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Abstract Galerkin meshfree methods can suffer from
instability and suboptimal convergence if the issue of quadra-
ture is not properly addressed. The instability due to quadra-
ture is further magnified in high strain rate events when nodal
integration is used. In this paper, several stable and conver-
gent nodal integration methods are presented and applied
to transient and large deformation impact problems, and an
eigenvalue analysis of the methods is also provided. Opti-
mal convergence is attained using variationally consistent
integration, and stability is achieved by employing strain
smoothing and strain energy stabilization. The proposed inte-
gration methods show superior performance over standard
nodal integration in the wave propagation and Taylor bar
impact problems tested.

Keywords Variationally consistent integration ·
Stabilization · Integration constraint · Meshfree

1 Introduction

Domain integration in Galerkin meshfree methods has been a
topic of interest due to the issues of stability and sub-optimal
convergence which arise from the nature of the approxima-
tion functions and domain integrations employed. Meshfree
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approximation functions are in general rational, often with
complicated overlapping support structures, and both char-
acteristics contribute to quadrature inaccuracy. In the for-
mer case, quadrature schemes such as Gauss cannot provide
exact integration of these functions. In the latter case, mis-
alignment of integration cells with supports can cause a great
deal of quadrature inaccuracy [12]. These problems are more
severe in nodal integration methods, which present an even
greater challenge for meshfree methods since they are often
employed so that the character of the method is preserved.

Nodal integration methods such as direct nodal integra-
tion (DNI) can suffer from stability issues [2,9] as well as
sub-optimal convergence [4,9] and often require special tech-
niques to alleviate the problems. Beissel and Belytschko [2]
showed direct nodal integration for the moving least squares
approximation can result in instability due to the fact that
the Galerkin equation with nodal integration gives very low
energy for saw-tooth modes, resulting from zero or nearly
zero derivatives at nodal points. They proposed least-squares
stabilization which alleviates the problem, although the tech-
nique requires second order derivatives in the Galerkin equa-
tion as well as second order consistency of the shape func-
tions. Liu et al. [15] introduced a Taylor series expan-
sion approach to alleviate the instability, but requires third
order derivatives. The strain smoothing stabilized conform-
ing nodal integration (SCNI) has been proposed [9,10] to
ease the situation, where derivatives are not directly evalu-
ated at nodes which avoids the instability, but still requires
attention because of additional unstable modes which may
become excited in certain situations [5,19].

The sub-optimal convergence of meshfree methods with
improper quadrature can be attributed to Strang’s first Lemma
[20]. The use of quadrature in the Galerkin equation results
in loss of Galerkin orthogonality and subsequently the best
approximation property of the solution, and can result in con-
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vergence rates much lower than predicted by exact integra-
tion, or even solutions which diverge with refinement [4].
Typically background cell integration without higher order
quadrature does not provide sufficient accuracy due to the
complexity of meshfree shape functions. The approximation
functions are often rational with overlapping supports, and
it is difficult to provide accurate integration. In early con-
structions where background grids were adopted for domain
integration [3,18], no particular approach was taken to alle-
viate quadrature inaccuracy. However in [12] it was recog-
nized that misalignment of integration cells and shape func-
tions supports is a major source of quadrature error, and a
scheme was proposed where they align allowing for restora-
tion of convergence rates. Several methods similar in spirit
have since been proposed [1,11,17], which can also preserve
the meshfree character of the Galerkin method but can carry
a computational burden.

As an alternative approach, the SCNI method introduced
in [9] uses strain smoothing for first order Galerkin exact-
ness and recovers quadratic convergence in the L2 norm for
linear basis. SCNI has been applied to other meshfree meth-
ods [25] and has also been extended to plates and shells
[7,22,23]. This technique was later generalized to higher
order strain smoothing in [13] giving cubic rates of conver-
gence in the L2 norm. In the recent work in [4], the condi-
tion for arbitrary high order Galerkin exactness was derived
under the general framework of variational consistency, and
several variationally consistent integration (VCI) methods
were proposed. Here it was shown that when variational
consistency is satisfied, optimal convergence can be attained
with far fewer quadrature points than would otherwise be
required.

In this work, the variationally consistent integration pro-
posed in [4] is applied to elastodynamics and geometric
and material non-linear problems. The VCI methods show
more favorable phase and amplitude in transient problems
as well as superior performance for large deformation prob-
lems compared to their variationally inconsistent counter-
parts. Stabilization techniques are also employed based on
the works in [5,19], and an eigenvalue analysis of the com-
bined methods is provided.

The outline of the paper is as follows. Section 2 gives
a basic overview of domain integration for Galerkin mesh-
free methods, and demonstrates how variationally incon-
sistent integration methods can exhibit sub-optimal conver-
gence and how nodal integration can lead to instability. In
Sect. 3, several variationally consistent integration meth-
ods are introduced along with enhanced stabilization for
nodal integration. In Sect. 4, the stabilized VCI methods
are applied to several problems demonstrating improved per-
formance over standard methods in the dynamic and large
deformation setting. Concluding remarks are then given in
Sect. 5.

2 Background

In this section we review the issues associated with domain
integration in Galerkin meshfree methods. We consider the
RK approximation to illustrate the characteristics of the
approximations used in meshfree methods. Here it is shown
how several integration methods exhibit sub-optimal conver-
gence and instability under certain discretizations.

2.1 Reproducing kernel (RK) approximation

The RK approximation uh(x) of a function u(x) is con-
structed as:

uh (x) =
NP∑

I=1

�I (x) uI (2.1)

where �I (x) is the approximation function with compact
support which possesses the following reproducing condi-
tions of degree n:

NP∑

I=1

�I (x) xα
I = xα, |α| ≤ n (2.2)

In the above, the multi-index notation has been introduced.
Here α ≡ (α1, α2, . . . , αd), with the length of α defined as
|α| = ∑d

i=1 αi , xα ≡ xα1
1 · xα2

2 · . . . · xαd
d , and xα

I ≡ xα1
I 1 · xα2

I 2 ·
. . . · xαd

I d . The above function �I (x) is constructed by select-
ing a kernel function �a (x − xI ) with compact support with
measure “a” and a correction function composed of a linear
combination of basis functions in the following form [16]:

�I (x) =
⎧
⎨

⎩
∑

|α|≤n

(x − xI )
α bα (x)

⎫
⎬

⎭�a (x − xI ) (2.3)

The terms {(x − xI )
α}|α|≤n are the set of basis functions and

{bα(x)}|α|≤n are coefficients which are obtained by meet-
ing (2.2). The kernel function �a (x − xI ) determines the
locality and smoothness of the approximation. For exam-
ple, a cubic spline kernel function yields the approximation
function in (2.3) C2 continuous. The approximation function
in (2.3) thus gives the reproduction of monomials of arbi-
trary degree n, and arbitrary smoothness of the approximation
by the appropriate selection of kernel function �a (x − xI ).
These properties can be obtained without a structured mesh
as described below.

By introducing (2.3) into (2.2), the coefficients
{bα(x)}|α|≤n are obtained, and the RK approximation func-
tions are defined as

�I (x) = H (0)TM−1 (x) H (x − xI ) �a (x − xI ) (2.4)
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Fig. 1 Integration schemes
used for the linear patch test:
DNI, 1 × 1 GI, SCNI, and SNNI

DNI 1x1 GI

SNNISCNI

RKPM node

Integration point

Gauss cell

Smoothing zone

Table 1 L2 Errors in linear
patch test

Method DNI 1 × 1 GI 2 × 2 GI 3 × 3 GI 4 × 4 GI 5 × 5 GI SCNI SNNI

L2 norm 0.67501 1.6402 0.0782 0.02418 0.00668 0.00194 1.06E−14 0.94592

where

M (x) =
NP∑

I=1

H (x − xI ) HT (x − xI ) �a (x − xI ) (2.5)

Here the vector HT (x − xI ) is the row vector of
{(x − xI )

α}|α|≤n and M (x) is the moment matrix. The repro-
ducing conditions (2.2) are met provided there are sufficient
points under the cover of �a (x − xI ) so that the equations
resulting from (2.2) and (2.3) are linearly independent and
the moment matrix M (x) is nonsingular [6].

2.2 Loss of best approximation property and sub-optimal
convergence due to inaccurate quadrature rules

The use of inaccurate quadrature in the Galerkin equation
results in the loss of the Galerkin orthogonality and could lead
to sub-optimal convergence in the Galerkin solution accord-
ing to Strang’s first Lemma [20]. The concept of variational
consistency has been proposed as a means to correct inaccu-
rate quadrature rules to recover Galerkin orthogonality, and
consequently achieve optimal convergence in the Galerkin
solution [4].

To illustrate this, consider the Poisson problem with linear
solution u = x + 2y:

∇2u = 0 in �

∇u · n = n1 + 2n2 on ∂�h

u = x + 2y on ∂�g

(2.6)

where � : (−1, 1) × (−1, 1), ∂�h : −1 ≤ x ≤ 1, y =
1, ∂�g = ∂�\∂�h . The RK approximation with linear
basis is introduced with several integration methods consid-
ered: DNI, Gauss integration (GI) with increasing order m
(denoted herein as m × m G I ), the first order variationally
consistent method SCNI [9], and stabilized non-conforming
nodal integration (SNNI) [8,14], shown in Fig. 1. The exact
linear solution in the above problem is not obtained for GI,
DNI, and SNNI which are variationally inconsistent, as seen
in Table 1. The results show that even though the basis func-
tions possess sufficient completeness to represent the exact
linear solution, it is not obtained when inappropriate quadra-
ture is used.

The solution error due to variational inconsistency mani-
fests as deteriorated convergence rates. Consider again the
Poisson problem, now with a higher order solution u =
sin(πx) sin(πy)/2π2:

∇2u + sin(πx) sin(πy) = 0 in �

u = 0 on ∂�
(2.7)

where� : (−1, 1)×(−1, 1). Linear basis are introduced with
the previous integration schemes, with the discretizations
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Fig. 2 a Uniform refinement of irregular node distribution, b convergence with various domain integrations, rates indicated in legend
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Fig. 3 Solution by a SCNI, SNNI, and VC-SNNI, and b DNI and VC-DNI. Nodal locations indicated by circles

shown in Fig. 2a. Here refinement of a non-uniform node
distribution is employed, as they are particularly problematic
for quadrature in meshfree methods. It is seen in Fig. 2b that
convergence is severely deteriorated for methods which are
not first order variationally consistent. On the other hand, the
first order variationally consistent SCNI method shows opti-
mal convergence (rate of 2). In the next section, several ways
to construct variationally consistent methods are reviewed.

2.3 Nodal integration leading to instability

When nodal integration is employed for meshfree methods,
instability can arise due to the underestimation of energy
associated with small wavelength modes. This is due to the
fact that first order derivatives (which appear in the weak
form) of the modes are zero or nearly zero at nodal locations.
The SCNI method [9,10] has been introduced which avoids

evaluating derivatives at nodal locations, thus circumventing
the issue of zero energy modes.

To illustrate, consider a one-dimensional bar with a linear
body force:

u,xx + 100x = 0

u(0) = u(1) = 0 (2.8)

Quadratic RK basis is employed with a uniform distribution
of nine nodes, and the nodal integration methods in the pre-
vious example are considered along with variational consis-
tency (VC) corrected SNNI (VC-SNNI) and DNI (VC-DNI)
[4]. All of the solutions shown in Fig. 3 exhibit the oscilla-
tory modes associated with the instability except for SCNI.
Although greater stability is provided by SNNI over DNI,
the oscillatory pattern is still apparent in the solution. The
results for VC-DNI and VC-SNNI show that although VCI
enhances accuracy, it provides only slightly better stability,
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and additional stabilization of these methods is needed and
will be introduced in the next section.

3 Variational consistency and stabilization for nodal
integration

In this section the concept of variational consistency is
reviewed, along with stabilization for nodal integration. It
is shown how VCI can restore Galerkin exactness up to the
order of completeness in the approximation and provide opti-
mal convergence. Stabilization for nodal integration is intro-
duced, and an eigenvalue analysis for nodal VCI methods
with stabilization is also given.

3.1 Variationally consistent integration

The concept of variational consistency introduced in [4] can
be used as a guideline to construct quadrature schemes and
test functions consistent with each other. The variational con-
sistency condition is a generalization of the integration con-
straint for linear exactness given in [9], where it has been
extended to arbitrary high order solutions.

For first order variational consistency, it was first shown
in [9] that in addition to having first order completeness in
the approximation, the following integration constraint in
the form of a divergence condition must be satisfied for the
quadrature rule employed:

∧∫

�

∇�̃I (x)d� =
∧∫

∂�

�̃I (x)nd� ∀I (3.1)

Here, the superposed “∧” denotes the numerical integration,
�̃I (x) is the test function, and n is the unit outward surface
normal. The above equation states that the quadrature rule
used in the Galerkin equation should be consistent with the
test function to achieve Galerkin exactness. If nodal integra-
tion is employed, strain smoothing proposed in [9,10] can be
adopted to meet the first order integration constraint:

∇̃uh (xL) = 1

AL

∫

�L

∇uh (x) d�

= 1

AL

∫

∂�L

uh (x) n (x) d� (3.2)

where AL = ∫
�L

d� and �L is the conforming representa-
tive domain of point L as shown in Fig. 4a. Conforming cells
can be generated using Voronoi diagrams or Delaunay trian-
gulation. The strain smoothing in (3.2) is the basis of SCNI
[9,10], which results in linear exactness and quadratic con-
vergence in the L2 norm. More recently, similar assumed
strain constructions have been proposed for second order
variationally consistency in [13].

L

LΩL

L

L

(b)(a)

ΩL

Fig. 4 Nodal representative domain for a SCNI and b SNNI

Simplifications of SCNI for extremely large deforma-
tion problems have been proposed such as stabilized non-
conforming nodal integration (SNNI) [8,14]. Here the
smoothing zones are simply cells constructed around the
nodes with the conforming condition relaxed, as shown in
Fig. 4b. As a consequence, the integration constraint is no
longer satisfied and sub-optimal convergence is encountered
as shown in Fig. 2.

A general framework for achieving nth order Galerkin
exactness is the work in [4], which generalizes the condition
in (3.1) to nth order integration constraints obtained by intro-
ducing nth order variational consistency and completeness of
the trial functions:

a
〈
�̃I , xα

〉

�
= −

〈
�̃I , Lxα

〉

�

+
〈
�̃I , Bxα

〉

∂�
∀I, |α| = 0, 1, · · · , n

(3.3)

where a 〈·, ·〉� is the quadrature version of the bilinear form,
〈·, ·〉� and 〈·, ·〉∂� are the quadrature versions of inner prod-
ucts of two functions in the domain and on the boundary,
respectively, and L and B are the differential operator and
the Neumann boundary operator of the boundary value prob-
lem, respectively. The condition in (3.3) states that in order to
achieve nth order Galerkin exactness, the test functions must
be consistent with the numerical integration following (3.3).
These requirements are in the form of an integration-by-parts
type formula which depend on the boundary value problem
at hand. If exact integration is employed one can observe
that (3.3) is automatically satisfied and Galerkin exactness
can be obtained provided the approximation space possesses
nth order completeness. In general, most integration schemes
for meshfree methods (e.g. DNI, GI, or SNNI) do not satisfy
(3.3) with the exception of a few, including SCNI for n = 1.

As an alternative to strain smoothing, modified test func-
tions can be introduced into the Galerkin equation to satisfy
the integration constraint. The procedure proposed in [4] is
to construct test functions which are variationally consistent
with a given integration method. A correction to the test func-
tion is introduced in the following manner:
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�̃I (x) = �I (x) +
∑

|β|≤n

ξβ I �̃
β
I (x) (3.4)

Here it is required that {�I , �̃
β
I }n|β|=1are linearly indepen-

dent. Inserting the above test functions into the integration
constraint (3.3) yields

n∑

|β|=1

Aαβ I ξβ I = rα I ∀I, |α| = 0, 1, · · · , n (3.5)

where Aαβ I and rα I are the components of the resulting lin-
ear system matrix and residual vector, respectively. In the
above equation, the right hand side represents the violation of
integration constraints and the coefficients solved from (3.5)
correct the violation. Here it can be seen that the correction
is driven directly by the residual, and for variationally con-
sistent methods no correction is needed, due to zero residual.
The resulting method is arbitrary order variationally consis-
tent, and only requires the solution to relatively small linear
systems.

The system in (3.5) can also be decoupled by considering
the gradient approximations:

∇uh(x) =
NP∑

I=1

∇�I (x)uI ,

∇̃vh(x) =
NP∑

I=1

⎛

⎝∇�I (x) +
∑

|β|≤n

ξβ I ∇�̃
β
I (x)

⎞

⎠ vI (3.6)

As an example, consider the corrected gradient for the lin-
ear integration constraint for the 2-dimensional Poisson and
elasticity equations:

∇̃vh(x) =
NP∑

I=1

(
∇�I (x) + RI (x)

{
ξ1I

ξ2I

})
vI ,

RI (x) =
{

1 if x ∈ supp(�I (x))

0 if x /∈ supp(�I (x))
(3.7)

With the above construction, first order Galerkin exactness is
restored, and optimal convergence can be achieved. Consider
the integration methods described in Sect. 2.2 with the prob-
lem in (2.7) and discretizations in Fig. 2a. RK approximations
with linear basis are introduced with the correction in (3.7)
employed for variationally inconsistent methods (with the
resulting GI method denoted as 1 × 1 VC-GI). It can be seen
in Fig. 5 that the convergence is superior for VCI methods
over their standard counterparts, and optimal in most cases.
Arbitrarily high order corrections can be obtained in a similar
manner, for elaborations, see [4].

3.2 Additional stabilization for nodal integration

Non-zero energy oscillatory modes exist in SCNI when the
surface area to volume ratio is small. In the same situation,
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Fig. 5 Convergence of integration methods with and without varia-
tional consistency

similar modes also exist in SNNI. Short-wavelength modes
associated with only a small amount of energy initiated from
the boundary may become excited. When the discretization
is fine, or when the volume is comparatively larger than the
surface area, these modes remain relatively unchecked [19].

Consider the discretization shown in Fig. 6a with SCNI
and SNNI employed for numerical integration. Eigenvalue
analysis of the 2-D elastic stiffness matrix reveals that the
lowest non-zero energy modes are oscillatory, as seen in
Fig. 6b.

The stabilization of these modes can be accomplished by
an additional bilinear term which enhances coercivity. Strain
averaging is employed using a subdivision of the smoothing
cells, where additional stabilization points are evaluated. The
form is based on maintaining satisfaction of patch test for
SCNI, and uses the strain averaging as a limiter for unstable
modes [19]:

a(vh, uh) =
NP∑

L=1

ε̃L (vh) : C : ε̃L (uh)AL

+
NP∑

L=1

NS∑

K=1

c
[(

ε̃L (vh) − εK (vh)
)

: C :
(
ε̃L (uh) − εK (uh)

)
AK

]

(3.8)

where NS is the number of stabilization points, ε̃L is the
smoothed strain at node L , εK is the strain at stabilization
point K , C is the matrix of material constants, c is a stabi-
lization parameter ranging from zero to unity, and AK is the
cell area associated with point K . Note that for SNNI, the
weights for stabilization points are taken as AL/N S. The
distribution of points K in relation to node L for SCNI and
SNNI is depicted in Fig. 7. In (3.8), the second term is the
contribution of the stabilization; in explicit dynamics it leads
to an additional internal force term.

An eigenvalue analysis is performed on the stiffness
matrices associated with the discretization in Fig. 6a with
the additional stabilization (3.8) with c = 0.1, for mod-
ified SCNI (MSCNI) and modified SNNI (MSNNI). The
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Fig. 6 a Discretization, b low
energy modes and eigenvalues
of SCNI and SNNI (two modes)

(a)

SNNI:0.743

SCNI:0.739

(b)

Fig. 7 Stabilization schemes
for a SCNI and b SNNI

(a) (b)

Fig. 8 Lowest energy modes
and eigenvalues of MSCNI,
MSNNI, and fully integrated
FEM

MSNNI:1.278 FEM: 1.300MSCNI:1.263

lower energy modes are now stable modes of deforma-
tion, and the lowest eigenvalue and eigenmode match well
with fully integrated linear FEM elements, as seen in
Fig. 8. Here it is noted, while not shown in Fig. 8, that
VC-SNNI gives similar results to SNNI, and VC-MSNNI
yields similar results to MSNNI indicating that the cor-
rection by variational consistency is marginal in uniform
discretization.

When the non-uniform discretization shown in Fig. 9 is
analyzed, it is shown that the VC correction provides sta-
bilization. This can be seen in the significant improvement
of the lowest eigenvalue and eigenmode in VC-SNNI over
SNNI. It is also seen that in this case SCNI does not exhibit
instability due to the irregular spacing of nodes, and the sta-

bilization gives only slightly better eigenvalues. For SNNI,
some oscillations are observed, while MSNNI provides more
stability. VC-MSNNI gives much better values than its vari-
ationally inconsistent counterpart, again indicating that VCI
provides additional stability.

4 Numerical examples

In this section numerical examples are provided showing
superior performance of VCI and VCI with additional stabi-
lization. Linear static and dynamic problems are solved, as
well as a non-linear large deformation problem. The nomen-
clature adopted for the numerical methods tested are listed
in Table 2.
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VC-SNNI: 1.201

SCNI: 1.246

VC-MSNNI: 1.237

MSCNI:1.256

MSNNI: 0.963

FEM: 1.296

SNNI: 0.747

Discretization

Fig. 9 Comparison of lowest energy modes and eigenvalues for stabilization of SCNI, stabilization and correction of SNNI, and fully integrated
linear FEM

Table 2 Nomenclature for domain integration

Standard Stabilized VC corrected Stabilized and
VC corrected

SCNI MSCNI – –

SNNI MSNNI VC-SNNI VC-MSNNI

DNI – VC-DNI –

4.1 Tube problem

Consider the infinitely long tube system shown in Fig. 10
with material properties Young’s modulus E = 3.0 × 107

and Poisson’s ratio ν = 0.3. The tube has the dimensions
outer radius R = 1.0 and thickness T = 0.5, and is sub-
ject to an internal pressure p = 1.0 × 107. The integration
methods SCNI, SNNI, and VC-SNNI are applied to the dis-
cretizations shown in Fig. 11a with linear basis and cubic
B-spline kernel introduced for the RK approximation. It can
be seen that SCNI and VC-SNNI methods converge opti-
mally, while SNNI nearly stops converging with refinement
as seen in Fig. 11b.

4.2 Wave propagation in an elastic bar

Consider an elastic bar with x ∈ [0.0, 20.0] constrained at
x = 0.0 subjected to an initial velocity of v0 = 1.0. Mate-
rial parameters for the bar are E = 1.0 × 102, ν = 0.3,
and density ρ = 1.0. The RK approximation with linear
basis and cubic B-spline kernel function is introduced with
DNI, VC-DNI, 1 × 1 GI, 1 × 1 VC-GI, SCNI, SNNI and

R

T

p

Fig. 10 Linear elastic tube system

VC-SNNI employed for domain integration, and the non-
uniform node distribution shown in Fig. 12 is considered.
Due to the non-uniform discretization employed, additional
stabilization is not considered as motivated by the results
in Sect. 3.2. Here, central difference time integration with
lumped mass is employed. Methods which are variationally
inconsistent exhibit phase as well as amplitude errors in the
solution, while the VCI methods show superior performance
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Fig. 11 a Tube discretizations and b convergence plot

Fig. 12 Irregular node distribution for elastic bar

as seen in Fig. 13. Here, nodal VCI methods give the best
results. It should be noted that for uniform node distributions,
all methods give essentially the same qualitative solution as
VC constraints are in general met.

Now consider the same problem and integration methods
with a transition in nodal spacing, as shown in Fig. 14. While
errors in a static problem were found to be comparatively

Fig. 14 Node distribution with transition in spacing for elastic bar

small, for elastodynamics the transition in nodal spacing
gives large errors for non-VC methods as shown in Fig. 15.
Here it is seen that the VCI methods can provide much higher
accuracy in both phase and amplitude compared to the vari-
ationally inconsistent methods.
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Fig. 13 Time histories for displacement at the free end of the bar with irregular node distribution
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Fig. 15 Time histories for displacement and the free end of the bar with transition in nodal spacing (Fig. 14)

Table 3 Properties of aluminum bar

Young’s modulus, E 78.2 GPa

Poisson’s ratio, ν 0.3

Density, ρ 2,700 kg/m3

Yield stress, σY 0.29 GPa

4.3 Taylor bar impact

Consider a cylindrical aluminum bar impacting a rigid fric-
tionless wall with material properties shown in Table 3; a test
first proposed by Taylor in [21] and performed in [24]. The
initial height and radius of the bar are 2.346 cm and 0.391
cm, respectively, and the initial velocity of the bar is 373.0
m/s.

For the constitutive model, J2 plasticity with isotropic
hardening is considered, where the yield function is given
as

f (s, ē p) = ‖s‖ −
√

2

3
K (ē p) (4.1)

Here s is the deviatoric portion of the Cauchy stress, ē p is
the equivalent plastic strain (EPS), and

K (ē p) = σY (1 + 125ē p)0.1 (4.2)

Linear bases and quartic B-spline kernel functions are intro-
duced in the RK approximation, and the nodal integra-
tion methods DNI, VC-DNI, SCNI, SNNI, and VC-SNNI
are employed along with stabilized counterparts for the

smoothed integration methods. Here, the matrix C in (3.8)
was selected as the consistent tangent calculated at the nodal
location.

The total deformations of the bar are similar for all the
methods considered as shown in Table 4, but with stabilized
methods giving less deformation for all cases. This is likely
due to the slight increase in stiffness which can result from
the contribution of the limiter term in (3.8). Experimental
data is available only for the deformed height, so the finite
element solution in [24] is also given as a reference. Overall,
the results agree with the reference solutions provided, with
stabilized methods agreeing the most. While the deformed
heights and radii are fairly uniform, the instability due to
nodal integration is apparent for the unstabilized, variation-
ally inconsistent DNI and SNNI methods as shown in Fig.
16. Here the deformation is shown for the impact face with
the EPS distribution, and “mesh” lines (used only for plot-
ting) plotted to show the material deformation. It can also be
seen that the VC corrected methods show superior stability
over their uncorrected counterparts, with large improvements
for both VC-DNI and VC-SNNI. The enhanced stability of
the VCI methods agrees well with the eigenvalue analysis for
non-uniform discretizations provided in Sect. 3.

The added stabilization for SNNI shows a large improve-
ment in the pattern of deformation, whereas SCNI and VC-
SNNI show less of an improvement with stabilization. These
results also agree with the results in Sect. 3, where only a
marginal improvement is provided by stabilization when the
solution by VCI methods is already stable. Comparing all
the integration methods, it can be seen that MSCNI, MSNNI
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Fig. 16 Final deformation on the face of the Taylor bar for various nodal integration methods with EPS shown

Table 4 Dimensions of deformed Taylor bar

Method Radius (cm) Height (cm)

SCNI 0.782 1.631

MSCNI 0.754 1.635

DNI 0.781 1.633

VC-DNI 0.783 1.632

SNNI 0.786 1.637

VC-SNNI 0.784 1.637

MSNNI 0.754 1.638

VC-MSNNI 0.754 1.639

HEMP [24] 0.742 1.652

Experimental[24] – 1.651

and VC-MSNNI provide the best solutions, although VC-
DNI and VC-SNNI also perform well.

5 Conclusions

In this work it has been demonstrated that several commonly
used domain integration methods can exhibit both instabil-
ity and sub-optimal convergence due to inaccurate quadra-
ture. Our particular interest is the improvement of the SNNI
nodal integration method which provides greater simplicity
for domain integration in fragment-impact problems, but suf-
fers from low accuracy and instability.

To address both accuracy and stability, VCI methods
with additional stabilization have been introduced. The VCI
method recovers Galerkin exactness to an order consistent
with the order of completeness in the approximation func-
tions. The VCI methods are formulated under the assumed
strain framework and can be conveniently enriched with
strain energy stabilization for enhanced stability.

An eigenvalue analysis has been provided to show the
enhanced stability of the proposed methods. Several numer-
ical examples have been given to examine the performance
of VCI methods with stabilization. For wave propagation
problems, standard methods show large errors in phase and
amplitude, while their variationally consistent counterparts
do not. For large deformation impact problems, solutions for
the VCI and VC corrected methods were also superior to
their uncorrected counterparts, with stabilized variationally
consistent methods (MSCNI and VC-MSNNI) showing the
best performance.
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