , the following equation holds:

a.v,u/� D .v,b/�C .v,h/@�h C .v,�/@�g C .� ,u� g/@�g , (42)

where the bilinear form and linear forms for elasticity are

a.v,u/� D
Z
�

rsv WC W rsu d� (43a)

.v,b/� D
Z
�

v � b d� (43b)

.v,h/@�h D
Z
@�h

v � h d� (43c)

.v,�/@�g D
Z
@�g

v �� d� . (43d)

Consider (40) with the following nth order solution u D
P
j˛j6n c˛x

˛ � un by using the multi-
index notation. Denote the stress tensor corresponding to the displacement field as � n D C W rsun,
and the stress corresponding to x˛ as � ˛ D C W rsx˛ . The boundary conditions and body force
associated with this displacement field are

bD�r � � n in � (44a)

hD � n � n on @�h (44b)

g D un on @�g . (44c)

That is, when the body force and boundary conditions are prescribed as in (44), the solution to (40)
is un. Furthermore, the Lagrange multiplier consistent with the solution un is

�n D � n � n on @�g , (45)

which is the traction on the essential boundary. For the Galerkin form, let us introduce the following
approximations:

uh D

NPX
ID1

‰IuI (46a)

vh D

NPX
ID1

O‰IvI (46b)

�h D

NCX
ID1

'I�I (46c)

�h D

NCX
ID1

O'I�I . (46d)

By substituting the approximations (46) into (42) with the exact nodal solution; employing nth

order completeness; using prescribed conditions in (44) and the Lagrange multiplier in (45); and
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employing numerical integration on (42), the following integration constraints are obtained for
elasticity following similar procedures for the scalar equations:

hr O‰I � �
˛i� D�h O‰Ir � �

˛i�C h O‰I�
˛ � ni@� 8I , j˛j D 0, 1, : : : ,n. (47)

For illustration purposes, let us consider the two-dimensional (d D 2) case. Further manipu-
lation of (47) gives the general two-dimensional integration constraint for elasticity for all I and
j˛j D 0, 1, : : : ,n:

h O‰I ,1

˛
11C

O‰I ,2

˛
21i� D�h

O‰I .

˛
11,1C 


˛
21,2/i�C h

O‰I .n1

˛
11C n2


˛
21/i@� (48a)

h O‰I ,1

˛
21C

O‰I ,2

˛
22i� D�h

O‰I .

˛
21,1C 


˛
22,2/i�C h

O‰I .n1

˛
21C n2


˛
22/i@�. (48b)

For the linear integration constraint, consider the linear displacement field

u1 D a11xC a12y (49a)

u2 D a21xC a22y. (49b)

Note that constant terms are omitted because partition of unity in the trial function in general satisfies
constant exactness. The stress associated with this displacement is constant:


ij DCij11a11C
1

2
Cij12.a12C a21/C

1

2
Cij21.a12C a21/CCij22a22. (50)

Substituting (50) into (48) the constraint is reduced to

h O‰I ,1i� D h O‰In1i@� 8I (51a)

h O‰I ,2i� D h O‰In2i@� 8I , (51b)

which is the same as the divergence condition in the Poisson equation (37).
For quadratic exactness, consider the additional quadratic components of the displacement field

by

u1 D a13x
2C a14y

2C a15xy (52a)

u2 D a23x
2C a24y

2C a25xy, (52b)

which gives the linear stress


ij DCij11.2a13xC a15y/C
1

2
Cij12.2a14y C a15xC 2a23xC a25y/

C
1

2
Cij21.2a14y C a15xC 2a23xC a25y/CCij22.2a24y C a25x/.

(53)

Substitution of (53) into the constraint (48) results in the following conditions:

h O‰I ,1xi� D�h O‰I i�C h O‰Ixn1i@� 8I (54a)

h O‰I ,2yi� D�h O‰I i�C h O‰Iyn2i@� 8I (54b)

h O‰I ,2xi� D h O‰Ixn2i@� 8I (54c)

h O‰I ,1yi� D h O‰Iyn1i@� 8I , (54d)

which are similar to, but slightly more restrictive than the Poisson equation’s constraints (38). Note
that for passing quadratic patch test, both (51) and (54) are needed.

Higher-order constraints can be obtained similarly as shown in Appendix A.

4. VARIATIONALLY CONSISTENT INTEGRATION METHODS

Several variationally consistent integration methods are presented in this section. Methods discussed
in this section include corrections of existing integration methods that are variationally inconsistent,
as well as an extension of SCNI to achieve higher-order exactness.
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4.1. Basic ideas

The integration constraints in Section 3 provide a basis for developing a variationally consistent
integration method. Completeness of the trial space can be met by using standard shape functions
such as the reproducing kernel function given in (1). Straightforward examination of (34) shows that
it is possible to select a set of test functions to meet the integration constraints. Here, a procedure is
introduced to this end, and it can be applied to arbitrary types of integration.

Let the approximations of scalar trial and test functions be expressed as

uh D

NPX
ID1

‰IuI (55a)

vh D

NPX
ID1

O‰IvI , (55b)

where‰I is the trial function which possesses nth order completeness, and consider the test function
approximations as

O‰I D‰I C
X
jˇ j6n

�ˇI O‰
ˇ
I . (56)

Here, it is required that ¹‰I , O‰ˇI º
n
jˇ jD1

be linearly independent. Inserting the trial function and the
test functions into the integration constraint for the scalar BVP in (23) yields

nX
jˇ jD1

�ˇI

�
ah O‰

ˇ
I ,x˛i�C h O‰

ˇ
I ,Lx˛i� � h O‰

ˇ
I ,Bx˛i@�

�
D

� .ah‰I ,x˛i�C h‰I ,Lx˛i� � h‰I ,Bx˛i@�/ 8I , j˛j D 0, 1, : : : ,n

(57)

which can be expressed as

nX
jˇ jD1

A˛ˇI �ˇI D r˛I 8I , j˛j D 0, 1, : : : ,n (58)

where

A˛ˇI D a
D
O‰
ˇ
I ,x˛

E
�
C
D
O‰
ˇ
I ,Lx˛

E
�
�
D
O‰
ˇ
I ,Bx˛

E
@�

(59a)

r˛I D� .a h‰I ,x˛i�C h‰I ,Lx˛i� � h‰I ,Bx˛i@�/ . (59b)

The unknown coefficients �ˇI are straightforwardly obtained from (58).
The method resulting from the chosen integration method with trial function and test function

formed using (56)–(59) is variationally consistent.

Remarks 4.1

(1) The method is driven from the residual of the numerical integration. If the numerical inte-
gration is variationally consistent, that is, �I D 0, the method is the same as the unmodified
method.

(2) The type of numerical integration in the method is arbitrary.
(3) The method allows arbitrarily high order exactness in the Galerkin approximation.
(4) The set of ¹‰I , O‰ˇI º

n
jˇ jD1

is not arbitrary for general problems where solutions may not be in
the trial space, and conditions on these functions should be chosen on the basis of stability
considerations to be discussed in Section 5.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 95:387–418
DOI: 10.1002/nme



A VARIATIONALLY CONSISTENT INTEGRATION FOR MESHFREE METHODS 403

4.2. Assumed strain variationally consistent integration

The basic approach for constructing the VCI method given in the last section requires solving a
local linear system. In this section we seek to decouple the correction equations (58) for enhanced
computational efficiency. An assumed strain method is proposed, and this involves a construction
of the gradient field to achieve the integration constraints. First, let the test and trial functions be
approximated by shape functions with nth order completeness:

uh D

NPX
ID1

‰IuI (60a)

vh D

NPX
ID1

‰IvI . (60b)

A direct gradient and an assumed gradient are then introduced to the trial and test functions,
respectively:

ruh D

NPX
ID1

r‰IuI (61a)

Qrvh D

NPX
ID1

0
@r‰I C X

jˇ j6n
�ˇIr O‰

ˇ
I

1
A vI . (61b)

Under this framework, the Galerkin formulation of the Poisson equation seeks .uh,�h/ 2 U h �ƒh

such that for all .vh, �h/ 2 V h � �h the following equation holds:Z
�

Qrvh � ruh d�D

Z
�

vhs d�C

Z
@�h

vhh d� C

Z
@�g

vh�h d� C

Z
@�g

�h.uh � g/ d� , (62)

where Qr is the assumed gradient operator defined by (61b).

Remarks 4.2

Likewise, the Galerkin formulation for elasticity seeks .uh,�h/ 2 U h � ƒh such that for all
.vh,�h/ 2 V h � �h the following equation holds:Z

�

Qrsvh WC W rsuh d�D

Z
�

vh � b d�C

Z
@�h

vh � h d� C

Z
@�g

vh ��h d�

C

Z
@�g

�h � .uh � g/ d� ,
(63)

where Qrsuh D 1=2
�
Qr ˝ uhC uh˝ Qr

�
.

By using the assumed strain method for the Petrov–Galerkin formulation, it is possible to
uncouple the equations in (58). Consider an assumed strain correction for (37) and (51), in two
dimensions:

Qrvh D

NPX
ID1

�
r‰I CRI

²
�1I
�2I

³�
vI . (64)

Here, RI is taken in its simplest form as

RI .x/D

´
1 if x 2 supp.‰I .x//

0 if x 62 supp.‰I .x//
. (65)

Note that different forms for RI with higher-order continuity can also be considered.
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The coefficients are then solved for directly by

�1I D�.h‰I ,1i� � h‰In1i@�/=hRI i (66a)

�2I D�.h‰I ,2i� � h‰In2i@�/=hRI i. (66b)

To satisfy the linear constraints (37) and (51), and quadratic constraints (38) and (54), consider the
correction

Qrvh D

NPX
ID1

�
r‰I CRI

²
�1I
�2I

³
C SI

²
�3I
�4I

³
C TI

²
�5I
�6I

³�
vI , (67)

where

SI DRI � .x � xI / (68a)

TI DRI � .y � yI /. (68b)

The use of (67) uncouples the constraints into two systems of equations

AI�
1
I D r

1
I (69a)

AI�
2
I D r

2
I , (69b)

where

AI D hP.x � xI /P
T .x � xI /RI i� (70a)

P.x/D ¹1 x yºT (70b)

�1I D ¹�1I �3I �5I º
T (70c)

�2I D ¹�2I �4I �6I º
T (70d)

r1I D ¹r1I r3I r5I º
T (70e)

r2I D ¹r2I r4I r6I º
T , (70f)

and

r1I D h‰In1i@� � h‰I ,1i� (71a)

r2I D h‰In2i@� � h‰I ,2i� (71b)

r3I D h‰In1.x � xI /i@� � h‰I i� � h‰I ,1.x � xI /i� (71c)

r4I D h‰In2.x � xI /i@� � h‰I ,2.x � xI /i� (71d)

r5I D h‰In1.y � yI /i@� � h‰I ,1.y � yI /i� (71e)

r6I D h‰In2.y � yI /i@� � h‰I i� � h‰I ,2.y � yI /i�. (71f)

Remarks 4.3

(1) Shifted polynomials x � xI and y � yI have been used in the construction of the assumed
strain field to yield a symmetric matrix AI . This assumed strain field in (61) along with the
form of residual ensures the invertibility ofAI , so long as sufficient nodes are under the cover
of the kernel function (65) for linear independency.

(2) The form of the assumed strain fields in (61), (64), and (67) allows decoupling of the inte-
gration constraint correction equations. Further, the form chosen appears stable according to
Section 5.2. Numerical observation demonstrates remarkable stability of the assumed strain
method over a direct gradient approach.

(3) The additional computational cost of using (61) is roughly the cost of integration of a body
force and a total boundary term. It has been observed in large scale computations that the
expense for linear VCI correction is negligible and therefore it is much more effective than
using higher-order quadrature rules.
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5. STABILITY ANALYSIS

Whenever a Petrov–Galerkin method such as the assumed strain VCI method presented in
Section 4.2 is used, stability may become an issue. In this section, abstract stability estimates are
presented for both Bubnov–Galerkin and Petrov–Galerkin methods. It is noted that for the assumed
strain VCI method, the stability analysis of the Petrov–Galerkin method can be simplified and
stability can be shown in terms of coercivity rather than an inf-sup condition.

5.1. Stability estimates for Bubnov–Galerkin and Petrov–Galerkin methods

Here, for clarity and simplicity, it is assumed that the test and trial functions are kinematically admis-
sible so that the Lagrange multipliers in (29) are not taken into account. Consider the following weak
form statement: find uh 2 V h such that

a
�
vh,uh

�
�
D F

�
vh
�
8vh 2 V h. (72)

For Bubnov–Galerkin methods, the existence of a unique solution uh 2 V h to the abstract dis-
crete problem is a direct consequence of the Lax–Milgram theorem, provided that the linear form
F is continuous and that the bilinear form a is continuous and coercive. Note that in the Bubnov–
Galerkin method, a is defined on V h � V h. The stability of the approximate solution uh can be
easily verified by means of the coercivity of the bilinear form a, that is,

a
�
uh,uh

�
�
> �kuhk2V 8uh 2 V h, (73)

with appropriate norm k � kV on V , holds for � > 0, because, by the continuity of F and the
variational equation (72), one obtains

kuhkV 6
1

�
kF kV 0 (74)

where k � kV 0 denotes the dual norm of k � kV .
In the case of Petrov–Galerkin methods, the bilinear form a is defined on V h�U h. Existence and

uniqueness of the discrete solution uh 2 U h now mainly relies on an inf-sup condition, which can
be equivalently expressed as

sup
vh2V h

a
�
vh,uh

�
�

kvhkV
> 
kuhkU 8uh 2 U h, (75)

with 
 > 0 and appropriate norm k � kU on U . By using the variational equation (72), stability can
be shown in the same way as the Bubnov–Galerkin method and yields the estimate

kuhkU 6
1



kF kV 0 . (76)

Summarizing, both Bubnov–Galerkin and Petrov–Galerkin methods lead to a similar stability esti-
mate. However, in the case of Bubnov–Galerkin methods, the stability estimate relies on the coer-
civity condition (73). In this case, the coercivity of a in the discrete setting is inherited from the
coercivity of its continuous counterpart and therefore, in general, is easy to show. In the case of
Petrov–Galerkin methods, the stability estimate relies on the inf-sup condition (75) and it requires
well-balanced spaces U h and V h.

5.2. Stability analysis

Next, stability analysis is presented for the assumed strain VCI method. Because of the form of the
proposed correction (61), the stability analysis of this Petrov–Galerkin method can be carried out
by means of the coercivity of the bilinear form as shown in (73) rather than fulfilling an inf-sup
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condition of the form (75). Without loss of generality, considerations are restricted to the case of a
Poisson problem.

With the concept of assumed strains in the Petrov–Galerkin framework, and with quadratures
considered in the linear products, the bilinear form takes the form

Qahvh,uhi� D h Qrv
h,ruhi�. (77)

Inserting the ansatz (64) into the above, and setting vh D uh (because V h D U h) we arrive at

Qahuh,uhi� D
NPX
ID1

NPX
JD1

uI ¹hr‰I ,r‰J i�C hRI�I ,r‰J i�ºuJ . (78)

Performing integration by parts on this term, we obtain

Qahuh,uhi� D
NPX
ID1

NPX
JD1

uI ¹hr‰I ,r‰Ji� � hrRI � �I Cr � �IRI ,‰J i�C h�I � nRI ,‰J i@�ºuJ .

(79)
Note that the second term vanishes if (65) is employed, and we have

Qahuh,uhi� D
NPX
ID1

NPX
JD1

uI ¹hr‰I ,r‰J i� � hr � �IRI ,‰J i�C h�I � nRI ,‰J i@�ºuJ . (80)

As can be seen, the stability of our proposed Petrov–Galerkin methods depends solely on the cor-
rection coefficients �I , and is therefore stable for sufficiently ‘small’ correction coefficients �I and
their gradients. This also becomes clear, because in this case the quadrature versions of the integrals
approach the exact integrals. In other words, the coefficients are dependent on the magnitude of the
residual of the associated integration constraint to be satisfied. Therefore, increasing the accuracy of
domain integration should yield an increasingly stable correction method for the technique proposed
herein. Furthermore, increasing the support in (65) gives an even more stable result because of the
coefficients in (66) being smaller on a whole.

Note that in the special cases of small corrections and pure homogeneous essential boundary
conditions or for �1 D �2 D 0 on the boundary @� we obtain

Qahuh,uhi� D
NPX
ID1

NPX
JD1

uI ¹hr‰I ,r‰J i�ºuJ . (81)

The stability of such a discrete bilinear form can be analyzed by the coercivity condition with
standard procedures.

6. NUMERICAL EXAMPLES

Because the boundary condition enforcement should attest to the strong form as described in
Section 3, Nitsche’s method is used with a penalty parameter of 103=h for the Poisson equation
and 103E=h for elasticity, where E is Young’s modulus. Unless otherwise stated, quartic B-spline
kernels are used in all examples with normalized supports for linear, quadratic, and cubic bases equal
to 2.0, 3.0, and 4.0, respectively. The form of VCI used in all examples is the method described in
Section 4.2.

6.1. Patch tests in one dimension

Consider the following one-dimensional model problem on the domain �D .0, 1/:

u,xx.x/C s.x/D 0 in �, (82)

with boundary conditions

u.0/D 0, u.1/D g. (83)
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The following cases for the source term s.x/ are examined that correspond to the linear, quadratic,
and cubic patch tests for case 1, 2, and 3, respectively, and a high order solution is considered for
case 4:

Case 1: s.x/D 0, g D 1 (84a)

Case 2: s.x/D 8, g D 1 (84b)

Case 3: s.x/D 8C 16x, g D 1 (84c)

Case 4: s.x/D 4 2 sin.2 x/, g D 0. (84d)

For these cases, consider the nonuniform node distribution of 26 nodes shown in Figure 8.
Here, single point GI, DNI, and their VCI counterparts are employed, herein denoted VC-GI and

VC-DNI, respectively. The orders of completeness in the approximation are chosen to be 1, 2, and
3 for linear, quadratic, and cubic patch tests, respectively, for all the integration methods tested. The
kernel supports in this example are normalized by the larger distance between the nodal neighbors.

Figure 8. Irregular node distribution in one dimension.
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Figure 9. Errors in one-dimensional patch tests: (a) case 1, linear variationally consistent integration (VCI);
(b) case 2, quadratic VCI; (c) case 3, cubic VCI; and (d) case 4, linear VCI.
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For the assumed strain method, (60) and (61) is used with the following functions chosen for the
assumed gradient for increasing orders of n for VCI:

O‰nI ,x.x/DRI .x/.x � xI /
n�1. (85)

First, case 1 is examined with linear VCI. Next, for cases 2 and 3, quadratic VCI, and cubic VCI are
employed, respectively. Lastly, case 4 is examined with linear basis and linear VCI. The errors for
the four analyses are shown in Figure 9. Variationally consistent integration is seen to pass arbitrarily
high order patch tests as well as decrease the error for high order problems.

6.2. Patch tests for the 2D Poisson equation

Consider the Poisson problem (8) with the domain taken as � W .�1, 1/� .�1, 1/ with the boundary
decomposition @�h W 06 x 6 1, y D 1, and @�g D @� n @�h.

Let the prescribed body force and boundary conditions for (8) be consistent with a linear solution

uD xC 2y. (86)

The domain discretization and integration schemes are depicted in Figure 10. SNNI smoothing
zones are chosen to extend over the boundary so that completeness is maintained (see Remarks 2.1)
for the quadratic patch tests. Nodes are also moved into the numerical centroid (21) of the
Voronoi cells so that the gradient consistency of the smoothed strain is maintained for SCNI (see
Remarks 2.1).

Linear bases are introduced with the standard methods along with linear VCI employed as cor-
rection of variationally inconsistent integration methods. The error for GI, DNI, and SNNI is shown
in Table III, along with their VCI counterparts (denoted herein VC-SNNI for SNNI with VCI) and
SCNI. It is seen that the proposed VCI enables arbitrary types of integration to pass the linear patch
test.

Now consider the Poisson equation (8), again on .�1, 1/ � .�1, 1/, with the same boundary
decomposition but with source term and boundary conditions consistent with the quadratic solution

uD 0.1xC 0.3y C 0.8x2C 1.2xy C 0.6y2. (87)

Integration point

DNI 1x1 GI 2x2 GI 3x3 GI

4x4 GI 5x5 GI SCNI SNNI

RKPM node

Smoothing zoneGauss cell

Figure 10. Domain discretization and integration schemes for patch tests.
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Table III. L2 norm of error for various integration methods in linear patch test of
Poisson equation.

Method Standard VCI

SCNI 1.20E-13 —
SNNI 0.0903225 5.28E-14
DNI 0.1200994 1.24E-13
1� 1 GI 0.1249480 1.03E-13
2� 2 GI 0.0233911 4.11E-14
3� 3 GI 0.0060938 4.42E-14
4� 4 GI 0.0020703 6.39E-14
5� 5 GI 0.0007464 3.81E-14

SCNI, stabilized conforming nodal integration; SNNI, stabilized nonconforming nodal integra-
tion; DNI, direct nodal integration; GI, Gauss integration.

Table IV. L2 norm of error for various integration methods in quadratic patch test of
Poisson equation.

Method Standard VCI

SCNI 0.1319736 1.69E-13
SNNI 0.1702456 1.88E-13
DNI 0.2183826 8.80E-14
1� 1 GI 0.2298442 3.60E-13
2� 2 GI 0.0088438 1.69E-13
3� 3 GI 0.0017520 1.31E-13
4� 4 GI 0.0003855 1.80E-13
5� 5 GI 0.0000731 1.25E-13

VCI, variationally consistent integration; SCNI, stabilized conforming nodal integration;
SNNI, stabilized nonconforming nodal integration; DNI, direct nodal integration; GI, Gauss
integration.

As required to pass the quadratic patch test, a quadratic basis is used to construct the RKPM shape
functions. The discretization and integration schemes depicted in Figure 10 are again employed with
standard methods and their quadratic VCI counterparts, and the error is shown in Table IV. Note that
SCNI passes only the linear patch test, and it requires VCI to pass the quadratic patch test (SCNI
with quadratic VCI denoted herein as VC-SCNI).

6.3. Patch tests for elasticity

For the linear patch test, let the prescribed body force and boundary conditions for (40) be consistent
with a linear solution as follows:

uD

²
0.1xC 0.3y
0.2xC 0.4y

³
. (88)

For this problem and all elasticity patch tests, the plane strain formulation is used with Young’s
modulus E equal to 100 kN/m2 and Poisson’s ratio � equal to 0.3, and a domain �D .�1m, 1m/�
.�1m, 1m/ is discretized by 25 RKPM nodes. The decomposition of boundary condition is the
same as that of Section 6.2. The four integration methods considered previously are employed and
are depicted in Figure 10.

Linear bases are introduced along with linear VCI; the error is presented in Table V. It can be
seen that the standard methods violate the integration constraint, and VCI precludes the situation
for every integration scheme. The qualitative behavior of the solutions is shown in Figure 11, and
spurious deformations are seen to take place for methods without VCI.

Linear exactness also means exactness in the constant stresses. For illustration, the shear stresses
are plotted in Figure 12 for the standard methods and for VCI. It is seen that the variationally con-
sistent methods can exactly represent this constant stress state in the domain. Note the performance
of SNNI over DNI and 1� 1 GI, which gives far less spurious stress in the domain.
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Table V. L2 norm of error for various integration methods in linear patch test of
elasticity problem.

Method Standard VCI

SCNI 8.66E-14 —
SNNI 0.0531788 3.21E-14
DNI 0.0648288 3.42E-14
1� 1 GI 0.0810321 2.63E-14
2� 2 GI 0.0118552 2.32E-14
3� 3 GI 0.0023590 3.38E-14
4� 4 GI 0.0008091 2.56E-14
5� 5 GI 0.0003097 2.71E-14

VCI, variationally consistent integration; SCNI, stabilized conforming nodal integration;
SNNI, stabilized nonconforming nodal integration; DNI, direct nodal integration; GI, Gauss
integration.

DNI 1x1 GI SNNI

VC-DNI VC-1x1 GI VC-SNNI SCNI

Figure 11. Solutions for elastic linear patch test.
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Figure 12. Stress distributions in elasticity linear patch test, units in kN/m2.
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Table VI. L2 norm of error for various integration methods in quadratic patch test of
elasticity problem.

Method Standard VCI

SCNI 0.0622307 1.09E-13
SNNI 0.1081434 1.02E-13
DNI 0.1168936 1.46E-13

1� 1 GI 0.1660389 1.44E-13
2� 2 GI 0.0064088 5.73E-14
3� 3 GI 0.0011188 9.68E-14
4� 4 GI 0.0002739 5.68E-14
5� 5 GI 0.0000572 4.28E-14

VCI, variationally consistent integration; SCNI, stabilized conforming nodal integration;
SNNI, stabilized nonconforming nodal integration; DNI, direct nodal integration; GI, Gauss
integration.

For the quadratic patch test, consider the prescribed conditions (44) for the elasticity BVP (40)
with solution

uD

²
0.12xC 0.14y C 0.16x2C 0.18xy C 0.20y2

0.11xC 0.13y C 0.15x2C 0.10xy C 0.21y2

³
. (89)

Here quadratic bases are introduced; the errors for the various methods are given in Table VI, and
again it is seen that the variationally consistent methods are able to pass the patch test. In the case
of methods that do not pass the patch test, oscillations are even more severe than in the linear patch
test as seen in Figure 13, and the corresponding spurious stresses are shown in Figure 14. It can
be observed that stresses obtained by the standard methods can have error on the same order of the
exact stress itself. Gauss integration performs particularly poor, whereas DNI provides better results
here. Note SCNI and SNNI generate far less error in the stress compared with the other variationally
inconsistent methods.

6.4. Convergence in the Poisson equation

Consider the Poisson equation (8) with the source term and homogeneous boundary conditions
given as in (10). Here GI, DNI, and SNNI are employed with their VCI counterparts along with
SCNI, and VC-SCNI if applicable. The domain discretization and subsequent uniform refinements
are depicted in Figure 3. Normalized supports for all convergence studies are taken as 1.75 and 2.75
for linear and quadratic basis, respectively.

VC-DNI VC-1x1 GI VC-SNNI VC-SCNI

DNI 1x1 GI SNNI SCNI

Figure 13. Solutions for quadratic elastic patch test in quadratic patch test of elasticity problem.
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DNI 1x1 GI SNNI SCNI

VC-DNI VC-1x1 GI VC-SNNI VC-SCNI
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Figure 14. Shear stress distributions for quadratic elastic patch test of elasticity problem, units in kN/m2.
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Figure 15. Convergence of error in the L2 norm for standard methods with first-order completeness and
linear variationally consistent integration (VCI) methods for Poisson problem by using (a) nodal methods

and (b) Gauss integration (GI).

The L2 norm of the error for nodal methods with first-order bases in the trial functions is plotted
against the length h in Figure 15(a), and it is seen that VCI improves the rate of convergence and
accuracy for all methods shown. Note the strikingly similar behavior of VC-DNI, VC-SNNI, and
SCNI with respect to error and convergence in the L2 norm. The rates are nearly restored and fully
restored for VC-DNI and VC-SNNI, respectively. Figure 15(b) shows the convergence plots for
increasing orders of GI with their VCI counterparts. It is seen that convergence and error are supe-
rior for all cases by using the variationally consistent counterparts. Increasing orders GI achieves
optimal rate with 3� 3 VC-GI, whereas 5� 5 GI is necessary for optimal convergence.

Variationally consistent integration also performs well regarding solution derivatives; the con-
vergence of the nodal methods with first-order bases in the trial functions in the H 1 semi-norm is
shown in Figure 16(a). In the case of DNI and SNNI, the error is seen to have poor rates, whereas
VC-DNI and VC-SNNI maintain near optimal and optimal convergence, respectively.

Figure 16(b) shows the convergence in the H 1 semi-norm for increasing orders of GI. It is seen
that VCI is able to reduce the severity of the error in the diverging result of 1� 1 GI, and that 2� 2
VC-GI can achieve optimum convergence, whereas 5 � 5 GI can only partially restore optimum
convergence.

A study is performed with quadratic VCI with the refinements shown in Figure 3. Figure 17(a)
shows the convergence of the error in the L2 norm for nodal methods with second-order bases in
the trial functions with their quadratic VCI counterparts. Here one can see again the similarity of
VCI nodal methods with respect to error and convergence. VC-SCNI, VC-SNNI, and VC-DNI have
enhanced convergence although the rate is not fully recovered.
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Figure 16. Convergence of error in the H1 semi-norm for standard methods with first-order completeness
and linear variationally consistent integration (VCI) methods for Poisson problem by using (a) nodal

methods and (b) Gauss integration (GI).
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Figure 17. Convergence of error in the L2 norm for standard methods with second-order completeness and
quadratic variationally consistent integration (VCI) methods for Poisson problem by using (a) nodal methods

and (b) Gauss integration (GI).

Figure 17(b) shows the convergence of the error in the L2 norm for increasing orders of Gauss
integration, and again the error and convergence is superior in all cases of variationally consistent
integration. The rate is fully restored to the theoretical rate with 3� 3 VC-GI, and further improved
with higher-order integration. In contrast, 5�5 GI is necessary to nearly restore cubic convergence.

Figure 18(a) shows the convergence plots for the H 1 semi-norm for quadratic standard and
quadratic VCI nodal methods, where the VCI nodal methods again are superior to their counterparts.
Convergence is nearly restored in the case of the smoothed nodal methods with VCI corrections, and
partially restored for VC-DNI. The convergence in theH 1 semi-norm for increasing orders of GI is
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Figure 18. Convergence of error in theH1 semi-norm for standard methods with second order completeness
and quadratic variationally consistent integration (VCI) methods for Poisson problem by using (a) nodal

methods and (b) Gauss integration (GI).
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Figure 19. Cantilever beam with shear load.

shown in Figure 18(b). Here it is seen that the optimal rate is obtained with 3 � 3 VC-GI, whereas
for standard GI, 5� 5 GI is necessary to restore optimal rates.

6.5. Cantilever beam

A cantilever beam is considered with a parabolic shear load at one end, and the problem statement
is shown in Figure 19. The plane stress assumption is made, and the exact solution to the problem
is

ux D
Py

6EI

�
.6L� 3x/xC .2C �/

�
y2 �

H 2

4

�	
(90a)

uy D�
P

6EI

�
.L� x/3�y2C .4C 5�/

H 2

4
xC .3L� x/x2

	
, (90b)

where I D H 3=12 is the moment of inertia of the beam and P is the resultant of the shear stress
applied. The load P was chosen to be 103 kN, and was applied according to the traction resulting
from (90).

The domain is taken to be � D .0m, 10m/ � .�1m, 1m/ with material constants E D 30 � 106

kN/m2 and � D 0.3. The domain is discretized with two steps of refinement with nonuniform node
distributions, shown in Figure 20. Linear basis is introduced with 1x1 GI, DNI, and SNNI, and the
linear assumed strain correction is used for each method, denoted as 1� 1 VC1-GI, VC1-DNI, and
VC1-SNNI, respectively. Quadratic VCI is also employed for each integration method with linear
bases, denoted as 1� 1 VC2-GI, VC2-DNI, and VC2-SNNI, respectively. SCNI is again employed
for comparison. The reason for using linear bases with quadratic correction is to examine how
higher-order corrections can improve solution accuracy without increasing the order of bases.

Tip displacement accuracy for various VCI methods is shown in Table VII. Although VC1 clearly
enhances accuracy over the standard counterparts, VC2 improves the accuracy even further. Note
that tip displacement in 1 � 1 GI actually diverges with refinement, whereas the two 1 � 1 VC-GI
methods converge. We also see that VC2-SNNI provides the best results aside from SCNI.

The shear stress of the fine model along x D L=2 for SCNI, standard integrations and their
variationally consistent counterparts are shown in Figures 21–24. Looking over the figures we see
that SCNI and VC2-SNNI give the most accurate stress results compared with all other methods,

Figure 20. Discretizations for beam problem.
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Table VII. Tip displacement accuracy for various integration methods.

1� 1 1� 1 1� 1 VC1- VC2- VC1- VC2-
Nodes GI VC1-GI VC2-GI SNNI SNNI SNNI DNI DNI DNI SCNI

156 142.3 115.0 105.3 132.7 118.6 101.9 171.0 118.1 96.3 99.4
561 147.5 108.0 105.1 106.5 102.0 99.3 107.1 97.4 98.7 100.0

VCI, variationally consistent integration; SCNI, stabilized conforming nodal integration; SNNI, stabilized
nonconforming nodal integration; DNI, direct nodal integration; GI, Gauss integration.

although the VC1-SNNI and VC2-DNI results are also satisfactory. It is seen that all VCI methods
have significantly improved accuracy compared with their standard counterparts, which are particu-
larly inaccurate in the case of 1� 1 GI and DNI. Although VCI-1 can provide improved results for
all methods, the stress field is further enhanced using VCI-2, particularly for SNNI and DNI.
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Figure 21. Shear stress along x D L=2 for 1 � 1 Gaussian integration (GI), 1 � 1 variationally consistent
Gaussian integration VC1-GI, and 1� 1 VC2-GI.
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Figure 22. Shear stress along x D L=2 for stabilized nonconforming nodal integration (SNNI), variationally
consistent stabilized nonconforming nodal integration VC1-SNNI, and VC2-SNNI.
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Figure 23. Shear stress along x D L=2 for direct nodal integration (DNI), variationally consistent direct
nodal integration VC1-DNI, and VC2-DNI.
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Figure 24. Shear stress along x D L=2 for stabilized conforming nodal integration method (SCNI).

7. CONCLUSIONS

The approximation functions commonly employed in the Galerkin meshfree methods, such as MLS
and RK, are capable of reproducing monomials of arbitrary order in arbitrary discretizations. This
completeness property, however, does not guarantee optimal rate of convergence in the Galerkin
solution of PDEs if the domain integration is not sufficiently accurate. Because the MLS/RK
approximation functions are of rational type with overlapping supports, achieving high accuracy
in the domain integration of Galerkin meshfree methods often requires considerably fine integration
cells or very high quadrature order. This paper proposes an alternative approach to achieve optimal
convergence consistent with the order of completeness in the approximation by introducing a vari-
ationally consistent integration formulation. This method uses integration constraints constructed
from the discrete version of the weak equation as the basis for development, and it can be used as the
correction for several commonly used domain integration methods to achieve optimal convergence.

This work begins with deriving the condition for nth order exactness in the Galerkin approxi-
mation of PDEs. This condition is a generalization of the linear integration constraint [16], and the
numerical methods that meet this condition are called VCI methods. The resulting nth order varia-
tional consistency condition of a given PDE states that the numerical integration by parts conditions
should hold for the inner product between the test functions and the differential operator acting on
the nth order monomials. If the domain and boundary integration methods of the Galerkin weak
equation are consistent with the test function, the differential operator, and the boundary operator
following the integration constraint, then the optimal convergence rates can be achieved.

The nth order integration constraint has been applied to several PDEs to arrive at constraints spe-
cific to the problem and the desired order of exactness in the Galerkin approximation. A method has
been proposed to correct integration methods that violate the integration constraints, such as DNI,
GI, and SNNI. It is shown that improved accuracy and convergence is attained for variationally con-
sistent integration, particularly in the derivatives of the solution. Several important observations are
summarized as follows:

(1) Variationally consistent nodal integration methods show promise with performance similar
to SCNI, particularly VC-SNNI.

(2) VC-SNNI is in general more accurate than VC-DNI, although similar convergence rates
have been achieved between the two methods.

(3) VCI for GI has been shown to supplement the convergence rates for lower order GI so that
optimal convergence rates can be restored with far fewer quadrature points than would
otherwise be required.

(4) Integration methods that are far from being variationally consistent, such as using one
point Gauss quadrature for achieving quadrature exactness, could violate the stability
condition and result in suboptimal convergence even with the proposed correction.

(5) SCNI that was developed for linear exactness can be corrected to achieve higher-order
exactness by using VC-SCNI.

(6) Corrected SNNI, namely VC-SNNI, possesses similar convergence and accuracy perfor-
mance as that of SCNI, but offers a considerable simplicity over SCNI without the need of
Voronoi cells in the strain smoothing.
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(7) Without increasing the order of bases, the second-order correction (VC2) further enhances
the solution accuracy over the variationally inconsistent method with first-order correction
(VC1).

The extension of this work to nonlinear mechanics, and plate and shell problems is under
investigation, and the results will be published in forthcoming papers.

APPENDIX A: CUBIC CONSTRAINT FOR ELASTICITY

Similar to the procedures given in Section 3, arbitrarily high order constraints can be obtained for
any PDE. Here the cubic constraint is derived for elasticity.

For cubic exactness in elasticity, consider the additional cubic components of the displacement
field

u1 D a16x
3C a17x

2y C a18xy
2C a19y

3 (A.1a)

u2 D a26x
3C a27x

2y C a28xy
2C a29y

3, (A.1b)

which gives quadratic stresses
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2C 2a17xy C a18y

2/
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2
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C
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2
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2C 2a18xy C 3a19y
2C 3a26x

2C 2a27xy C a28y
2/

CCij22.a27x
2C 2a28xy C 3a29y
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(A.2)

Substitution of (A.2) into the constraint (48) results in the following conditions:

h O‰I ,1x
2i� D�h2 O‰Ixi�C h O‰Ix

2n1i@� 8I (A.3a)

h O‰I ,2x
2i� D h O‰Ix

2n2i@� 8I (A.3b)

h O‰I ,1xyi� D�h O‰Iyi�C h O‰Ixyn1i@� 8I (A.3c)

h O‰I ,2xyi� D�h O‰Ixi�C h O‰Ixyn2i@� 8I (A.3d)

h O‰I ,1y
2i� D h O‰Iy

2n1i@� 8I (A.3e)

h O‰I ,2y
2i� D�h2 O‰Iyi�C h O‰Iy

2n2i@� 8I . (A.3f)
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