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a b s t r a c t 

Numerical modeling of reservoirs with low permeability or under undrained conditions often suffers from 

spurious fluid pressure oscillations due to the improper construction of approximation spaces. To address 

this issue, a fully coupled, stabilized meshfree formulation is developed based on a fluid pressure projection 

method, in which an additional stabilization term is added to the variational equation to correct the defi- 

ciency of the equal-order u –p reproducing kernel approximation. The projection scheme is formulated under 

the framework of the stabilized conforming nodal integration which enables a significant enhancement of 

the computational efficiency and accuracy, and the spurious low-energy modes of nodal integration are also 

eliminated. The effectiveness of the proposed stabilized meshfree formulation is demonstrated by solving 

several benchmark problems. 

© 2015 Elsevier Ltd. All rights reserved. 
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. Introduction 

The coupled hydro-mechanical phenomenon in fluid-saturated

orous media is of great importance in a number of geotechnical en-

ineering applications from the safety analysis of slopes and dams

o the design of underground storage of toxic or radioactive waste,

s well as the stimulation in low-permeable gas and oil reservoirs, to

ame a few. In order to achieve reliable and efficient modeling of such

omplicated physical processes, various computational poromechan-

cal formulations based on the Finite Element Method (FEM) or the

eshfree method have been developed over the years. 

Meshfree methods [1–4] can overcome several drawbacks that are

nherently associated with FEM. For instance, the time-consuming

esh generation process and the computational errors induced by

istorted or low quality meshes in FEM can be avoided in meshfree

ethods [3] . Additionally, with the flexibility of controlling the or-

er of smoothness, continuity and locality, the meshfree approxima-

ion offers exceptional benefits for solving problems with moving dis-

ontinuities such as crack propagation [5–7] and problems with high

rder differentiation such as shear band formation via gradient plas-

icity or damage material models [8,9] . Several coupled meshfree

ormulations have been proposed for the porous media modeling,

ncluding the Element-Free Galerkin (EFG) method [10–15] , the Ra-

ial Point Interpolation Method (RPIM) [16–18] and the Smoothed

article Hydrodynamics (SPH) method [19] , which have shown the
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dvantages of meshfree methods in producing more accurate so-

utions for coupled problems over the standard FEM. Recently, the

eproducing Kernel Particle Method (RKPM) has been extended to

olve the poromechanics problems based on a sequentially coupled

cheme to ensure the stability of the staggered iteration procedure

sed in between different solvers [20] . 

Although in previous research work the promising capabilities

f meshfree methods for solving geomechanics problems have been

emonstrated [10–20] , some critical numerical issues remain. One

f such challenges is the spurious fluid pressure oscillations when

odeling reservoirs with low permeability or under undrained con-

itions. This is a consequence of violation of the Babuska–Brezzi

nf-sup condition [21–23] . Some earlier works on inf-sup stable

ixed formulation have been proposed, where different orders of

nterpolations are chosen for the spatial discretization of the solid

isplacement u and the fluid pressure p [24,25] . However, these

ixed-order interpolations complicate the implementation and are

sually computationally expensive due to the requirement of ex-

ra degrees of freedom and high order domain integration schemes.

n the other hand, the equal-order approximation is in practice

uite attractive because of its simplicity and efficiency for solving

arge-scale problems, especially for modeling fractured reservoirs

26] . To this end, various stabilization strategies have been pro-

osed to achieve oscillation-free solutions with an equal-order u –p

pproximation, including the fractional step algorithm [27,28] , the

alerkin Least Squares formulation [29] , the fluid pressure Lapla-

ian method [30] , and the fluid pressure projection method [31–

4] , etc. Among these different stabilization approaches, the pressure

http://dx.doi.org/10.1016/j.compfluid.2015.11.002
http://www.ScienceDirect.com
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Fig. 1. A fluid saturated porous medium occupying the domain � with boundary �. 
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projection based method has been proposed for nearly incompress-

ible finite elasticity [35–37] , stokes flow [38,39] and poromechan-

ics [31–34] . Compared to other stabilization techniques, the pressure

projection method has several appealing features such as the avoid-

ance of stress-recovery techniques or high-order derivatives of shape

functions commonly used in the Petrov–Galerkin type methods [29] ,

and also the stability property of the time-integration scheme is not

affected, unlike the fractional step algorithm [27,28] . 

While most of the research work on stabilization for porome-

chanics problems has been focused on FEM, very few attempts have

been made to address this issue in the context of meshfree meth-

ods. The work by Hua [14] showed that the fluid pressure oscillation

can be avoided by adjusting the numbers of u and p field nodes in

the EFG method, however, it is not clear how an optimal distribu-

tion of the nodes can be designed for general cases. The stabilized

Petrov–Galerkin formulation has been employed by Xie et al. [20] to

eliminate the pressure oscillation in the RKPM method; however, this

method results in a non-symmetric system matrix and requires cal-

culation of high-order derivatives of meshfree shape functions which

is time consuming. 

Another numerical issue in the meshfree modeling for porome-

chanical problems is the domain integration technique. While Gauss

quadrature rule has been commonly used in meshfree methods for

the domain integration of weak form, considerable integration errors

could be generated since the meshfree approximation functions are

in general of rational type with often complicated overlapping sup-

port structures [40] , and a very high order quadrature rule has to

be adopted to achieve integration accuracy, which is computation-

ally expensive. Methods such as direct nodal integration, on the other

hand, could lead to instability due to rank deficiency, and also yields

poor accuracy and low convergence rates [41] . To simultaneously at-

tain efficiency, accuracy and also stability in nodal integration, the

stabilized conforming nodal integration (SCNI) method has been pro-

posed by Chen et al. [42,43] which achieves high accuracy and op-

timal convergence associated with approximation spaces with lin-

ear completeness. The generalization of SCNI for 2 nd order bases [44]

and for arbitrary order bases by a variational consistency condition

[45] have also been proposed. Although integration techniques have

been studied intensively, research on proper integration techniques

for mixed formulations is rare and therefore deserves investigation. 

In this paper, we propose a stabilized RKPM formulation for the

fully coupled hydro-mechanical analysis of fluid saturated geomate-

rials. The fluid pressure projection method is formulated within the

SCNI framework, in which an L 2 projection operator is defined locally

in each nodal representative domain and an associated stabilization

term is added to the variational equation to correct the deficiency

of the equal-order u –p approximation. Furthermore, the projection

scheme is shown to be compatible with SCNI with enhanced stabi-

lization, enabling a significant enhancement of computational accu-

racy and efficiency. 

The arrangement of this paper is as follows. After a brief descrip-

tion of the poromechanics theory in Section 2 , the reproducing kernel

mixed formulation is given in Section 3 . The fluid pressure projection

based RKPM formulation is then introduced under the SCNI frame-

work in Section 4 , and several benchmark problems are analyzed in

Section 5 to demonstrate the effectiveness of the proposed stabilized

meshfree formulation. Concluding remarks are given in Section 6 . 

2. Governing equations of fluid-saturated porous media 

2.1. Strong form 

Consider a porous medium occupying a domain � with boundary

� as shown in Fig. 1 . According to the poromechanics theory [46,47] ,

all phases are present at every point at the same time. As a result,

the equations governing the deformation of a porous solid saturated
ith fluid can be derived from the principles of momentum and mass

onservation of the mixture, which can be expressed as 

 ·
(
σ ′′ − αpI 

)
+ ρg = 0 (1)

∇ · ∂u 

∂t 
+ ∇ · q f + 

1 

Q 

∂ p 

∂t 
= 0 (2)

long with the following boundary conditions: 

 = ū on �u (3)

 � ·
(
σ ′′ − αpI 

)
= ̄t on �t (4)

p = p̄ on �p (5)

n � · k f · ∇p = n � · q̄ f on �q (6)

nd the initial conditions at time t = 0 : 

 = u 0 , p = p 0 (7)

here u and p represent the solid displacement and the fluid pres-

ure, respectively; σ′′ is the effective stress, with the sign conven-

ion for tensile effective stress σ′′ and compressive fluid pressure p as

ositive; I is a second-order identity tensor; ρ = n f ρ f + ( 1 − n f ) ρs 

s the averaged mass density, in which n f is the volume fraction

f the fluid phase, often referred to as porosity, and ρs and ρ f are

he mass densities of the solid and fluid phases, respectively; g is

he gravity acceleration; the fluid storage coefficient is defined as

 / Q = ( α − n f ) / K s + n f / K f , in which Q is the compressibility mod-

lus, α = 1 − K/ K s is Biot’s coefficient, K s and K f are the averaged

ulk modulus of the solid grains and fluid, respectively, and K =
/ [ 3( 1 − 2 ν) ] is the bulk modulus of the overall solid skeleton, where

 and ν are Young’s modulus and Poisson’s ratio of the dry porous ma-

rix, respectively; q f is the fluid flow flux relative to the solid skele-

on; n � is the unit outer normal vector of the boundary �, �u and �p 

re the essential boundaries with imposed solid displacement and

uid pressure, respectively, and �t and �q are the natural boundaries

ith imposed traction and fluid outflow flux, respectively, where

u ∩ �t = �p ∩ �q = ∅ and �u ∪ �t = �p ∪ �q = �; and the effective

tress σ′′ can be defined through the constitutive relationship as fol-

ows: 

′′ = C : ε (8)

here C is the elastic modulus tensor of the solid skeleton, and

 is the strain tensor, defined as the symmetric part of the solid
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isplacement gradient: 

 = ∇ 

s u = 

1 

2 

(∇u + ∇ u 

T 
)

(9) 

The barotropic fluid characterized by the fluid pressure field p is

onsidered in the following discussions, and the fluid flow q f is then

efined by the Darcy’s law: 

 f = −k f ·
(∇p − ρ f g 

)
(10) 

here k f = k h / γ f is the permeability tensor, in which k h is the hy-

raulic conductivity tensor and γ f is the specific weight of the fluid.

ote that the permeability tensor can be alternatively expressed as

he ratio of the so-called intrinsic permeability tensor to the dynamic

iscosity, and in general it can evolve with the change of void ratio,

icro-cracks density and distribution, etc. For simplicity, here k f is

onsidered to be constant and isotropic, i.e., k f = k f I . Substituting Eq.

10) into Eq. (2) , and combining with Eq. (1) , the classical u – p form of

he poromechanics governing equations can be obtained, which are

mployed in the present study. 

.2. Weak form 

To arrive at the weak form, two spaces of trial functions for both

olid displacement and fluid pressure fields in d -dimension are de-

ned as 

 u = { u : � → R 

d | u ∈ [ H 

1 ] d , u = ū on �u } (11) 

 p = 

{
p : � → R | p ∈ H 

1 , p = p̄ on �p 

}
(12) 

The corresponding spaces of test functions are 

 u = 

{ 

η : � → R 

d 
∣∣η ∈ 

[
H 

1 
]d 

, η = 0 on �u 

} 

(13) 

 p = 

{
ψ : � → R | ψ ∈ H 

1 , ψ = 0 on �p 

}
(14) 

The weak form statement of the problem in Section 2.1 is then to

nd ( u , p ) ∈ S u × S p such that for all ( η, ψ) ∈ V u × V p , 

 1 ( η; u , p ) ≡
∫ 
�

(∇ 

s η : σ ′′ − αp∇ · η
)
d x 

−
∫ 
�t 

η · t̄ d s −
∫ 
�

η · ρg d x = 0 (15) 

 2 ( ψ ; u , p ) ≡
∫ 
�

αψ∇ · ∂u 

∂t 
d x + 

∫ 
�

ψ 

1 

Q 

∂ p 

∂t 
d x 

+ 

∫ 
�

∇ ψ · k f · ∇ pd x + 

∫ 
�q 

ψ n � · q̄ f d s = 0 (16) 

. Reproducing kernel mixed formulation 

.1. Reproducing kernel approximation 

Let { x I , x I ∈ �} NP 
I=1 

be a set of nodes in the domain, x I is the posi-

ion vector of node I , and NP is the total number of nodes. The discrete

eproducing kernel approximation [2,3] of a function f ( x ) in the do-

ain � is as follows: 

f h ( x ) = 

NP ∑ 

I=1 

N I ( x ) f I (17) 

here f I is the coefficient, and N I ( x ) is the n th order reproducing ker-

el shape function expressed as 

 I ( x ) = C ( x ; x − x I ) 
a ( x − x I ) (18) 

n the above equation, C( x ; x − x I ) is a correction function, and

a ( x − x ) is the kernel function that controls the locality and
I 
moothness of the approximation, which is chosen to be the cubic

pline function in the present study: 

a ( x − x I ) = 

{ 

2 / 3 − 4 s 2 I + 4 s 3 I for 0 ≤ s I ≤ 1 / 2 

4 / 3 − 4 s I + 4 s 2 I − 4 / 3 s 3 I for 1 / 2 < s I ≤ 1 

0 for s I > 1 

(19) 

here s I = ‖ x − x I ‖ / a I , and a I is the support size of node I . The cor-

ection function is defined as: 

 ( x ; x − x I ) = b 

T ( x ) H ( x − x I ) (20) 

n which H ( x − x I ) is a vector consisting of n th order monomial basis

unctions: 

 

T ( x − x I ) = [ 1 , x − x I , y − y I , z − z I , ( x − x I ) 
2 
, · · · , ( z − z I ) 

n 
] 

(21) 

nd b ( x ) is the coefficient vector to be determined from the following

 

th order discrete reproducing conditions: 

NP 
 

I=1 

N I ( x ) H 

T ( x I ) = H 

T ( x ) or 

NP ∑ 

I=1 

N I ( x ) H 

T ( x − x I ) = H 

T ( 0 ) (22) 

hich leads to b ( x ) of the following form: 

 

T ( x ) = H 

T ( 0 ) M 

−1 ( x ) (23) 

here the moment matrix is defined as 

 ( x ) = 

NP ∑ 

I=1 

H ( x − x I ) H 

T ( x − x I ) 
a ( x − x I ) (24) 

Combining Eqs. (18) , ( 20 ) and ( 23 ), the reproducing kernel shape

unction is obtained as 

 I ( x ) = H 

T ( 0 ) M 

−1 ( x ) H ( x − x I ) 
a ( x − x I ) (25) 

.2. Reproducing kernel u–p approximation and discretization 

Applying the reproducing kernel approximation to both the trial

nd test functions for the solid displacement and fluid pressure, we

ave 

 

h = N 

u U , p h = N 

p P (26)

h = N 

u c u , ψ 

h = N 

p c p (27) 

here N 

u and N 

p are the matrices of reproducing kernel shape func-

ions using linear basis for displacement and pressure fields, respec-

ively, and U, P, c u and c p are vectors containing the corresponding

odal coefficients. Substituting the approximation functions into Eqs.

15) and ( 16 ), the following semi-discrete equations are obtained: 

 1 

(
ηh ; u 

h , p h 
)

≡
∫ 
�

(∇ 

s ηh : σ ′′ − αp h ∇ · ηh 
)
d x 

−
∫ 
�t 

ηh · t̄ d s −
∫ 
�

ηh · ρg d x = 0 (28) 

 2 

(
ψ 

h ; u 

h , p h 
)

≡
∫ 
�

αψ 

h ∇ · ∂ u 

h 

∂t 
d x + 

∫ 
�

ψ 

h 1 

Q 

∂ p h 

∂t 
d x 

+ 

∫ 
�

∇ ψ 

h · k f · ∇ p h d x + 

∫ 
�q 

ψ 

h n � · q̄ f d s = 0 

(29) 

hich leads to the following system of coupled equations: 

 uu U − K up P − F ext = 0 (30) 

 

T 
up 

∂U 

∂t 
+ K 

( S ) 
pp 

∂P 

∂t 
+ K 

( H ) 
pp P − Q 

ext = 0 (31)
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where the matrices and vectors can be expressed as follows: 

Solid stiffness matrix K uu = 

∫ 
�

B 

u T D B 

u d x (32)

Coupling matrix K up = 

∫ 
�

B 

u T αm N 

p d x , (33)

Compressibility matrix K 

( S ) 
pp = 

∫ 
�

N 

p T Q 

−1 N 

p d x (34)

Permeability matrix K 

( H ) 
pp = 

∫ 
�

B 

p T k f B 

p d x (35)

External force vector F ext = 

∫ 
�t 

N 

u T t̄ d s + 

∫ 
�

N 

u T ρg d x (36)

External flow flux vector Q 

ext = −
∫ 
�q 

N 

p T n � · q̄ f d s (37)

In the above equations, B 

u and B 

p are the standard gradient ma-

trices associated with the displacement and pressure approximation

fields, respectively, D is the matrix form of elastic material constants

in the constitutive tensor C , and m = [1 1 0] T in Eq. (33) . 

3.3. Discrete equations 

The backward Euler method is employed which ensures uncondi-

tional stability in the temporal discretization. If the problem is to be

solved between an initial time t 0 and a final time t f , a partition of the

time interval is considered, resulting in a series of time increments

�t n +1 = t n +1 − t n . Evaluating the semi-discrete Eqs. (30 ) and ( 31 ) at

time t n +1 and applying the following time marching scheme: 

∂ ( ·) 
∂t 

∣∣∣∣
t n +1 

∼= 

�( ·) n +1 

�t n +1 

= 

( ·) n +1 − ( ·) n 
�t n +1 

(38)

then the full discrete equations can be expressed as 

K uu U n +1 − K up P n +1 − F ext 
n +1 = 0 (39)

K 

T 
up �U n +1 + K 

( S ) 
pp �P n +1 + �tK 

( H ) 
pp P n +1 − �tQ 

ext 
n +1 = 0 (40)

Finally, we obtain the following system of equations to solve at

every time step: 

J n +1 X n +1 = R n +1 (41)

where 

X n +1 = 

(
U n +1 

P n +1 

)
(42)

J n +1 = 

[
K uu −K up 

−K 

T 
up −K 

( S ) 
pp − �t n +1 K 

( H ) 
pp 

]
(43)

R n +1 = 

[
0 0 

−K 

T 
up −K 

( S ) 
pp 

](
U n 

P n 

)
+ 

(
F ext 

n +1 

−�tQ 

ext 
n +1 

)
(44)

In the present study, the monolithic solution strategy is adopted

by which the primary unknowns of the fully coupled equations are

solved simultaneously. Alternatively, a staggered or sequential cou-

pling scheme can be used, and then a relatively small system of equa-

tions is solved at each time before sharing its information with other

solvers through iteration. However, unlike the monolithic scheme, it

is non-trivial to fully capture the coupling effects by using staggered

solvers and also convergence difficulties may be encountered unless

special techniques are utilized [20,48] . 

4. Fluid pressure projection for meshfree method with nodal 

integration 

4.1. Pressure projection 

When an equal-order approximation pair is adopted in the

Bubnov–Galerkin approximation of the coupled problem described
n previous sections, non-physical spatial oscillations can occur in the

uid pressure field when the porous medium is under nearly imper-

eable or undrained conditions. This problem is due to violation of

he following discrete inf-sup condition [21–23] : 

sup 

u 

h ∈ S h u 

∫ 
� p h ∇ · u 

h d x ∥∥u 

h 
∥∥

1 

≥ C 0 
∥∥p h 

∥∥
0 

∀ p h ∈ S h p (45)

here C 0 is a positive constant independent of the numerical dis-

retization. However, it has been found that equal-order approxima-

ion pairs indeed satisfy a weaker inf-sup condition [31,32] expressed

y 

sup 

u 

h ∈ S h u 

∫ 
� p h ∇ · u 

h d x ∥∥u 

h 
∥∥

1 

+ 

∑ 

�I ∈ �
C 1 

∥∥p h − �p h 
∥∥

0 , �I 

≥ C 2 
∥∥p h 

∥∥
0 

∀ p h ∈ S h p (46)

here C 1 and C 2 are positive constants independent of the numeri-

al discretization; �I is a sub-domain associated with the spatial dis-

retization, for example, it can be represented by an element domain

n the finite element context; �p h is the L 2 projection of the fluid

ressure approximation field onto a lower-order space by minimiz-

ng the following functional: 



(
�p h 

)∣∣
�I 

= 

∥∥p h − �p h 
∥∥2 

L 2 ( �I ) 
(47)

For a linear approximation of the fluid pressure, we perform the

rojection to a constant field to yield 

�p h 
∣∣
�I 

= 

1 

V I 

∫ 
�I 

p h d x (48)

here V I refers to the volume of the domain �I in 3D or the area in

D. Comparing Eqs. (45) and ( 46 ), it can be observed that the term

 1 ‖ p h − �p h ‖ 0 , �I 
can remedy the inherent deficiency in the equal-

rder approximation pair. Based on this analogy, White and Borja [31]

roposed to include a stabilization term to the bilinear finite element

ormulation in order to eliminate the spurious fluid pressure oscilla-

ion modes. Later, the finite element formulation using this fluid pres-

ure projection method was further developed for large deformation

oromechanical simulations [32] , thermo-hydro-mechanical simula-

ions [33] and the modeling of porous media with double porosity

34] . Similar schemes have previously been developed for stabiliz-

ng the numerical solutions of the Stokes equations [38,39] , and for

early incompressible elasticity problems [35–37] . Along this line,

he fluid pressure projection method is employed in the present study

or the meshfree formulation for coupled poromechanics problems

ithin the stabilized conforming nodal integration framework. As

entioned, an additional stabilization term is added to the varia-

ional Eq. (29) to correct the deficiency of the equal-order u –p ap-

roximation, leading to the following stabilized variational equation 

 ̄

h 
2 

(
ψ 

h ; u 

h , p h 
)

≡ L 

h 
2 

(
ψ 

h ; u 

h , p h 
)

+ 

∫ 
�

ε f 
(
ψ 

h − �ψ 

h 
) ∂ 

∂t 

(
p h − �p h 

)
d x = 0 (49)

Since the reproducing kernel approximation is purely based on

odal information, i.e., there is no element domain as in the FEM

ontext, a suitable L 2 projection operator needs to be defined. To be

ompatible with the stabilized conforming nodal integration (SCNI)

ramework to be described in the next section, we choose the SCNI

odal representative integration domain as the subdomain �I used

or the operator �. Following the same descritization procedure as

ntroduced in previous sections, we can obtain the stabilized system

f discrete equations at time step n : 

¯
 n +1 X n +1 = R̄ n +1 (50)
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Fig. 2. Nodal representative domain for stabilized conforming nodal integration (SCNI) and fluid pressure projection (FPP). 
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here 

 n +1 = 

[
K uu −K up 

−K 

T 
up −K 

( S ) 
pp − �t n +1 K 

( H ) 
pp − S 

]
(51) 

¯
 n +1 = 

[
0 0 

−K 

T 
up −K 

( S ) 
pp − S 

](
U n 

P n 

)
+ 

(
F ext 

n +1 

−�tQ 

ext 
n +1 

)
(52) 

 = 

∫ 
�

ε f [ N 

p − �N 

p ] 
T 
[ N 

p − �N 

p ] d x (53) 

As can be seen, the fluid pressure projection based stabilization

nly requires modification of the p –p block of the Jacobian and the

ight hand side of the discrete equations with a symmetric matrix

 , and no stress-recovery techniques or second-order derivatives of

he shape functions are needed as in the Petrov–Galerkin based sta-

ilization approaches [20,29] , and also the stability property of the

ime-integration scheme is not affected, unlike the fractional step al-

orithm [27,28] . An estimation of the stabilization parameter ɛ f fol-

owing Sun et al. [32] is given as follows: 

 f = 

1 

M 

′ 

〈
1 − 3 

c v �t 

h 

2 

〉(
1 + tanh 

(
2 − 12 

c v �t 

h 

2 

))
(54) 

here 

 v = k f M 

′ = 

k f ( K + 4 G / 3 ) 

( K + 4 G / 3 ) / M B + α2 
(55) 

n which 〈 · 〉 is the Macaulay bracket, and the Biot modulus is defined

s M B = K s K f / [ K f ( α − n f ) + K s n f ] , k f is the permeability parameter, α
s Biot’s coefficient, n f is the porosity, G is the shear modulus, K, K s and

 f are the averaged bulk modulus of the solid skeleton, solid grains

nd fluid, respectively, as defined in Section 2.1 , and h is a charac-

eristic length depending on the numerical discretization, for which

e adopt a simple definition as h = 

√ 

A I for two dimensional prob-

em, where A I is the area of the representative domain of node I as

iscussed in next section. It can be seen from Eq. (54) , as the per-

eability becomes high, the parameter ɛ f will approach to zero by

onstruction, therefore over diffusion due to stabilization would be

voided automatically. This property of the adopted stabilization pa-

ameter makes the projection method suitable for solving problems

nder different drainage conditions, as to be shown in the numerical

xamples in Section 5 . 

.2. Stabilized conforming nodal integration for pressure projection 

The domain integration for the discrete equations introduced pre-

iously can be performed by using the Gauss integration method.

owever, in order to obtain accurate, convergent solutions, expensive
igh order Gauss integration is required. Stabilized conforming nodal

ntegration method, on the other hand, achieves high accuracy and

ptimal convergence, and is also computationally efficient [42,43] . In

his method, shape function gradients are smoothed over conforming

odal representative domains, and domain integration is performed

t each node. The smoothed gradient of the shape functions are de-

ned as 

˜ 
 N I ( x L ) ≡ 1 

A L 

∫ 
�L 

∇ N I ( x ) d x = 

1 

A L 

∫ 
�L 

N I ( x ) n ( x ) d s 

∼= 

1 

A L 

NG ∑ 

G =1 

N I 

(
˜ x 

G 
L 

)
n 

(
˜ x 

G 
L 

)
l G (56) 

here ˜ ∇ is the smoothed gradient operator and 

˜ ∇ N I ( x L ) denotes the

moothed ∇N I ( x ) associated with nodal point x L , �L and �G refer

o the whole boundary and the G 

th boundary segment of the nodal

epresentative domain �L , respectively, A L = 

∫ 
�L 

d x , l G = 

∫ 
�G 

d s , n ( x )

s the outer unit normal to �L , and NG is the total number of gradi-

nt smoothing evaluation points ̃  x G 
L 

which rest at the centroids of the

oundary segments. The nodal representative domains can be con-

tructed by Delaunay triangulation or Voronoi diagram, as shown in

ig. 2. 

SCNI avoids rank deficiency in direct nodal integration, however

purious low-energy modes may still appear in the solution. Puso and

hen et al. [49] proposed to use more ‘stress points’ for stabilization

hich leads to the following expressions of Eqs. (32 –35 ) and ( 53 ) as

 stabilized nodal integration: 

 K uu ] IJ = 

∫ 
�

B 

u T 
I DB 

u 
J d x 

∼= 

NP ∑ 

L =1 

{
˜ B 

u T 
I ( x L ) D ̃

 B 

u 
J ( x L ) A L 

+ ε p 
∑ 

C∈ T L 

[
˜ B 

u 
I ( x L ) − ˜ B 

u 
I 

(
ˆ x 

C 
L 

)]T 
D 

[
˜ B 

u 
J ( x L ) − ˜ B 

u 
J 

(
ˆ x 

C 
L 

)]
A C 

} 

(57) 

 K up ] IJ = 

∫ 
�

B 

u T 
I αmN 

p 
J 
d x 

∼= 

NP ∑ 

L =1 

˜ B 

u T 
I ( x L ) αmN 

p 
J 
( x L ) A L (58) 

K 

(S) 
pp 

]
IJ 

= 

∫ 
�

N 

pT 
I 

Q 

−1 N 

p 
J 
d x 

∼= 

NP ∑ 

L =1 

{
N 

pT 
I ( x L ) Q 

−1 N 

p 
J ( x L ) A L 

+ ε p 
∑ 

C∈ T L 

[
N 

p 
I ( x L ) − N 

p 
J 

(
ˆ x 

C 
L 

)]T 
Q 

−1 
[
N 

p 
I ( x L ) − N 

p 
J 

(
ˆ x 

C 
L 

)]
A C 

}
(59) 
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Fig. 3. Description of Terzaghi’s problem. 
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IJ 
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∫ 
�

B 

pT 
I 

k f B 

p 
J 
d x 

∼= 

NP ∑ 

L =1 

{
˜ B 

pT 
I ( x L ) k f ̃

 B 

p 
J ( x L ) A L 

+ ε p 
∑ 

C∈ T L 

[
˜ B 

p 
I ( x L ) − ˜ B 

p 
I 

(
ˆ x 

C 
L 

)]T 
k f 

[
˜ B 

p 
J ( x L ) − ˜ B 

p 
J 

(
ˆ x 

C 
L 

)]
A C 

}
(60)

[ S ] IJ = 

∫ 
�

ε f [ N 

p 
I 

− �N 

p 
I 
] T [ N 

p 
J 

− �N 

p 
J 
] d x 

∼= 

NP ∑ 

L =1 

{
ε f ( x L ) [ N 

p 
I 
( x L ) − �N 

p 
I 
( x L ) ] 

T 
[ N 

p 
J 
( x L ) − �N 

p 
J 
( x L ) ] A L 

+ ε p ε f ( x L ) 
∑ 

C∈ T L 
[ N 

p 
I 
( x L ) −�N 

p 
I 
( ̂  x 

C 
L ) ] 

T 
[ N 

p 
J 
( x L ) −�N 

p 
J 
( ̂  x 

C 
L ) ] A C 

}
(61)

where ̃  B 

u 
I 

and ̃

 B 

p 
I 

are the smoothed gradient matrices associated with

˜ ∇ N I , T L is the set of subcells C associated with each node L, A C is the

area of the C th subcell which satisfies A L = 

∑ 

C∈ T L 
A C , and the stabiliza-

tion points ̂  x C 
L 

rest at the centroids of the subcells as shown in Fig. 2 .

The expressions in Eqs. (57 –61 ) are considered to be of the nodal inte-

gration type since material parameters and state variables are calcu-

lated and stored at the nodal points x L only. Compared to direct nodal

integration, the minor extra effort required in SCNI is to compute the

shape functions and their smoothed gradients at a few stabilization

points. The stabilization parameter ε p = 1 is used in all the numerical

examples in present study, as suggested by Puso and Chen et al. [49] . 

Furthermore, recalling the L 2 projection operator � defined in Eq.

(48) , we can see that all the pressure projection terms appearing in

Eq. (61) indeed can be computed within the same nodal integration

framework in a straightforward way: 

�N 

p 
I ( x L ) = 

1 

A L 

∫ 
�L 

N 

p 
I 
d x 

∼= 

1 

A L 

∑ 

C∈ T L 
N 

p 
I 

(
ˆ x 

C 
L 

)
A C (62)

�N 

p 
I 

(
ˆ x 

C 
L 

)
= 

1 

A C 

∫ 
�

N 

p 
I 
d x 

∼= 

N 

p 
I 

(
ˆ x 

C 
L 

)
(63)
C 

Fig. 4. Normalized fluid pressure p
hich shows that shape functions evaluated at stabilization points

an be used for both the fluid pressure projection and the stabilized

odal integration, saving computational cost. Since the evaluation of

he pressure projection terms in Eqs. (62) and ( 63 ) already provides

ost of the matrices required for the evaluation of direct shape func-

ion derivatives, the smoothed gradients at the stabilization points

n Eqs. (57) and ( 60 ) can be replaced with the direct gradients to

educe the number of gradient smoothing points. Consider that if a

ectangular nodal integration domain is used for 2D problems, with

CNI the shape functions need to be evaluated at only 9 points, in-

luding the node itself, 4 stabilization points, and 4 gradient smooth-

ng evaluation points. On the other hand, in order to achieve com-

arable accuracy with Gauss quadrature, both shape functions and

heir direct derivatives are required to be evaluated at 25 integra-

ion points at least [45] . The advantage of SCNI is more obvious in

D applications, where 125 evaluation points are needed for Gauss

uadrature using the commonly adopted hexahedron zones, while in

he proposed nodal integration scheme the shape function evaluation

s required at only 13 points, including the node itself, 6 stabilization

oints, and 6 gradient smoothing evaluation points. Clearly, the stabi-

ized nodally integrated meshfree method is quite attractive for solv-

ng large-scale, coupled problems because of its high efficiency and

ccuracy. 
rofile for Terzaghi’s problem. 
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Fig. 5. Normalized fluid pressure profile near the drainage boundary. 

Fig. 6. Description of Mandel’s problem. (For interpretation of the references to color 

in this figure, the reader is referred to the web version of this article). 
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Fig. 7. Normalized fluid pressure distribution at time T D = 2 . 0 × 10 −5 using �t D = 

0 . 01 with 20 time steps (top); at T D = 2 . 0 × 10 −4 using �t D = 0 . 1 with 20 time steps 

(middle) and using �t D = 1 . 0 with 2 time steps (bottom). 

Fig. 8. Normalized fluid pressure distribution for Mandel’s problem at various dimen- 

sionless time T D . 
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. Numerical examples 

To verify the proposed formulation, several hydro-mechanical

oupled problems are analyzed. For simplicity, the effect of gravity

orce is neglected, and as commonly adopted in soil mechanics the

ulk modulus of the porous matrix is assumed to be much smaller

han the bulk modulus of the grains, which is not a restriction of the

resent formulation. Linear basis is used for both the solid displace-

ent and the fluid pressure fields, and the support size of the mesh-

ree shape function is set to be 1.5 times the average nodal distance.

lthough meshfree shape functions do not have the Kronecker delta

roperty, efficient treatments are available for the imposition of es-

ential boundary conditions, such as Nistche’s method, Lagrange mul-

ipliers, penalty method, the singular kernel method and transforma-

ion method, etc. [50,51] . In solving the following problems, both the

enalty method and the transformation method have been tested and

o noticeable difference in their results was found. 

In the following, the fluid pressure projection approach is denoted

s FPP, and NI refers to the direct nodal integration method, whereas

CNI denotes the stabilized conforming nodal integration method. 

.1. Terzaghi’s problem 

In the first numerical test, the classical Terzaghi’s consolidation

roblem [52] is analyzed. As shown in Fig. 3 , a soil layer of thickness

 y = 10 . 0 m is considered to be infinitely long in the horizontal direc-

ion. At initial time, a distributed load of constant intensity q is sud-
enly applied which expels the pore water from the top surface. A

wo dimensional numerical model for the domain size 3.0 × 10.0 m 

2 

s used, where the horizontal displacement at the boundary is fixed.

he adopted time step is �t = 1 . 0 s and the material parameters

re chosen as follows: Young’s modulus E = 1 . 0 kPa , Poisson’s ratio

= 0 . 0 , hydraulic conductivity k h = 1 . 0 × 10 −5 m / s , specific weight

f fluid γ f = 10 . 0 kN / m 

3 , and fluid bulk modulus K f = 2 . 2 GPa . 

The fluid pressure profile after the initial time step is shown in

ig. 4 , where 7 × 21 nodes are used for the different numerical formu-

ations. It can be seen that formulations using only SCNI or NI yield

evere oscillations in fluid pressure field since the requirement of inf-

up condition is not satisfied. Although this spurious oscillation can

e partially alleviated by adding FPP to the NI formulation, unphysi-

al pressure modes are still observable due to the instability caused

y the direct nodal integration method. On the other hand, a stable
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Fig. 9. Description of the footing problem (left) and its meshfree numerical model with the Voronoi diagram (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Normalized fluid pressure distribution along the central vertical line at time 

T D = 0 . 1 . 

Fig. 11. Time history of fluid pressure at location x = 0 . 0 m, y = 0 . 2 m. 
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and accurate solution is obtained by employing FPP in conjunction

with SCNI, achieving a good agreement with the analytical solution.

Minor overshoot using the SCNI + FPP formulation appears near the

drainage boundary, which is caused by the extremely sharp pressure

gradient. This phenomenon is also observed in stable finite elements

and would not affect the solution in the rest of the domain as dis-

cussed in [23,31] . Numerical results using 21, 41, and 81 nodes along

the vertical direction are plotted in Fig. 5 , showing that convergence

can be achieved when the spatial discretization is refined. 

5.2. Mandel’s problem 

As shown in Fig. 6 , a pair of vertical loads of constant magnitude 2 F

is applied to a poroelastic soil sample through rigid and frictionless

plates. The length and height of the rectangular soil sample are 2 L x 
and 2 L y , respectively. While the two sides in lateral direction are fully

drained, other boundaries are impermeable. Analytical expressions

for the pressure and the vertical displacement fields are respectively

derived by Mandel [53] and Abousleiman et al. [54] as follows: 

p = 2 p 0 + 
∞ ∑ 

n =1 

sin αn 

αn −sin αn cos αn 

(
cos 

αn x 

L x 
−cos αn 

)
exp 

(
−α2 

n T D 
)

u y = 

[ 

− ( 1 −ν) F 

2 G L x 
+ 

( 1 −νu ) F 

G L x 

∞ ∑ 

n =1 

sin αn cos αn 

αn −sin αn cos αn 
exp 

(
−α2 

n T D 
)] 

y 

where T D = c f t / L 
2 
x is the dimensionless time, c f is the fluid diffusiv-

ity coefficient, G is the shear modulus, αn are the positive solutions

to the nonlinear equation ( tan αn ) /αn = (1 − ν) / (νu − ν) , in which

νu = 0 . 5 for incompressible fluid, and the fluid pressure distribution

at the instant of loading p 0 + ≡ lim 

t→ 0 
p depends on both the average

force density F / L x and material parameters, for which an analytical ex-

pression can be found in [54,55] . 

Considering the symmetries, only one quarter of the slab (i.e. the

colored part in Fig. 6 ) is modeled with L x = 20 . 0 and L y = 2 . 0 . Sym-

metric conditions are enforced on the left and the bottom boundaries,

whereas vertical displacement on the top is controlled by applying

the analytical solution using F = 2 L x . Initial conditions are set as zero

for both displacement and fluid pressure fields. Incompressible fluid

is assumed and material parameters are chosen from the reference

[56] as E = 1 . 0 × 10 4 , ν = 0 . 0 , νu = 0 . 5 , k f = 1 . 0 × 10 −4 , which re-

sults in c f = 1 . 0 and p 0 + = 1 . 0 . 

The early time response of Mandel’s problem has been analyzed

by Preisig and Prevost [56] using stabilized FE formulation, for which

three different dimensionless time increments �t D = c f �t / h 2 of

0.01, 0.1 and 1.0 are adopted, respectively, and their study shows that

the undrained behavior could lead to spurious pressure oscillations in
he numerical solution when small time increment is used and thus

tabilization procedure is required. To assess the performance of the

resent meshfree formulation, the same dimensionless time incre-

ents are also chosen here. The meshfree computation results of the

ormalized fluid pressure distribution along horizontal direction us-

ng 101 × 11 nodes are given in Fig. 7 together with the analytical

olutions and the stabilized finite element results from [56] denoted

s FEM + FPL, where FPL denotes the fluid pressure Laplacian (FPL)

tabilization method. It can be seen that oscillations appear for direct

odally integrated (NI) formulation even when FPP is applied, while

he stable SCNI + FPP formulation can offer much satisfactory results

ompared with the reference solutions. 

Next, the distribution of the fluid pressure for various time in-

tants is plotted in Fig. 8 . Again, good agreement is achieved be-

ween the analytical solutions and the SCNI + FPP meshfree formula-

ion. An important aspect of Mandel’s problem is that near the center
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Fig. 12. Numerical results of the fluid pressure, horizontal displacement, and vertical displacement distribution (from top to bottom) for the low permeable case, using the NI 

formulation (left) and the SCNI+FPP formulation (right). 
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of the sample the pressure initially increases beyond the instanta-

neous response p 0 + at time of loading, and it dissipates later, which

is known as the Mandel–Cryer effect [53,57] due to the strong hydro-

mechanical coupling and is confirmed by experiments [58] . As shown

in Fig. 8 , this coupling effect is well captured by the proposed stabi-

lized meshfree formulation. 

5.3. Strip load on elastic half space 

A constant surface pressure of intensity q = 10 . 0 kPa is distributed

over a width of 2 b = 0 . 4 m on the draining surface of the semi-infinite

soil ground. The material parameters are as follows: Young’s modulus

E = 1 . 0 × 10 4 kPa, Poisson’s ratio ν = 0 . 0 , hydraulic conductivity k h =
5 . 0 × 10 −8 m/s, specific weight of fluid γ f = 9 . 8 kN/m 

3 , and the pore

fluid is assumed to be incompressible. Due to symmetry, only one

half of the domain is modeled, as shown in Fig. 9 , where the height

L x = 25 b and width L y = 25 b can be considered to be large enough

to minimize the boundary effect in order to properly represent the

infinite space. 

This problem has been analyzed by Xie and Wang [20] using stan-

dard RKPM via a staggered strategy for solving the system of cou-

pled equations, while here the same coupled equations are solved

in a monolithic manner by applying the proposed stabilized, nodally

integrated RKPM formulation. The same spatial discretization as

that used in [20] is employed in this study, which consists of 31

× 31 non-uniformly distributed nodes. The adopted discretization

is shown in Fig. 9 along with the nodal representative integration

zones. For convenience, the dimensionless time is defined as T D =
E k h T / ( 1 + ν) γ f b 

2 , and the time step size �t = 19 . 6 s is chosen such

that the dimensionless time increment �t D = E k h �t / ( 1 + ν) γ f b 
2 is

equal to 0.025. 

The numerical results of pore fluid pressure at x = 0 . 0 m along the

height at T D = 0 . 1 are plotted in Fig. 10 , along with the analytical so-

lution from [59,60] . As can be seen, good agreement between all the

three results are obtained, which verifies the accuracy of the present

approach. It should be noted that for the considered case no spurious

pressure oscillations would appear even without FPP stabilization.

The time history of the fluid pressure at location x = 0 . 0 m, y = 0 . 2 m

is also plotted in Fig. 11 and again the proposed meshfree formulation

gives satisfactory result. 

To further demonstrate the robustness of the stabilized meshfree

formulation, we analyze a low permeable case for which k h = 5 . 0 ×
10 −13 m/s is chosen and the surface boundary is treated as undrained.

The spatial and temporal discretization is kept the same as before,

and the numerical results using different formulations for the con-

tours of fluid pressure and displacement fields are shown in Fig. 12 .

Clearly, severe oscillations appear in the fluid pressure field without

using SCNI or FPP, which would also affect the horizontal displace-

ment field although the vertical displacement field seems not to be

influenced much. On the other hand, the proposed formulation (SCNI

+ FPP) gives a stable solution as expected. 

6. Conclusions 

A stable and efficient meshfree method is proposed to solve the

fully coupled hydro-mechanical problems. It has been shown that the

fluid pressure projection method can be naturally integrated within

the stabilized conforming nodal integration framework, and thus the

non-physical fluid pressure oscillation due to violation of the inf-sup

condition as well as the spurious low-energy modes due to nodal

integration can both be eliminated in a cost effective way. Several

benchmark problems have been analyzed and the results demon-

strate the excellent performance of the stabilized meshfree formu-

lation. Although in the present study only two dimensional, linear

problems are used as verification tests, the extension of this com-

putational framework to three dimensional, non-linear problems is
easible, and the attractive features of the meshfree approximation

ethod as discussed previously can be further exploited to model the

ydro-mechanical coupled damage and fracture process with appli-

ation to hydraulic fracturing simulation, which is an ongoing work

nd will be reported in our forthcoming paper. 
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