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Abstract

Spline-type approximations for solving partial differential equations are the basis of isogeometric analysis. While the common
approach of using integration cells defined by single knot spans using standard (e.g., Gaussian) quadrature rules is sufficient for
accuracy, more efficient domain integration is still in high demand. The recently introduced concept of variational consistency
provides a guideline for constructing accurate and convergent methods requiring fewer quadrature points than standard integration
techniques. In this work, variationally consistent domain integration is proposed for isogeometric analysis. Test function gradients
are constructed to meet the consistency conditions, which only requires solving small linear systems of equations. The proposed
approach allows for significant reduction in the number of quadrature points employed while maintaining the stability, accuracy,
and optimal convergence properties of higher-order quadrature rules. Several numerical examples are provided to illustrate the
performance of the proposed domain integration technique.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric analysis (IGA) [1,2] provides a way to link Computer Aided Design (CAD) descriptions of designs
directly to analysis, circumventing the lengthy and thus expensive process of producing a suitable discretization, as
well as bypassing interaction with CAD descriptions for refinement. It also offers several advantages over traditional
finite element analysis such as exact descriptions of geometry, more accuracy per degree of freedom in smooth prob-
lems [3], and more favorable transient properties [4], among others. However as with any method cast in the Galerkin
framework, numerical integration invariably must be considered since high order quadrature can render numerical
methods impractical for analysis.

Spline-, and, in particular, Non-Uniform Rational B-Spline (NURBS)-type approximations for solving partial
differential equations (PDEs) are the basis of IGA. B-splines, which form the basis of NURBS, are piece-wise
polynomial functions. However, the projected geometry yields approximations that are piece-wise rational and are
thus more difficult to integrate than polynomials. The parametric description itself can also become an issue when
the mapping from the parametric to spatial domain is not affine with large variations in the Jacobian. The widely
adopted approach for domain integration in IGA has been to integrate over cells defined by non-zero knot spans or
“elements” using Gaussian quadrature [1], with rules sufficient for exact integration of B-splines with affine mapping.
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However, this procedure is computationally expensive and has been shown to be suboptimal due to the smoothness
of the approximation across cell boundaries [5]. While these cell-by-cell integration rules provide accurate domain
integration, quadrature rules that provide the same level of accuracy with fewer quadrature points are in demand [5,6].

One approach that has been taken in IGA to alleviate the issue of higher-order quadrature is to use “macro”
integration cells, composed of several cells in each parametric direction, with quadrature rules designed to take into
account basis-function continuity across constituent cell boundaries [5]. This resulted in a reduction of the number of
quadrature points over conventional Gaussian quadrature, and led to the rules that are “optimal” in the sense they can
exactly integrate, with the minimum number of points, the integrands they were designed for, namely, 1D B-splines in
the parametric domain. Another approach has been to obtain rules using the translation invariant property of B-splines,
with only small non-linear systems of equations to solve in order to obtain quadrature point locations and weights [6].
This results in “nearly optimal” quadrature rules, however, these are only applicable to uniform, structured-mesh
configurations. A more unified and less restrictive approach is thus desirable, particularly since unstructured-mesh
approximations such as T-splines [7], PHT-splines [8], and locally-refined splines [9] are being rapidly developed and
adopted for IGA.

Alternative approaches have been taken outside of IGA in order to alleviate quadrature issues. In particular, in the
meshfree method, inefficient domain integration can render the method ineffective, and novel domain integration
techniques have been developed to overcome this issue. Rather than redesigning quadrature rules for a given
approximation space, test and trial functions are constructed so that accuracy and convergence are achieved with
lower order quadrature than would otherwise be required. The approach that is becoming increasingly developed
is to impose exactness on the Galerkin method with quadrature for the order of approximation space chosen (cf.
[10–12]). The basic idea is that assuming completeness of the trial functions, any solution error when solving a
boundary value problem with a solution the same as the completeness order is purely due to numerical integration.
Setting the residual of the resulting Galerkin equation as zero results in the so-called integration constraint, and
satisfaction of the constraint (Galerkin exactness) in addition to the chosen completeness is taken as a criterion to
design the test and trial functions. The earliest example of this technique is the stabilized conforming nodal integration
(SCNI) method [10], which has proved to be extremely effective at solving a variety of problems [10,13–16], and has
also been applied to other methods such as the natural element method [17]. In this method, nodal integration is
employed, and gradients are constructed at the nodes using strain smoothing in order to meet the first order integration
constraint for first order Galerkin exactness. More recently, extensions of the strain smoothing technique have been
proposed in [11] which meet higher-order constraints.

The above methods fall under the framework of the variational consistency condition proposed in [12]. The
condition precisely describes what is necessary in order to obtain nth-order exactness in the Galerkin solution, and
is thus an extension of the work in [10]. The work in [12] shows that the quadrature treatment of the integration-
by-parts performed starting from the weighted residual of a PDE induces error in the discrete solution. This fact,
in turn, may be used as a guideline in constructing quadrature rules (or approximation functions) for a given PDE
with far fewer quadrature points than standard techniques and without sacrificing stability and optimal convergence.
The authors proposed to construct test functions that meet the integration constraint while keeping the trial functions
unmodified to ensure completeness. In this work, variationally consistent domain integration is proposed for IGA.
Quadrature cells are defined by non-zero knot spans, and test functions are constructed to meet the variational
consistency condition. The method is shown to produce the accuracy of the Galerkin technique with higher-order
quadrature while using far fewer integration points. In some cases one quadrature point per basis function (for a
scalar problem) is employed without degradation of convergence, making the method comparable in computational
cost to a collocation technique [18–20].

The remainder of this paper is as follows. Section 2 gives a brief overview of NURBS-based IGA, with a discussion
of the properties of the approximation functions relevant to domain integration. The concept of variational consistency
is then introduced in Section 3, with emphasis placed on its application to IGA. Numerical examples are then given in
Section 4. Concluding remarks are then given in Section 5.

2. NURBS-based IGA

In this section, the NURBS-based isogeometric method is briefly reviewed. Properties of the basis functions
relevant to domain integration are also discussed.
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2.1. B-splines and NURBS

B-splines and NURBS form the basis of IGA, motivated by CAD descriptions of geometry. A B-spline is a piece-
wise polynomial curve, constructed by a linear combination of n basis functions of order p and the associated n
coefficients called control points.

2.1.1. Knots and knot vectors
B-splines are built upon a knot vector, which consists of a set of points ξi with non-decreasing coordinates in

the parametric space, called knots. The points are not necessarily unique, and when they have the same coordinates
they are said to be repeated knots. In the standard CAD descriptions, and what has been adopted in IGA and will be
employed here, knots are repeated p + 1 times at the ends of the parametric space, and such knot vectors are called
open knot vectors.

2.1.2. B-spline basis functions
The basis functions of B-splines can be defined by a recursive construction, starting with piece-wise constant

functions for p = 0:

Ni,0(ξ) =


1 if ξi ≤ ξ < ξi+1
0 otherwise

(1)

and for p > 0

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (2)

For p = 1, the basis functions reduce to the linear finite element shape functions. Thus the cases of interest in
isogeometric analysis are p > 1 since linear finite elements are well established. In addition, quadratic (p = 2) bases
are the minimum order for resulting NURBS curves to exactly represent many geometries of interest.

2.1.3. B-spline curves, surfaces and solids
A B-spline curve C(ξ) ∈ R2 is constructed by the linear combination of basis functions Ni,p(ξ) and control point

coordinates Bi :

C(ξ) =

n
i=1

Ni,p(ξ)Bi (3)

where the basis functions are built upon the knot vector 4 = [ξ1, . . . , ξp+n+1].
Surfaces and solids are constructed by using tensor products of the basis functions. A surface S(ξ, η) ∈ R3

thus has bases Ni,p(ξ) and M j,q(η) with the possibility of having differing order p and q respectively. Associated
with these bases is a set of control points Bi j called a control net with m × n components, and knot vectors 4 =

[ξ1, . . . , ξp+n+1] and H = [η1, . . . , ηq+m+1]. B-spline surfaces are constructed over the parametric domain
[ξ1, ξp+n+1] × [η1, ηq+m+1]:

S(ξ, η) =

n
i=1

m
j=1

Ni,p(ξ)M j,q(η)Bi j . (4)

B-spline solids are constructed in a manner analogous to (4).

2.2. NURBS

In order to facilitate exact geometric descriptions for objects such as circles, ellipses, and other conic sections,
projective transformations of B-splines can be introduced. NURBS are projections of B-splines in Rd+1 onto Rd ,
resulting in a piece-wise rational function.
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For a curve, the control points Bw
i defining the curve in Rd+1 are projected to give the NURBS control points

(Bi ) j =


Bw

i


j

wi
, j = 1, . . . , d (5)

where j denotes the component, and wi = (Bw
i )d+1 is the last component of the projective control points, and is

called the weight of Bi . The bases associated with each control point are also projected yielding

R p
i (ξ) =

Ni,p(ξ)wi
n̄

i=1

Nī,p(ξ)wī

. (6)

The NURBS curve is then defined as

C(ξ) =

n
i=1

R p
i (ξ)Bi . (7)

Here it can be seen that when the weights in (6) are non-uniform, the basis functions are rational, and in coarse
descriptions of geometry weights can vary significantly over the knot spans. When refined, weights become more
uniform since the projective control points move closer to each other. As the weights become uniform, the functions
locally approach the form of B-splines.

For surfaces, NURBS basis functions are defined as

R p,q
i, j (ξ, η) =

Ni,p(ξ)M j,q(η)
n̄

i=1

m̄
j=1

Nī,p(ξ)M j̄,q(η)wī j̄

. (8)

The construction of surfaces and solids are performed analogous to (7). In what follows, the superscripts such as those
in (6) and (8) will be dropped with an equal order p, and the subscripts will be defined with respect to a single index
in relation to the total number of control points.

2.3. IGA and domain integration

IGA provides a link between CAD-based geometric descriptions and the approximated solutions of PDEs, where
the bases used to represent the geometry are also used directly as the bases in the Galerkin approximation. The
so-called affine covariance property ensures that the constant and linear completeness of NURBS are inherited from
the B-splines themselves, and thus allows exact representations of rigid body modes, as well as constant stress and
strain states in elasticity [1].

The integrands appearing in the weak form however, present difficulty for formulating efficient quadrature rules
owing to the nature of the approximation functions employed. Higher order integration is often required for sufficient
accuracy when using standard integration techniques for rational shape functions such as those in (6), which is
particularly problematic in coarser descriptions of geometry since weights are less uniform with respect to knot
spans than in the refined models. The mapping involved in the isogeometric approach may also become an issue
when it deviates from affine. Again this may be problematic for coarse discretizations as large variations in non-affine
mapping can exist over integration cells. Cell-by-cell integration with sufficiently high order Gaussian quadrature can
overcome these issues, but on the other hand, consumes high CPU.

3. Variationally consistent integration

In this section the concept of variational consistency is reviewed, and its implications for IGA are discussed.
Specifics of using the variational consistency conditions as a correction for IGA for enhanced accuracy and conver-
gence are also given.
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3.1. Variational consistency for scalar equations

High order integration ensures accuracy and convergence in the Galerkin method, but may not be viable due
to the associated cost. To avoid the bottleneck, which may occur in certain classes of methods, an alternative to
higher-order integration has been offered in [12], cast under the framework of satisfaction of variational consistency
conditions. The consistency conditions dictate precisely what is necessary in order to achieve arbitrary-order Galerkin
exactness. These conditions serve to characterize the solution error due to quadrature inaccuracy when approximation
functions are sufficient for representing the true solution, since any solution error in this case is purely due to numerical
integration.

Consider the Poisson equation as a model problem:

∇
2u + s = 0 in Ω

n · ∇u = h on ∂Ωh

u = g on ∂Ωg.

(9)

The Galerkin form of (9) can be stated to find (uh, λh) ∈ U h
×Λh , such that for all (vh, γ h) ∈ V h

×Γ h the following
equation holds:

Ω
∇vh

· ∇uh dΩ =


Ω

vhs dΩ +


∂Ωh

vhh dΓ +


∂Ωg

vhλh dΓ +


∂Ωg

γ h(uh
− g) dΓ (10)

where U h
⊂ H1, V h

⊂ H1,Λh
⊂ L2, and Γ h

⊂ L2 are suitable finite-dimensional subspaces. Here, for illustration,
Lagrange multipliers have been employed for enforcement of essential boundary conditions, however what follows
applies to all enforcements which are consistent with the strong form of the problem.

Consider the employment of NURBS as approximations and suitable Lagrange multipliers:

uh
=

N P
I=1

RI u I , vh
=

N P
I=1

R̂I vI

λh
=

NC
I=1

ϕI λI , γ h
=

NC
I=1

ϕ̂I γI

(11)

where N P is the dimension of the primary variable (the number of control points), and NC is the dimension of the
functions associated with enforcement of the essential boundary conditions. Employing numerical integration and
substituting the approximations in (11), the discrete version of (10) is thus

N P
J=1

ˆ

Ω

∇ R̂I · ∇RJ u J dΩ =
ˆ

Ω

R̂I s dΩ +
ˆ

∂Ωh

R̂I h dΓ +

NC
J=1

ˆ

∂Ωg

R̂I ϕJ λJ dΓ

+
ˆ

∂Ωg

ϕ̂K


N P
J=1

RJ u J − g


dΓ ∀ I, ∀K . (12)

In the above, the integral symbols with “∧” denote numerical integration. Consider now the case when the solution of
(9) is complete monomials with degree n:

u =


|α|≤n

cαxα
≡ un . (13)

Here we have introduced the multi-index notation α = (α1, α2, . . . , αd), with the length of α defined as |α| =d
i=1 αi , and xα

≡ xα1
1 · xα2

2 · . . . · xαd
d . To design (9) with the solution un , the conditions are prescribed as

s = −∇
2un in Ω

h = ∇un
· n on ∂Ωh

g = unon ∂Ωg.

(14)
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Note using the equivalence of strong and weak forms, the Lagrange multiplier for this solution is λn
= ∇un

· n.
Considering (12) with the solution un , Lagrange multiplier λn , and using the associated prescribed boundary
conditions in (14), the resulting equation is

ˆ

Ω

∇ R̂I · ∇un dΩ =
ˆ

Ω

R̂I s dΩ +
ˆ

∂Ωh

R̂I h dΓ +
ˆ

∂Ωg

R̂I λ
n dΓ ∀I. (15)

Using the definition of the Lagrange multiplier λn
= ∇un

· n associated with un , and the remaining conditions in (14)
we then have

ˆ

Ω

∇ R̂I · ∇un dΩ = −
ˆ

Ω

R̂I ∇
2un dΩ +

ˆ

∂Ω

R̂I ∇un
· n dΓ ∀I. (16)

Finally, considering the arbitrary constants in (13) gives

ˆ

Ω

∇ R̂I · ∇xα dΩ = −
ˆ

Ω

R̂I ∇
2xα dΩ +

ˆ

∂Ω

R̂I (∇xα
· n) dΓ ∀I, |α| = 0, 1, . . . , n. (17)

Domain integration that meets (17) yields Galerkin exactness of order n and has been termed variationally consistent
integration (VCI) [12]. Methods which possess nth-order completeness and satisfy (17) are able to pass the nth order
patch tests for (9). The conditions state that the numerical integration should be consistent with the test functions in
the form of the integration by parts operations associated with the PDE at hand. Thus the condition illustrates that the
integration by parts involved in the weak form introduces error into the solution when inexact quadrature is used.

The completeness requirement is an obvious strict necessity for exactness: the solution we wish to obtain must
lie in the approximation space at hand. For IGA, nth order completeness for B-splines is only satisfied in the
parametric domain [21]. In the spatial domain only first-order completeness is guaranteed for IGA, which is due to the
isoparametric construction employed. Nevertheless, despite the lack of nth order completeness in the spatial domain,
optimal convergence for NURBS-based IGA was rigorously shown in [22]. As a result, the IGA approximation
functions employed are considered sufficient for solution representation, and test functions can be constructed based
on (17) to reduce the integration error while keeping the trial functions unmodified. The use of condition given by
(17) to construct test functions for IGA assumes that the error due to the lack of global higher-order completeness is
small compared to the error due to quadrature. The results in Section 4 show that variational consistency is indeed
an effective technique for correcting integration error, and that the lack of global higher-order completeness generally
does not affect the performance of the method.

It is important to note that unlike in more standard approaches of quadrature rule design, which seek to find the
quadrature point locations and weights to maximize accuracy, here it is assumed that a quadrature rule is given and
an appropriate modification to the test function space can be introduced to ensure that the resulting numerical scheme
has good convergence properties.

To make (17) more concrete, consider n = 1, which results in

ˆ

Ω

∇ R̂I dΩ =
ˆ

∂Ω

R̂I n dΓ ∀I. (18)

Thus the linear case simplifies to a divergence condition for the test function R̂I , which was the condition originally
derived in [10]. The conditions in (17) for n = 2 for the 2D case are

ˆ

Ω

R̂I,1x dΩ = −
ˆ

Ω

R̂I dΩ +
ˆ

∂Ω

R̂I xn1 dΓ ∀I

ˆ

Ω

R̂I,2 y dΩ = −
ˆ

Ω

R̂I dΩ +
ˆ

∂Ω

R̂I yn2 dΓ ∀I

ˆ

Ω


R̂I,1 y + R̂I,2x


dΩ =

ˆ

∂Ω

R̂I (yn1 + xn2) dΓ ∀I.

(19)

Note that for nth-order exactness, each constraint from order 0 to n should be satisfied.
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3.2. Variational consistency for vector equations

Consider the following nth-order displacement field u =


|α|≤n cαxα
≡ un for the elasticity problem

∇ · σ + b = 0 in Ω
σ · n = h on ∂Ωh

u = g on ∂Ωg.

(20)

The Cauchy stress tensor corresponding to the displacement field un is σ = C : ∇sun
≡ σ n where C is the elasticity

tensor, and ∇su =1/2 (∇ ⊗ u + u ⊗ ∇) is the strain tensor. The conditions in (20) for the nth-order patch test are
b = −∇ · σ n in Ω , h = σ n

· n on ∂Ωh , and g = un on ∂Ωg .
The integration constraints for elasticity can be obtained following similar procedures for the scalar equations:

ˆ

Ω

∇ R̂I · σα dΩ = −
ˆ

Ω

R̂I ∇ · σα dΩ +
ˆ

∂Ω

R̂I σ
α

· n dΓ ∀I, |α| = 0, 1, . . . , n (21)

where σα
= C : ∇sxα .

Reduction of (21) for n = 1 gives the divergence condition (18). For quadratic exactness (n = 2), in 2D, there are
four conditions rather than three found in the Poisson equation:

ˆ

Ω

R̂I,1x dΩ = −
ˆ

Ω

R̂I dΩ +
ˆ

∂Ω

R̂I xn1 dΓ ∀I

ˆ

Ω

R̂I,2 y dΩ = −
ˆ

Ω

R̂I dΩ +
ˆ

∂Ω

R̂I yn2 dΓ ∀I

ˆ

Ω

R̂I,2x dΩ =
ˆ

∂Ω

R̂I xn2 dΓ ∀I

ˆ

Ω

R̂I,1 y dΩ =
ˆ

∂Ω

R̂I yn1 dΓ ∀I.

(22)

3.3. Variationally consistent integration

In general, variational consistency is not satisfied given an approximation space and a type of quadrature. In
variationally consistent integration, the trial functions play the role of completeness, while the test functions and
quadrature rules are responsible for meeting the integration constraint (17). Given a set of approximation functions,
the integration constraints in (17) can be separately imposed on the test functions R̂I . The procedure given in [12]
is to introduce a correction to the test function gradients. Specifically, a direct gradient and an assumed gradient are
introduced for the trial and test functions, respectively. For isoparametric methods the question arises whether to
construct corrections in the parametric domain or in the spatial domain. Here, since the conditions are enforced in the
spatial domain, the correction is defined in the spatial domain. The use of both ensures the attractive properties of the
corrections introduced in [12] are maintained; the VCI equations are uncoupled (reducing the size of the equations
by a factor of the spatial dimension d), whereas for parametric corrections this is not straightforward to achieve. In
addition, the resulting matrix of coefficients is symmetric and positive definite so long as the correction functions have
sufficient support cover over the integration points.

The starting point for the parametrically defined NURBS is to compute parametric derivatives ∇ξ directly, and
spatial derivatives ∇ (denoted with no subscripts) necessary for the weak form are then obtained using the Jacobian
matrix. A corrected gradient is then introduced to these test function derivatives:

∇̃vh
=

N P
I=1


∇RI +


|β|≤n

χβ I 9
β
I


vI . (23)
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In the above, {9
β
I }

n
|β|=1 is a set of additional basis functions with {∇RI , 9

β
I }

n
|β|=1 linearly independent, and χβ I are

coefficients which are solved for by substitution of (23) into the integration constraints (17). The number of unknown
coefficients in (23) is equal to the number of integration constraints in (17), and the gradient correction can be formed
by solving the resulting linear system. The corrected gradient approach simplifies the correction equations over a direct
gradient approach, reduces computational cost, and also provides stability under sufficient conditions (see [12]).

Note that all polynomial terms in (17) are simply evaluated by the map x(ξ), i.e.,
Ω

f (x) dΩ =


�

f (x(ξ))J (ξ) dΩ (24)

where J (ξ) is the Jacobian of the mapping.
It is possible to uncouple the equations resulting from (23) for computational efficiency. To take a simple example,

consider a correction in 2D for satisfaction of the linear constraint equation (18):

∇̃vh
=

N P
I=1


∇RI + χ1I


ΦI
0


+ χ2I


0
ΦI


vI . (25)

Here ΦI is taken in a simple form as

ΦI (ξ) =


1 if ξ ∈ supp(RI )

0 if ξ ∉ supp(RI ).
(26)

With substitution into (18), the coefficients are solved for directly from the resulting scalar equations:

χ1I =


ˆ

∂Ω

R̂I n1 dΓ −
ˆ

Ω

R̂I,1 dΩ


ˆ

Ω

ΦI dΩ



χ2I =


ˆ

∂Ω

R̂I n2 dΓ −
ˆ

Ω

R̂I,2 dΩ


ˆ

Ω

ΦI dΩ


.

(27)

It can be seen that the above correction is driven by the residual of (18), and thus no correction is made to methods
which are already first-order variationally consistent, for example, stabilized conforming nodal integration [10].

For higher order corrections, it is convenient to adopt a matrix representation of the constraints (17). For the
elasticity and Poisson problems in d-dimensions, it is sufficient to consider a vector P containing the complete (n−1)th
order monomials for the constraints:

ˆ

Ω

PT R̂I,i dΩ = −
ˆ

Ω

PT
,i R̂I dΩ +

ˆ

∂Ω

PT R̂I ni dΓ ∀I, i = 1, . . . , d. (28)

Test function gradients are then introduced with a monomial of the same order, with coefficients determined by satis-
faction of (28):

R̂I,i = RI,i + Pχi I ΦI , i = 1, . . . , d (29)

where χi I = [χi I 1, . . . , χi I |α|]
T . Inserting the test functions into the integration constraint (28) yields

AI χi I = ri I (30)

where

ri I = −
ˆ

Ω

PT RI,i dΩ −
ˆ

Ω

PT
,i RI dΩ +

ˆ

∂Ω

PT RI ni dΓ

AI =
ˆ

Ω

PT PΦI dΩ .

(31)

It can be seen that ri I is the residual of the integration constraints (28) and the coefficients solved from (30) correct
the integration-constraint violation. Here again it can be seen that the correction is driven directly by the residual,
and for variationally consistent methods no correction is applied. The resulting method is variationally consistent to
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an arbitrarily high order. Note that since no specific properties of the approximations functions or discretization are
invoked, the method is applicable to arbitrary discretizations within IGA and beyond.

It is worth noting what is involved in forming the correction. First, domain or boundary integration is performed for
several terms, however, examination of the residual in (31) shows that most terms are already computed in a typical
problem. The coefficient matrix on the left-hand-side of (30) is composed of monomials, and is symmetric requiring
only the upper or lower triangle to be calculated. All calculations are local because of the compactness of (29) and
compactness of the basis functions themselves. After forming the required terms, only a relatively small linear system
must be solved for each basis function. The dimension of the system is the number of terms in the complete (n − 1)th
order monomial.

3.4. Variationally consistent reduced integration method

The widely adopted approach for domain integration in IGA has been to integrate over cells defined by non-zero
knot spans or “elements” using Gaussian integration, and will be the approach adopted here. The procedure is to
generate points for each cell, for which Gauss points are defined on their standard domain. These points are then
mapped to the “global” parametric domain where shape functions are defined, for which each point has a map F to
the spatial domain. The relationship between these systems is illustrated in Fig. 1 for p = 2. The usual rule is such
that B-splines of degree p with affine mapping can be exactly integrated, giving p + 1 integration points per cell
in each direction. However, for the problems tested, p integration points per cell have been employed with optimal
convergence attained, which is taken for comparison in the next section.

Using VCI, we further reduce the number of quadrature points used on each cell as discussed in what follows. The
rules we propose are to use p − 1 for p > 1 (or, possibly, p − 2 for p > 2) integration points per element, with p
points per element where repeated knots exist (typically near the boundary) to avoid rank deficiency. The integration
scheme is then corrected using (29), where we set n = p. Various integration schemes with reduced quadrature for
p = 2, 3, 4 are depicted in Fig. 2 for illustration. Note that for the case p = 2 the number of quadrature points equals
the number of control points, and, as a result, basis functions. As such, the method is cost-comparable to a collocation
technique. Also note that for single-element meshes, p + 1 points must be used to obtain full-rank matrices no matter
the case, and thus two or more elements in each direction are considered in the examples.

4. Numerical examples

In this section, we present several numerical examples to show the effectiveness of the proposed method. The
patch test is first considered, then examples testing the convergence of the method. Nitsche’s method is employed for
the weak enforcement of essential boundary conditions [23] with a penalty parameter 1.0 × 107/h, where h is the
characteristic length of the discretization, taken as the maximum diagonal of the elements. Herein, the tensor product
of r th order Gauss integration (GI) rules for each cell is denoted “r ×r GI”, and the proposed reduced rules with r ×r
points in elements adjacent to repeated knots and s × s rules on the rest of the domain are denoted for uncorrected and
corrected methods by “s × s/r × r GI” and “s × s/r × r VC-GI”, respectively.

4.1. Poisson equation: patch tests

Consider the Poisson equation designed with the linear solution u = x + 2y:

∇
2u = 0 in Ω

∇u · n = n1 + 2n2 on ∂Ωh

u = x + 2y on ∂Ωg

(32)

where Ω : (0, 1) × (0, 1), ∂Ωh : 0 ≤ x ≤ 1, y = 1; x = 1, 0 ≤ y ≤ 1, ∂Ωg = ∂Ω\∂Ωh . Linear NURBS are
employed in the computations with 2 × 2 GI, the proposed VC technique 1 × 1/2 × 2 VC-GI, and its uncorrected
counterpart 1 × 1/2 × 2 GI. A uniform discretization is considered with a perturbation factor β that perturbs a coarse
four element geometry with

BI i = B0
I i + 0.4αI iβ

wI = w0
I + 2γI β

(33)



530 M. Hillman et al. / Comput. Methods Appl. Mech. Engrg. 284 (2015) 521–540

Fig. 1. Generation of Gauss points and relation between domains for p = 2.

a b c

Fig. 2. Integration schemes with maximum reduced quadrature for (a) p = 2, (b) p = 3, and (c) p = 4. Black circles denote control points, red
crosses integration points, and dashed lines integration cells.

where B0
I i and BI i are the original uniform control points and perturbed control points, respectively, w0

I and wI are
the original and perturbed weights respectively, and αI i ∈ [−1, 1] and γI ∈ [0, 1] are random numbers for each
I and i and each coarse discretization. The coarse discretization is refined uniformly to produce 16 elements. The
discretizations used are shown in Fig. 3 with the integration scheme 1 × 1/2 × 2 VC-GI.

The results for the L2 norm and H1 seminorm of the error are shown in Tables 1 and 2, respectively, demonstrating
how the variationally consistent method can pass the linear patch test for arbitrary discretizations. Only in the perfectly
uniform case can the other methods pass the patch test. The error for 2 × 2 GI integration is smaller than 1 × 1/2 × 2
GI, which can be fairly significant for all discretizations. However with the employment of VCI, the error can be
completely eliminated.

Now consider the Poisson equation designed with a quadratic solution u = x + 2y + x2
+ 2xy + y2:

∇
2u = 4 in Ω

∇u · n = n1(1 + 2x + 2y) + 2n2(1 + x + y) on ∂Ωh

u = x + 2y + x2
+ 2xy + y2 on ∂Ωg.

(34)
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a b c

d e f

Fig. 3. Integration schemes with reduced quadrature for linear patch test with (a) β = 0.0, (b) β = 0.2, (c) β = 0.4, (d) β = 0.6, (e) β = 0.8, and
(f) β = 1.0. Black circles denote control points, red crosses integration points, and dashed lines integration cells.

a b c

d e f

Fig. 4. Integration schemes with reduced quadrature for quadratic patch test with (a) β = 0.0, (b) β = 0.2, (c) β = 0.4, (d) β = 0.6, (e) β = 0.8,
and (f) β = 1.0. Black circles denote control points, red crosses integration points, and dashed lines integration cells.

Quadratic NURBS are employed with a uniform single element discretization perturbed by (33) and refined to 16
elements, giving the discretizations shown in Fig. 4, shown with 1 × 1/2 × 2 VC-GI. The integration methods 2 × 2
GI, 1 × 1/2 × 2 VC-GI, and 1 × 1/2 × 2 GI are employed, using the same boundary conditions as the previous
example. The errors in the L2 norm and H1 seminorm are shown in Tables 3 and 4, respectively. Here it can be
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Table 1

L2 norm of error in the linear patch test for various methods and discretizations.

Method β

0.0 0.2 0.4 0.6 0.8 1.0

1 × 1/2 × 2 GI 2.65E−16 0.002356 0.003700 0.006858 0.013119 0.010626
1 × 1/2 × 2 VC-GI 2.93E−16 5.76E−16 6.13E−16 3.11E−16 7.69E−16 8.44E−16
2 × 2 GI 8.79E−16 0.000012 0.000079 0.000053 0.000330 0.000283

Table 2

H1 seminorm of error in the linear patch test for various methods and discretizations.

Method β

0.0 0.2 0.4 0.6 0.8 1.0

1 × 1/2 × 2 GI 2.28E−15 0.021555 0.022446 0.058587 0.086904 0.099351
1 × 1/2 × 2 VC-GI 2.44E−15 2.72E−15 2.49E−15 2.71E−15 3.23E−15 2.52E−15
2 × 2 GI 3.45E−15 0.000043 0.000487 0.000285 0.002351 0.002371

Table 3

L2 norm of error in the quadratic patch test for various methods and discretizations.

Method β

0.0 0.2 0.4 0.6 0.8 1.0

1 × 1/2 × 2 GI 0.012138 0.011987 0.012270 0.017855 0.017810 0.022055
1 × 1/2 × 2 VC-GI 9.45E−16 0.000529 0.000736 0.000943 0.000929 0.001124
2 × 2 GI 1.13E−15 0.000327 0.000737 0.001603 0.000670 0.001759

Table 4

H1 seminorm of error in the quadratic patch test for various methods and discretizations.

Method β

0.0 0.2 0.4 0.6 0.8 1.0

1 × 1/2 × 2 GI 0.082208 0.089008 0.100639 0.170593 0.163169 0.199474
1 × 1/2 × 2 VC-GI 1.21E−14 0.008290 0.013081 0.018920 0.015366 0.019341
2 × 2 GI 1.03E−14 0.007693 0.013230 0.021340 0.014649 0.021676

seen that in the uniform case, 2 × 2 GI and 1 × 1/2 × 2 VC-GI are able to pass the patch test. However, in the non-
uniform cases, no method is able to. This is because NURBS basis functions lack quadratic completeness in the spatial
domain when weights are non-uniform or when the mapping is not affine, and thus they cannot exactly represent the
solution. Nevertheless, the proposed 1 × 1/2 × 2 VC-GI method gives very similar levels of error as 2 × 2 GI for all
discretizations. Additionally, given a discretization, it can be seen that GI with the variationally consistent approach
can essentially eliminate the solution error induced by low order quadrature.

4.2. Poisson equation: convergence study

Consider the Poisson equation on Ω : (0, 1) × (0, 1) with the solution u = exy :

∇
2u = (x2

+ y2)exy in Ω
u = exy on ∂Ω .

(35)

First, quadratic NURBS are employed with a uniform discretization. Integration sufficient for convergence was found
to be 2 × 2 GI in each cell, which was considered along with the proposed 1×1/2 ×2 VC-GI, and 1 × 1/2 × 2 GI
for comparison. As seen in Fig. 5, 2 × 2 GI converges optimally (with a rate of 3 in the L2 norm and 2 in the H1

seminorm), 1 × 1/2 × 2 GI does not, and 1 × 1/2 × 2 VC-GI converges optimally in the H1 seminorm and nearly
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Fig. 5. Convergence of quadratic NURBS in uniform discretization of the Poisson problem.

a b

Fig. 6. Second refinement for non-uniform discretization of the Poisson problem for quadratic NURBS with (a) 2 × 2 GI and (b) 1 × 1/2 × 2 GI.
Black circles denote control points, red crosses integration points, and dashed lines integration cells.

Fig. 7. Convergence of quadratic NURBS in non-uniform discretization of the Poisson problem.

Fig. 8. Convergence of cubic NURBS in uniform discretization of the Poisson problem.

optimally in the L2 norm. Here only one Gauss point per degree of freedom is used in the variationally consistent
scheme, resulting in 1/4 the number of quadrature points of 2 × 2 GI in the limit of discretization, with similar rates
of convergence.
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a b c

Fig. 9. Second refinement for non-uniform discretization of the Poisson problem for cubic NURBS with (a) 3 × 3 GI, (b) 2 × 2/3 × 3 GI, and (c)
1 × 1/3 × 3 GI. Black circles denote control points, red crosses integration points, and dashed lines integration cells.

Fig. 10. Convergence of cubic NURBS in non-uniform discretization of the Poisson problem. Rates indicated in legend.

Fig. 11. Convergence of quartic NURBS in uniform discretization of the Poisson problem. Rates indicated in legend.

The discretization is perturbed with a factor β = 0.3 in the coarse discretization and refined uniformly, with the
second refinement shown in Fig. 6. As seen in Fig. 7, non-optimal convergence is observed for 1×1/2×2 GI, optimal
convergence for 2×2 GI and optimal and nearly optimal convergence for 1×1/2×2 VC-GI in the H1 seminorm and
L2 norm, respectively. Again, roughly 1/4 the number of quadrature points of 2 × 2 GI was used for the variationally
consistent scheme, and similar rates of convergence were achieved.

Next, cubic NURBS are considered with a uniform discretization, with 3 × 3 GI, 2 × 2/3 × 3 GI, and 1 × 1/3 × 3
GI, along with VCI counterparts for the reduced quadrature cases. The VCI methods introduced are shown to provide
the optimal convergence of 3 × 3 GI as seen in Fig. 8 (with rates of 4 and 3 in the L2 norm and H1 seminorm,
respectively), while reduced quadrature without VCI does not. Here, the number of quadrature points for optimal
convergence in 2 × 2/3 × 3 VC-GI is less than one half (4/9) of that of 3 × 3 GI in the limit of discretization, and
similar levels of error are achieved. The 1 × 1/3 × 3 VC-GI method also provides optimal convergence rates with far
fewer quadrature points than the p-points-per-cell rule (1/9 in the limit of discretization).

A non-uniform discretization with a factor β = 0.3 with cubic basis is then introduced with the schemes depicted
in Fig. 9. As seen in Fig. 10, similar convergence rates are achieved again for the VCI methods and 3 × 3 GI, with
the error levels even closer than the uniform case, while reduced quadrature without VCI again gives sub-optimal
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a b c

Fig. 12. Second refinement for non-uniform discretization of the Poisson problem for quartic NURBS with (a) 4 × 4 GI, (b) 3 × 3/4 × 4 GI, and
(c) 2 × 2/4 × 4 GI. Black circles denote control points, red crosses integration points, and dashed lines integration cells.

Fig. 13. Convergence of quartic NURBS in non-uniform discretization of the Poisson problem. Rates indicated in legend.

Fig. 14. Problem statement of infinite plate with circular hole.

rates with much larger error. Here it can also be seen that the same level of error as 3 × 3 GI can be achieved using
2 × 2/3 × 3 VC-GI in both the H1 seminorm and L2 norm, and similar levels of error as 3 × 3 GI are achieved in the
H1 seminorm using 1 × 1/3 × 3 VC-GI.

Quartic NURBS are also considered with a uniform discretization, with 4 × 4 GI, 3 × 3/4 × 4 GI, 2 × 2/4 × 4 GI,
and their variationally consistent counterparts for reduced integration. As seen in Fig. 11, the proposed VCI methods
give the optimal convergence of 4 × 4 GI (with rates of 5 and 4 in the L2 norm and H1 seminorm, respectively), with
3 × 3/4 × 4 VC-GI giving the same level of error as well. As with the lower-order basis, the non-VC counterparts
employed for reference fail to give optimal convergence.

A non-uniform discretization with a factor β = 0.3 shown in Fig. 12 is then introduced. As seen in Fig. 13,
3 × 3/4 × 4 VC-GI gives optimal convergence with similar levels of error, and in the limit of refinement roughly half
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a b c

Fig. 15. Plate problem with quadratic NURBS: (a) Scheme for full 2 × 2 quadrature, (b) Scheme for reduced 1 × 1/2 × 2 quadrature, and
(c) Convergence in energy norm. Rates indicated in legend.

a b c

d

Fig. 16. Plate problem with cubic NURBS: (a) Scheme for full 3 × 3 quadrature, (b) Scheme for reduced 2 × 2/3 × 3 quadrature, (c) Scheme for
maximum reduced 1 × 1/3 × 3 quadrature, and (d) Convergence in energy norm. Rates indicated in legend.

(9/16) the number of quadrature points are used than would otherwise be required. For 2 × 2/4 × 4 VC-GI, similar
levels of error are achieved, with optimal and near optimal rates of convergence for the H1 seminorm and L2 norm,
respectively. As with the lower order basis in non-uniform discretizations, optimal convergence and very similar levels
of error are achieved in the derivatives using fully reduced quadrature with VCI.

4.3. Elastostatics: infinite plate with circular hole

An infinite plate with a hole subject to uniaxial tension shown in Fig. 14 is considered, with loading, geometric, and
material values R = 1.0 in, T = 10.0 psi, E = 30.0 × 106 psi, and ν = 0.3. The problem is modeled with symmetry
of the upper left quadrant, with exact traction prescribed along a square portion of the domain of length 4.0 in.

Quadratic NURBS are employed with the previously considered integrations, shown with the second refinement in
Fig. 15(a) and (b). As seen in Fig. 15(c), the convergence rate in the energy norm is quite low for 1 × 1/2 × 2 GI,
optimal for 2 × 2 GI, and much better for 1 × 1/2 × 2 VC-GI with similar levels of error achieved as 2 × 2 GI.
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a b c

d

Fig. 17. Plate problem with quartic NURBS: (a) Scheme for full 4 × 4 quadrature, (b) Scheme for reduced 3 × 3/4 × 4 quadrature, (c) Scheme for
further reduced 2 × 2/4 × 4 quadrature, and (d) Convergence in energy norm. Rates indicated in legend, calculated using h = 1/

√
N P due to the

spacing in the discretization.

Fig. 18. Problem statement of infinitely long hollow thick pipe under internal pressure.

Cubic NURBS are then introduced with the integration schemes shown with the second refinement in
Fig. 16(a)–(c). Note that for this discretization there is a repeated knot in the ξ direction, and cells adjacent to the
associated line are integrated with p × p points per cell. Fig. 16(d) shows VCI can provide near optimal convergence,
with similar levels of error achieved as 3 × 3 GI.

Finally, quartic NURBS are considered with the previously introduced integration schemes, shown with the second
refinement in Fig. 17(a)–(c). Note that again a repeated knot in the ξ direction exists. The results in Fig. 17(d) show
that the solution error for 3 × 3/4 × 4 GI is negligible, and, as a result, in this case VCI does not improve the
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a b c

Fig. 19. Pipe problem with quadratic NURBS: (a) VCI scheme for full 2 × 2 quadrature, (b) scheme for reduced 1 × 1/2 × 2 quadrature, and
(c) Convergence in the energy norm.

convergence rates. The 2 × 2/4 × 4 VC-GI method on the other hand can provide similar rates of convergence and
similar levels of error, while, as before, its variationally inconsistent counterpart does not.

4.4. Elastostatics: infinitely long hollow thick pipe under internal pressure

The infinitely long hollow pipe problem in Fig. 18 is considered with loading, geometric, and material values
R = 1.0 in, T = 1.0 in, P = 20.0 psi, E = 30.0 × 106 psi, and ν = 0.3. The problem is modeled with symmetry
of upper right quadrant. First, quadratic NURBS are considered with the integration schemes shown with the second
refinement in Fig. 19(a)–(c). Convergence in the energy norm is shown in Fig. 19(d), where it is seen that optimal
convergence of 2 × 2 GI is achieved for the 1 × 1/2 × 2 VC-GI case.

Cubic NURBS are considered next with the quadrature schemes shown with the first refinement in Fig. 20(a)–(c).
Convergence in the energy norm is shown in Fig. 20(d), where it is seen that 3 × 3 GI and the proposed VCI schemes
exhibit optimal convergence and 2×2/3×3 GI and 1×1/3×3 GI employed for reference give much lower, suboptimal
rates. Here, in coarser discretizations it is seen that the correction of 2 × 2/3 × 3 GI gives slightly larger error, which
may be due to the employment of an incomplete approximation. In coarse discretizations the lack of completeness is
more significant and is thus more likely to adversely affect the use of VCI which is based on complete approximation
spaces.

Quartic NURBS are then considered with the integration schemes shown with the second refinement in
Fig. 21(a)–(c). The results in Fig. 21(d) show that optimal convergence is attained with 4×4 GI and the VCI methods,
while the convergence rate for 3 × 3/4 × 4 GI is not completely full and very low for 2 × 2/4 × 4 GI. It is again
seen in this case that the error can be slightly worse for VCI in coarse discretizations, again likely due to the reasons
discussed above.

5. Conclusions

The straightforward Gaussian quadrature using cells defined by knots spans in IGA provides sufficient accuracy
and optimal convergence, but is inefficient for the approximation functions at hand. Constructions of test function
gradients based on the variational consistency conditions have been introduced, which allows a significant reduction
in the number of quadrature points used without sacrificing accuracy, stability, and optimal convergence of IGA. The
rules introduced use low-order Gaussian quadrature (p − 1 or p − 2 points) on the interior, and p integration points in
cells adjacent to repeated knots, for NURBS constructed from B-splines of degree p. The lack of global completeness
in the physical domain of the NURBS bases does not in general adversely affect the results.

The proposed method gives similar levels of error as higher order integration (p points per cell), with optimal or
near optimal convergence rates being attained for all cases tested. One interesting result is that quadratic NURBS with
VCI gives optimal or near optimal convergence in the H1 seminorm and gives roughly the same level of error as 2×2
integration, using only one quadrature point per basis function. As such, the method is comparable to a collocation
technique in terms of computational cost. For higher order bases, optimal or near optimal convergence is attained for
p − 1 and p − 2 points per cell in both the solution and its derivatives, with the similar levels of error as higher-order
quadrature using p points per cell. An attractive feature of the proposed VCI method is that it is straightforward to
implement, and is applicable to arbitrary non-uniform NURBS discretizations, and thus warrants investigation for
other classes of IGA approximations and beyond.
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a b c

d

Fig. 20. Pipe problem with cubic NURBS: (a) Scheme for full 3 × 3 quadrature, (b) Scheme for reduced 2 × 2/3 × 3 quadrature, (c) Scheme for
maximum reduced 1 × 1/3 × 3 quadrature, and (d) Convergence in the energy norm.

a b c

d

Fig. 21. Pipe problem with quartic NURBS: (a) Scheme for full 4 × 4 quadrature, (b) Scheme for reduced 3 × 3/4 × 4 quadrature, (c) Scheme for
further reduced 2 × 2/4 × 4 quadrature, and (d) Convergence in the energy norm.
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[8] N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.U. Bletzinger, Y. Bazilevs, T. Rabczuk, Rotation free isogeometric shell
analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg. 200 (47–48) (2011) 3410–3424.

[9] K.A. Johannessen, T. Kvamsdal, T. Dokken, Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg. 269 (2014)
471–514.

[10] J.S. Chen, C.T. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods
Engrg. 50 (2001) 435–466.

[11] Q. Duan, X. Li, H. Zhang, T. Belytschko, Second-order accurate derivatives and integration schemes for meshfree methods, Internat. J. Numer.
Methods Engrg. 92 (2012) 399–424.
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