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ABSTRACT

The reproducing kernel particle method (RKPM) is a mesh-
free method for computational solid mechanics that can be tai-
lored for an arbitrary order of completeness and smoothness.
The primary advantage of RKPM relative to standard finite-
element (FE) approaches is its capacity to model large defor-
mations, material damage, and fracture. Additionally, the use
of a meshfree approach offers great flexibility in the domain dis-
cretization process and reduces the complexity of mesh modifica-
tions such as adaptive refinement.

We present an overview of the RKPM implementation in the
Sierra/SolidMechanics analysis code, with a focus on verifica-
tion, validation, and software engineering for massively paral-
lel computation. Key details include the processing of meshfree
discretizations within a FE code, RKPM solution approximation
and domain integration, stress update and calculation of internal
force, and contact modeling. The accuracy and performance of
RKPM are evaluated using a set of benchmark problems. So-
lution verification, mesh convergence, and parallel scalability
are demonstrated using a simulation of wave propagation along
the length of a bar. Initial model validation is achieved through
simulation of a Taylor bar impact test. The RKPM approach is
shown to be a viable alternative to standard FE techniques that
provides additional flexibility to the analyst community.
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INTRODUCTION

The modeling of large-deformation processes and material
failure is an important and difficult problem in computational
mechanics. Standard FE approaches often perform poorly in this
regime due to mesh distortion, and may break down completely
due to element inversion. Adaptive mesh refinement provides a
means to maintain element quality, but entails significant compu-
tational complexity and expense. Simulations that include mate-
rial separation in addition to large deformations require the ca-
pacity to model the evolution of discontinuities, for example via
the extended finite element method (XFEM). The complexity and
computational expense of these auxiliary techniques motivate the
development of modeling approaches outside the framework of
standard FE modeling.

RKPM is an alternative to mesh-based approaches that is
well suited for problems involving large deformation and mate-
rial failure [1,2]. RKPM operates on a meshfree discretization
and can be tailored for an arbitrary order of completeness and
smoothness. Domain integration is achieved using one of sev-
eral available formulations. Stabilized conforming nodal inte-
gration (SCNI) is the most accurate option for Lagrangian simu-
lations [3,4]. Alternatively, the stabilized non-conforming nodal
integration (SNNI) formulation offers improved resilience under
conditions of large deformation and material separation, but can
suffer from convergence issues due to relaxation of the conform-
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ing conditions [5]. This shortcoming may be addressed using the
variational consistency correction recently developed by Chen,
Hillman, and Riiter [6], which restores optimal convergence. Ad-
ditional stabilization can be provided for both SCNI and SNNI to
suppress low-energy oscillatory modes that can manifest when
the surface area to volume ratio is small [7].

RKPM has been recently implemented in the
Sierra/SolidMechanics analysis code at Sandia National
Laboratories [8]. To date, the implementation is restricted to
explicit transient dynamics, with a focus on the efficient and
robust solution of models with extensive contact subject to large,
suddenly applied loads. The RKPM implementation interfaces
directly with the Sierra/SolidMechanics Library of Advanced
Materials for Engineering (LAME), which contains a broad set
of constitutive models [9]. The meshfree discretization required
for RKPM is created at the onset of a simulation through the
conversion of a hexahedral or tetrahedral mesh. The mesh
conversion process discards the initial element connectivity, but
preserves node locations and the definitions of node sets for
the application of initial and boundary conditions. Combined
analyses employing both RKPM and standard FE approaches are
enabled through application of the native Sierra/SolidMechanics
contact algorithm.

An overview of the RKPM method, as implemented in
Sierra/SolidMechanics, is presented below. The accuracy, con-
vergence, and performance of the implementation are demon-
strated though several test cases. Simulation of a propagating
wave along the length of a bar provides an example of solu-
tion verification. A Taylor bar impact simulation demonstrates
RKPM under large-deformation conditions and provides a means
to evaluate the Sierra/SolidMechanics contact algorithm within a
RKPM simulation.

METHODOLOGY

The RKPM formulation, and the corresponding software
implementation, differ in several key ways from those of stan-
dard FE models. Notable differences include the requirements
of the meshfree discretization, the need to communicate data
over the RKPM support, which may cross processor boundaries,
the absence of contact surfaces, and additional pre- and post-
processing considerations (e.g., visibility criteria defining per-
missible node interactions). Other aspects of RKPM, such as
interaction with the time integrator and material model library,
align well with the structure of FE software and do not necessi-
tate significant code modification.

Solution Approximation

The RKPM approach operates on approximate solutions
constructed over a meshfree discretization. This is in contrast
to classical FE schemes in which the approximation space, and

the shape functions that define it, are tied directly to element con-
nectivity.

Let the closed domain Q C R? be discretized by a set of NP
nodes {x;|x; € Q}YF,. The n' order reproducing kernel (RK)
approximation of a function «(x) in Q denoted by 1" (x) is:

NP
u"(x) = Y ¥ (x)u (1)
=1

where {¥;(x)}NF) is the set of RK shape functions and {u; })%,
is the set of coefficients of the approximation [1]. The shape
functions are constructed by the product of a kernel function
®,(x —x;) and a correction function C(x;x — x;):

Wi(x) = Dy(x—x1)C(x;x— x71). )

The kernel function has compact support &; =
{x| ®,(x—x;) #£0} as shown in Figure 1, and the size of
the support is denoted a. The kernel determines the smoothness
of the approximation functions. A cubic B-spline function,
for example, gives C? continuity. The correction function
C(x;x — x7) is composed of a linear combination of monomial
basis functions in the following form:

n
Cax—x;)= Y (x1—xn) (2—xp) (x3—x3)"bije (3)
i+ j+k=0

=H" (x—x;)b(x) 4)

where b” (x) is the row vector of the monomial coefficients
bijr(x) and H' (x — x;) is the row vector of the monomial bases:

(JC3 —x13)”} .

(%)
The coefficients b(x) are determined through the following re-
producing conditions:

HT(x—xI): [1 X1 —X11 ... X3—X3 (x1 —x11)2

NP ) o
Y W (x)x ) = xixgxs,  0<i+j+k<n. (6)
=1

With b(x) obtained from (6), the RK shape functions are con-
structed as

W (x) =HT(0)M ' (x)H (x — x;)D,(x — x;), @)
NP
M(x)=Y H(x—x;)H" (x—x;)®,(x—x)). ®)

I=1
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FIGURE 1. RKPM DOMAIN DISCRETIZATION WITH RK
APPROXIMATION FUNCTIONS.

In the above, M(x) is termed the moment matrix. In this con-
struction, the reproducing conditions (6) are met provided the
moment matrix (8) is invertible, which requires sufficient non-
coplanar points under the cover ®,(x — x;) so that the reproduc-
ing equations are linearly independent [10].

By direct differentiation, the shape functions also satisfy the
following important property for solving second order differen-
tial equations:

NP . o
Y VW (x)xp xpxy = V(Xixhas), 0<i+j+k<n. (9
=1

One important difference between RK shape functions and
standard FE shape functions is that RK nodal coefficients are
not the physical displacements at the nodes, i.e., they lack
the Kronecker delta property. Thus there is a distinction
between the generalized displacements and the physical dis-
placements at the nodes. To enforce boundary conditions in
Sierra/SolidMechanics, boundary singular kernel functions are
employed [11]. These modified RK shape functions restore the
Kronecker delta property, allowing boundary conditions to be
imposed directly.

Domain Integration

RKPM shape functions are rational, and can form compli-
cated overlapping support structures that are difficult to integrate
accurately. Because of this, the rate of convergence of the solu-
tion can be heavily influenced by the choice of domain integra-
tion method. Nodal integration presents an even greater chal-
lenge for meshfree methods since they suffer from both sub-
optimal convergence and stability issues. The former is due to
under-integration, while the latter is caused by severely under-
estimating the energy for sawtooth modes. Advanced nodal in-

. RKPM node
D Smoothing Zone

(a) Conforming smoothing zones for SCNI.

. RKPM node
o D Smoothing Zone

(b) Non-conforming smoothing zones for SNNI.

FIGURE 2. ILLUSTRATION OF RKPM SMOOTHING ZONES.

tegration methods which address these issues have been imple-
mented in Sierra/SolidMechanics, as described below.

Stabilized conforming nodal integration (SCNI) was intro-
duced in [3,4] to remedy rank instability in direct nodal integra-
tion, and also to provide optimal convergence for linearly com-
plete shape functions. In this method, gradients are smoothed
over conforming nodal representative domains which partition
the domain as shown in Figure 2(a), so that they are not evalu-
ated directly at the nodes, thus avoiding rank instability.

The smoothing is also performed in such a way that the first
order variational consistency condition for Galerkin linear exact-
ness is satisfied, and optimal convergence is achieved. This con-
dition requires satisfaction of the following divergence equality
with the set of test functions and the chosen numerical integra-
tion [3, 6]:

/Avw,(x) 40— / W, (x)n(x) dT VI, (10)
Q 0Q

where “”” denotes numerical integration, and ¥;(x) is a shape
function with first order completeness used in the Galerkin equa-
tion.
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SCNI considers gradient smoothing with divergence in each
nodal representative domain by

) | 1
() = - /Q VW (x) dQ = —
L

4 aQL‘PI(x)n(x) dr. (11

Here A; = fQL dQ, Q; is the representative domain of node L,
and W7 are constants to be determined. The conforming nodal
domains can be generated by, for example, Voronoi diagrams. In
Sierra/SolidMechanics, a standard hexahedral or tetrahedral FE
mesh is utilized to construct conforming cells at the initialization
stage of an analysis.

The formation of conforming strain smoothing domains in
SCNI can be cumbersome in problems subjected to topologi-
cal change in geometry. To address this issue, stabilized non-
conforming nodal integration (SNNI) [5, 12] has been introduced
as a simplification of SCNI. Figure 2(b) shows the gradient
smoothing scheme by non-conforming cells constructed by con-
sidering box domains surrounding each node. The drawback of
this simplification, however, is that (10) is no longer satisfied and
SNNI does not always yield optimal convergence rates [6].

An assumed strain method can be utilized to achieve satis-
faction of the first order variational consistency (VC) condition
with SNNI. In this approach, an assumed gradient is introduced
into the SNNI test functions [6]:

VW) (x) = V¥ (x) + R (x)&;, (12)

where

Rix) {1 if x € supp(¥;(x)) (13)

0 ifx ¢ supp(¥;(x))

The form of the assumed gradient uncouples the VC equations,
providing stability as well as computational efficiency. Substitut-
ing (12) into (10) with the assumed gradient, V, the coefficients
are then solved for as

&= < /a , i(x)n(x) ar - /Q V¥ (x) d§2> ( /Q Ry(x) dQ)

(14)

-1

Using this formulation, the test functions are variationally
consistent with the SNNI integration scheme and optimal con-
vergence associated with the linear completeness of the shape
functions is achieved.

The energy of sawtooth modes may be underestimated in
smoothed nodal integration methods as a result of insufficient

RKPM node
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(b) Stabilization cells for SNNI.

FIGURE 3. ILLUSTRATION OF RKPM STABILIZATION CELLS.

sampling when the surface area to volume ratio of the domain
is small, or when the discretization is highly refined. Stabiliza-
tion of these modes can be accomplished by introducing strain
averaging over subdivisions of the smoothing cells to avoid the
under-sampling of these modes [7]:

NP
a(vh7uh)stab = Z éL(Vh) :C: ?:L(uh)VL

NP NS .
+e Y Y (@l - () € (Bulu) — ef W)V,
L=1K=1

5)

where a(vh, uh)mb is the modified bilinear form, NS is the num-
ber of stabilization points, € is the smoothed strain at node L,
£,If is the strain at stabilization point K associated with node L, C
is the matrix of material constants, c is a stabilization parameter
ranging from zero to one, Vy is the cell volume associated with
point L, and VX is the sub-cell volume associated with point K.
For SCNI, each nodal representative domain can be triangulated
to form sub-cells as shown in Figure 3(a), and for SNNI, the
smoothing zones can simply be partitioned into equal parts, as
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shown in Figure 3(b).

The second term in (15) is the contribution of the stabiliza-
tion; in explicit dynamics it leads to an additional internal force
term. A key feature of this method is the fact that it does not
upset variationally consistency in SCNI and VC-SNNI, and thus
stabilized SCNI and VC-SNNI are convergent, stable, and also
provide the efficiency of nodal integration.

Stress Update and Calculation of Internal Force

The RKPM approximation of the displacement field, de-
scribed above, enables the calculation of kinematic quantities
(e.g., strains and strain rates) at each time step in the simulation.
These kinematic quantities are passed to the constitutive model,
which computes stresses. Nodal forces and the corresponding
accelerations are then computed based on the stresses, allowing
an explicit time integrator to advance the simulation to the sub-
sequent time step. The Sierra/SolidMechanics implementation
of RKPM interfaces directly with the Library of Advanced Ma-
terials for Engineering, providing access to a large number of
constitutive models for computational solid mechanics [9].

Let x denote the current configuration of the body and X de-
note the reference configuration of the body. At any given time
t"*1, the main kinematic quantities of interest are the deforma-
tion gradient F, and the symmetric part of the rate of deformation
tensor D,

&xin-&-l
Fj; =
’ 8Xj ’

(16)

1
D;; =5A (Lij+Lji),
where L is the spatial deformation gradient.

The deformation gradient F is computed by

NP
Fi=Y Bjuji' +8;, 17)
J=1

where Bj; = (@‘I—‘ 7); is the i"" component of the smoothed ma-
terial gradient of the shape function and u;*l is the generalized
nodal displacement at node J.

For the time step from ¢ to " Lis computed in an incre-
mentally objective manner by using the gradient with respect to

the half time step configuration x"*1/2 = 1/2 (x” —|—x"+1) [13],

8Au,~

Li=——
J +1/27
8x’} /

(18)

where Au = w"*! — u" is the increment of displacement. By ap-

plying the chain rule and employing smoothed gradient approxi-

mations, (18) is computed as
1\ !
L:DO+#ﬁ , (19)

where I is the identity tensor and

NP
Dij =Y byjAuy;, (20)
J=1

where by; = Fj;lB 71 1s the smoothed spatial gradient of the shape
function and Au; is the generalized increment of nodal displace-
ment at node J.

Due to the use of nodal integration, the above quantities are
calculated at nodes rather than at Gauss points as in standard
FE schemes. Cauchy stress at the current time step, 6", is
then computed through a call to the constitutive model based on
the quantities in (16), and the internal force, ff’nfl, is determined
using an updated Lagrangian formulation with nodal integration:

NP
=Y B (x)&" (1) Vi, 1)
L=1

where B" (x.) and "1 (x;) are Voigt notation vectors contain-
ing the smoothed spatial gradients b;; and stresses 6”11, respec-
tively, and V7 is the nodal volume in the current configuration.
Nodal accelerations are computed directly from the nodal forces
in (21), allowing the time integration routine to advance the sim-
ulation to the next time step.

An additional necessity for computational simulation using
RKPM is estimation of the maximum stable time step. The crit-
ical time step for RKPM depends on the wave speed of the ma-
terial, the type of domain integration, and the measure a of the
kernel function ®,(x — x;) selected in the approximation, which
serves as the characteristic length for stability in time rather than
nodal spacing as in standard FE approaches [14]. The time step
is estimated based on these quantities at any given configuration
in the simulation.

Creation of a Meshfree Discretization

Currently, the primary method for the construction of mesh-
free RKPM discretizations in Sierra/SolidMechanics is the di-
rect conversion of hexahedral or tetrahedral meshes to a discon-
nected point cloud. This approach minimizes disruption of the
standard analysis workflow. It allows for continued use of FE
meshing software, and facilitates the straightforward conversion
of previously-developed FE meshes to meshfree discretizations
for RKPM. Under this approach, nodes present in the FE mesh,
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(a) Initial hexahedral mesh.

(b) Corresponding meshfree RKPM discretization.

FIGURE 4. CREATION OF A MESHFREE RKPM DISCRETIZA-
TION FROM A HEXAHEDRAL MESH OF A UNIT CUBE.

and the degrees of freedom associated with them, are left undis-
turbed. Element connectivity is deleted, and the mass associ-
ated with each of the original solid elements is distributed to
one or more RKPM nodes. Further, to enable SCNI, confor-
mal cells are defined for each RKPM node though a process
in which the original elements are subdivided and the result-
ing sub-elements are grouped around the adjacent nodes. To
date, Sierra/SolidMechanics supports the preservation of node
sets defined on the original mesh for the application of prescribed
displacement and velocity boundary conditions and initial con-
ditions, but discards side set information (i.e., sets of element
faces). The application of pressure and traction boundary condi-
tions to RKPM models is planned for future work.

The conversion process for a hexahedral mesh of a unit cube
is illustrated in Figure 4. The hexahedral mesh, created using the
Cubit [15] mesh-generation code, is shown in Figure 4(a), and
the resulting meshfree discretization for RKPM is shown in Fig-
ure 4(b). Here, the size and color of the sphere glyphs illustrate
the volume associated with each RKPM node.

FIGURE 5. LOFTED CONTACT GEOMETRY FOR A RKPM
NODE.

Modeling Contact

The development of an effective contact modeling strategy
for RKPM in Sierra/SolidMechanics is the subject of ongoing
work. As part of the current study, the approach of utilizing
lofted contact geometry was investigated as a means to enable the
native Sierra/SolidMechanics contact algorithm for RKPM do-
mains. The Sierra/SolidMechanics contact algorithm employs an
iterative penalty approach to eliminate unphysical interpenetra-
tion and preserve linear momentum through a series of operations
acting on planar facets [8, 16]. This approach is directly appli-
cable to hexahedral and tetrahedral meshes, where planar faces
are readily available from the element geometries, and skinning
operations may be employed to identify domain boundaries. The
use of the Sierra/SolidMechanics contact algorithm with RKPM
requires the construction of a set of planar faces to define the con-
tact surfaces. For this purpose, an icosahedron may be associated
with each RKPM node in the contact domain. An illustration of
the icosahedron contact geometry is given in Figure 5. The di-
mensions of the icosahedron may be provided by the analyst, or
may determined automatically based on the nodal volume. In
the second case, the icosahedron is constructed such that it is en-
closed by the sphere centered at the node with a volume equal to
the nodal volume. The enclosing sphere is illustrated as a gray
circle in Figure 5.

While the use of lofted icosahedron geometry to enable con-
tact for RKPM produces satisfactory results in many cases, sev-
eral drawbacks exist. The foremost shortcoming is the lack of
a contiguous contact surface. The smooth, water-tight surfaces
associated with hexahedral and tetrahedral domains provide an
efficient and reliable set of planar facets for evaluation of the con-
tact algorithm. In contrast, the lofted icosahedra associated with
a RKPM domain are not smooth, and may include gaps, partic-
ularly under large deformation. Further, the number of contact
facets can grow large for RKPM domains, requiring additional
computational expense.

An alternative approach, currently under consideration,
makes use of the initial hexahedral or tetrahedral mesh, if avail-
able, for the definition of contact facets for a RKPM domain (see

Copyright © 2015 by ASME



Figure 4(a)). In this case, a skinning operation applied to the ini-
tial solid-element mesh identifies a set of faces that are preserved
throughout the mesh-conversion process. These faces are then
used as contact surfaces for the RKPM domain, eliminating the
need for lofted geometry. It is anticipated that this approach will
work well in the absence of material separation, but will present
difficulties if the contact surfaces require updating, for example
as a result of material failure.

BENCHMARK SIMULATIONS

Verification and validation (V&V) of the RKPM implemen-
tation requires extensive testing. A comprehensive V&V test
suite includes solution verification, convergence studies, scaling
studies, and validation of simulation results against experimen-
tal data. The example simulations presented below demonstrate
the Sierra/SolidMechanics RKPM implementation and serve as
initial test cases toward the goal of rigorous V&V.

Wave Propagation in a Bar

Propagation of a wave along a long, thin bar provides one
instance of a solution verification test. A model of a bar was
constructed with dimensions of 20.0mm by 0.2mm by 0.2 mm.
The bar was modeled as elastic with a density of 7.8 g/cm?. A
one-dimensional solution was emulated by assigning a Young’s
modulus of 3.0e5MPa and a Poisson’s ratio of zero. The RKPM
formulation employed a first order basis, a quartic B-spline ker-
nel, SCNI domain integration, and a normalized support size of
1.6. The bar was given an initial velocity of 10.0m/s, and a fixed
displacement boundary condition was applied to the leading edge
of the bar to simulate contact with a rigid body.

Results for the wave propagation simulation were verified
against the following analytical solution,

u(x,t) = i (An sin (@,?) sin <(2’12_Ll)7rx)> , (22)

n=1

where

- 8voL P
= @)

o, = 27 Z_LI)” \F . 24)

Here, u(x,t) is the displacement at position x at time #, L is the
length of the bar, vy is the initial velocity, p is the density of

and

0.02

RKPM Simulation s
0.015 /"‘-""' ---------------- ..\\ Analytic Solution
E 0.01 / _’_‘x
= 0.005 \
ot
& \
£ 0
S -0.005
& \
2 \
o -001 -.'_"
'3'
-0.015 \v,--..w,
-0.02
0 0.002 0.004 0.006 0.008 0.01
Time (ms)

(a) Coarse mesh containing 164 nodes.
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(c) Fine mesh containing 31409 nodes.

FIGURE 6. VERIFICATION OF DISPLACEMENT AT THE MID-
POINT OF THE BAR IN THE WAVE PROPAGATION SIMULATION.

the bar, and E is the modulus. Agreement of the computational
simulation and the analytical solution for several levels of mesh
refinement are illustrated in Figure 6.

Parallel efficiency of the RKPM implementation was eval-
uated for the wave propagation simulation. A simulation utiliz-
ing a highly-refined discretization containing 360 192 nodes was
carried out using 1, 2, 4, 8, 16, 32, 64, and 128 processors. The
results of the scaling study, presented in Figure 7, demonstrate
the effectiveness of the parallel implementation.
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FIGURE 7. SCALING STUDY RESULTS FOR THE WAVE PROP-
AGATION SIMULATION.

Taylor Bar Impact Simulation

Simulations of a Taylor bar impact test [17-19] were carried
out to evaluate the effectiveness of the RKPM implementation
under large-deformation conditions. Following the experiments
of Johnson and Cook [18, 19], a 4340-steel cylindrical bar with
initial height Ly = 12.7mm and initial diameter Dy = 7.62mm
was assigned a velocity of vg = 282.0m/s prior to impacting a
rigid target. The bar was modeled using RKPM with a first or-
der basis, a quartic B-spline kernel, SNNI domain integration,
and a normalized support size of 2.1. Initial simulations utilized
a fixed-displacement boundary condition to model contact with
the rigid target. Constitutive response was modeled using the
Johnson-Cook material model [18, 19], in which a yield stress is
defined as

Coy = (A+BE") (14+&") (1 -T*"), (25)

where € is the equivalent plastic strain, and &* = /&y repre-
sents the plastic strain rate normalized by a reference strain rate
at which experiments were conducted to characterize the mate-
rial. The normalized temperature T* = (T —Ty) /(T,, — Tp) is uti-
lized to characterize thermal softening caused by adiabatic heat-
ing. The constitutive model parameters, taken from [19], are pre-
sented in Table 1.

Results for the Taylor bar simulation are presented in Fig-
ure 8. Large plastic strains were predicted at the leading edge
of the bar as a result of material spreading at the impact surface.
The RKPM model remained coherent in the large-deformation
regime and was free from numerical difficulties. As expected,
the fixed displacement boundary condition resulted in unbroken
contact between the leading edge of the bar and the (fictitious)
contact surface.

Simulation results for the final height of the specimen
were validated against the experimental results of Johnson and
Cook [18], in which the height of the bar after impact was mea-

TABLE 1. JOHNSON-COOK MATERIAL MODEL PARAME-
TERS FOR THE TAYLOR BAR SIMULATION [19].

Parameter Value
Young’s modulus E 200 GPa
Poisson’s ratio v 0.29
Density p 7830 kg/m?
Specific heat capacity C, 477 J/kgK
Initial temperature Ty 300K
Melting temperature 7, 1793 K
Temperature softening exponent m 1.03
Yield stress A 792 MPa
Strain hardening coefficient B 510 MPa
Strain hardening exponent n 0.26
Strain rate hardening exponent C 0.014
Reference strain rate & 1.0s7!

Displacement (mm)

IE 25

3%
¥

:
[+

w

2
o

""-\\llllwlwll
o
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FIGURE 8. TAYLOR BAR IMPACT SIMULATION WITH FIXED
DISPLACEMENT BOUNDARY CONDITION. COLOR DENOTES
DISPLACEMENT IN THE HORIZONTAL DIRECTION.

sures as Ly = 0.812Lg. Results for simulations using differ-
ent levels of mesh refinement are presented in Figure 9. The
coarse, medium, and fine discretizations contained 938, 26488,
and 46 592 nodes, respectively. Results for the medium and fine
discretizations are nearly identical, indicating mesh convergence,
and are in good agreement with the experimental data. The os-
cillations in the final height of the bar are a result of the elastic
response of the constitutive model and are expected in the ab-
sence of damping.
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FIGURE 9. COMPUTED FINAL HEIGHT OF TAYLOR BAR.

Modeling Contact within the Taylor Bar Simulation

Additional simulations of the Taylor bar impact experi-
ment were carried out to evaluate the effectiveness of the native
Sierra/SolidMechanics contact algorithm for modeling contact
between a RKPM domain and a domain modeled with standard
hexahedral elements. As discussed above, the contact algorithm
operates on surfaces comprised of planar facets. Contact facets
for the RKPM domain were created using the lofted icosahedron
approach illustrated in Figure 5.

Results from a Taylor bar simulation with contact are pre-
sented in Figure 10. The discretization shown in Figure 10 is
identical to that of Figure 8, the only exception being the use
of a deformable target modeled with standard hexahedral ele-
ments. In contrast to the simulation utilizing a fixed displace-
ment boundary condition, the bar in the contact simulation sep-
arates from the impact surface at the outer radius of the leading
end of the bar. In addition, the inclusion of a deformable target
allows for the transfer of energy from the bar to the target, and
the subsequent propagation of waves through the target material.

DISCUSSION AND CONCLUSIONS

RKPM was implemented in the Sierra/SolidMechanics anal-
ysis code with the goal of providing an enhanced simulation ca-
pability in the regime of large deformation and material failure.
The implementation is restricted to explicit transient dynamics
and currently employs the native Sierra/SolidMechanics contact
algorithm, which facilitates interaction between RKPM domains
and standard FE domains. Functionality was implemented for
the conversion of hexahedral and tetrahedral meshes to meshfree
discretizations for RKPM, including the creation of conformal
cells for SCNI. Preliminary V&V efforts have verified RKPM
against the analytical solution for wave propagation along a bar,
and validated RKPM as a means to capture large-deformation
material response though simulation of a Taylor bar impact test.
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FIGURE 10. TAYLOR BAR IMPACT SIMULATION WITH
CONTACT. COLOR DENOTES DISPLACEMENT IN THE HORI-
ZONTAL DIRECTION.

Ongoing Work

The implementation and testing of RKPM in
Sierra/SolidMechanics completed to date provides the ground-
work for several ongoing efforts.

The first is implementation of a semi-Lagrangian RKPM
formulation that is applicable to problems involving material fail-
ure [5,12]. The future development of a semi-Lagrangian formu-
lation is the primary motivation for the inclusion of SNNI func-
tionality in the current implementation. Unlike the Lagrangian
scheme, the proximity search that establishes nodal interactions
is repeatedly updated under the semi-Lagrangian approach to re-
flect the deformed configuration. The updating of nodal interac-
tions is a necessity for capturing material behavior under condi-
tions of pervasive damage.

Improved contact algorithms for RKPM are also under con-
sideration for inclusion in Sierra/SolidMechanics. Utilizing the
interaction of meshfree kernel functions, contact algorithms can
be implemented which naturally satisfy the impenetration condi-
tion [20]. In this approach, the pairwise interactions of nodes due
to overlapping kernels induce stresses. The stick and slip con-
ditions are then calculated based on the tangential stress using
Coulomb’s contact friction law. Using level set representations
of the boundaries of the two bodies, surface normals necessary
for this calculation are obtained using only nodal data.

An additional topic of ongoing research is the direct creation
of meshfree discretizations from domain geometry data. The ap-
proach advocated above, in which a pre-existing hexahedral or
tetrahedral mesh is converted to a meshfree discretization, does
not take full advantage of the flexibility of meshfree models. The
direct creation of a meshfree discretization from domain geome-
try data offers promise for rapid design-to-analysis applications,
and for the the optimization of the discretization process for any
number of user-defined objectives.

Copyright © 2015 by ASME
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