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SUMMARY

Convergent and stable domain integration that is also computationally efficient remains a challenge for
Galerkin meshfree methods. High order quadrature can achieve stability and optimal convergence, but it
is prohibitively expensive for practical use. On the other hand, low order quadrature consumes much less
CPU but can yield non-convergent, unstable solutions. In this work, an accelerated, convergent, and stable
nodal integration is developed for the reproducing kernel particle method. A stabilization scheme for nodal
integration is proposed based on implicit gradients of the strains at the nodes that offers a computational
cost similar to direct nodal integration. The method is also formulated in a variationally consistent manner,
so that optimal convergence is achieved. A significant efficiency enhancement over a comparable stable and
convergent nodal integration scheme is demonstrated in a complexity analysis and in CPU time studies. A
stability analysis is also given, and several examples are provided to demonstrate the effectiveness of the
proposed method for both linear and nonlinear problems. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Galerkin meshfree methods [1–12] offer advantages over traditional finite element methods in
classes of problems involving damage, fracture, fragmentation, material flow, and complex evolv-
ing multi-body contact, among others. There are also additional advantages such as straightforward
adaptive h-refinement and p-refinement, arbitrary choice of continuity, embedding of the charac-
teristic behavior of the solution at hand, and the method is not plagued by mesh alignment, mesh
entanglement, time-consuming mesh generation, and other issues related to mesh-based methods.

An array of considerations, however, come with the employment of these methods, and in particu-
lar, domain integration needs careful attention. Meshfree shape functions are in general rational and
their overlapping supports may form complicated structures, both of which contribute to difficulty
in domain integration, and the choice of quadrature greatly affects the stability and convergence of
the numerical solution. High order quadrature can offer stability and optimal convergence, but it is
prohibitively expensive for practical use. On the other hand, low order quadrature consumes less
CPU but can yield non-convergent, unstable solutions [13–17]. In order to make effective large-scale
simulations feasible, numerical integration must be efficient and yield convergent, stable solutions.

The importance of quadrature for Galerkin meshfree methods has been the subject of many
papers since their inception (cf. [13–27]). Nodal integration is an attractive choice because of its
simplicity, efficiency, and the ability to maintain meshfree characteristics as a whole. However,
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directly integrating at nodes results in stability issues [13–15] as well as sub-optimal convergence
[13, 15, 17], and requires special techniques in order to overcome these difficulties. Several nodal
integration methods have been developed that are convergent and stable [13, 25, 28, 29], but
in the end sacrifice efficiency because of the approaches taken to ensure accuracy and stability.
Another issue with these methods is the tuning of stabilization parameters for optimal accuracy
and convergence.

The instability in direct nodal integration is due to the fact that for discretizations with spac-
ing h, oscillating modes of wavelength 2h are admitted in the solution with little or no energy due
to gradients being sampled only at the nodes [13–15]. Least-squares stabilization [13] and Taylor
series expansions [28, 30] alleviate the instability by including second order derivatives that are
non-zero at nodes, although this places a computational burden on the method because of the expen-
sive high order derivatives involved. Stress points have also been utilized to avoid the instability
[21, 22], but this technique requires additional stabilization such as least-squares to ensure stability
and accuracy [31]. A stabilized conforming nodal integration (SCNI) has been proposed [15, 23, 32]
where derivatives are not directly evaluated at nodes, which circumvents the instability without the
use of any derivatives or additional sampling points. This method, however, also requires additional
stabilization to ensure reliable solutions in all situations [25], which involves evaluating derivatives
in nodal sub-cells and requires high computational effort.

Apart from stability, improper selection of quadrature schemes can also result in non-convergent
solutions in meshfree methods [15–17]. Galerkin orthogonality is violated with the employment of
insufficient quadrature in the discrete form, and the Galerkin method loses the best approximation
property according to Strang’s first lemma [33]. A general framework of variational consistency
for arbitrary order Galerkin exactness has been introduced in [17] where a restoration of Galerkin
orthogonality for a given polynomial order of solution can be achieved. Test and trial functions
can be constructed under this framework such that accuracy and optimal convergence are attained
with lower-order quadrature [17]. The earliest example of this technique for meshfree methods is
SCNI [15], which satisfies the first order variational consistency condition and exhibits optimal
convergence for approximation spaces with linear completeness. This method was later extended in
[34, 35] to higher order schemes, which also have been shown to be very effective when compared
to standard integration techniques.

Lowering both the number of evaluation points and the cost at each point can greatly lower com-
putational cost. One approach to accomplish the latter is to employ implicit gradients, which were
first introduced for synchronized convergence in [36, 37]. Using this approach, the completeness
of gradients can be embedded into the meshfree approximation, and this avoids the complexity of
direct differentiation of meshfree shape functions. Implicit gradients have also been utilized in the
regularization of strain localization [38] to avoid ambiguous boundary conditions associated with
the direct gradient methods. In [39], an implicit gradient method was introduced to reduce the cost of
meshfree collocation methods that require higher order derivatives of the approximation functions.

The main burden of current stabilized nodal integration is either the employment of additional
evaluation points or stabilizing terms that involve higher order derivatives, both of which are CPU
demanding for meshfree methods. Another issue with these methods is the choice of numerical
parameters associated with the stabilization. The objective at hand then is to achieve stability in
nodal integration without additional sampling points or high order derivatives and ideally have no
parameters to tune. In this work, a stabilization scheme for nodal integration is proposed for the
reproducing kernel particle method (RKPM) based on extrapolation of the approximation at nodes
using implicit gradients. The method is devoid of tunable parameters and offers a computational
cost similar to direct nodal integration. The method is also formulated in a variationally consistent
manner so that optimal convergence is achieved. A significant efficiency enhancement over a com-
parable stable and convergent nodal integration scheme is demonstrated in a complexity analysis
and in CPU time studies. A stability analysis is also given, and several examples are provided to
demonstrate the effectiveness of the proposed method for both linear and nonlinear problems.
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The remainder of this paper is organized as follows. In Section 2, various nodal integration
schemes are discussed along with the difficulties associated with them. Section 3 introduces a new
stabilization for nodal integration, where its stability is demonstrated, complexity comparisons are
made, and variationally consistent test functions are introduced for the method. Several numerical
examples are given in Section 4, and concluding remarks are given in Section 5.

2. NODAL INTEGRATION IN MESHFREE METHODS

2.1. Reproducing kernel approximation

The reproducing kernel (RK) approximation uh.x/ of a function u.x/ using a set of NP nodes is
constructed by the product of a kernel function ˆa.x � xI / with compact support measure a and a
correction function [3]:

uh.x/ D
NPX
ID1

8<
:
X
j˛j6n

b˛.x/.x � xI /˛

9=
;ˆa.x � xI /uI �

NPX
ID1

‰I .x/uI : (1)

In the preceding equation, the multi-index notation ˛ D .˛1; ˛2; : : : ; ˛d /with dimension d has been
introduced with j˛j D

Pd
iD1 ˛i , x˛ � x˛11 �x

˛2
2 � : : : �x

˛d
d

, x˛I � x
˛1
I1 �x

˛2
I2 � : : : �x

˛d
Id

, b˛ D b˛1˛2���˛d ,
the term ¹.x � xI /˛ºj˛j6n is the set of basis functions, ¹b˛.x/ºj˛j6n are coefficients of those bases,
‰I .x/ is the RK shape function, and uI is the associated coefficient. The kernel functionˆa.x�xI /
determines the smoothness of the approximation function, for example, a cubic B-spline function
gives C 2 continuity.

The set of coefficients ¹b˛.x/ºj˛j6n is determined by enforcing the following reproducing
conditions:

NPX
ID1

‰I .x/x˛I D x˛; j˛j 6 n: (2)

With ¹b˛.x/ºj˛j6n obtained from (2), the RK shape functions are constructed as

‰I .x/ D HT .0/M�1.x/H.x � xI /ˆa.x � xI / (3)

where

M.x/ D
NPX
ID1

H.x � xI /HT .x � xI /ˆa.x � xI /; (4)

which is called the moment matrix, and the vector H.x�xI / is the column vector of ¹.x�xI /˛ºj˛j6n,
for example, with linear basis in two dimensions

H.x � xI / D
�
1; x � xI ; y � yI

�T
; (5)

and for linear basis in three dimensions, we have

H.x � xI / D
�
1; x � xI ; y � yI ; ´ � ´I

�T
: (6)

The reproducing conditions (2) are met, provided the moment matrix (4) is invertible, and this
requires a sufficient number of non-coplanar nodes covering the evaluation point x [4].

Note that the shape functions in (3) are rational functions, and the overlapping supports form
complicated structures that need to be integrated. The result of these two issues is either very high
order quadrature or special techniques such as those introduced in Section 3.4 must be used in order
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to obtain accurate and convergent solutions. In addition, the employment of nodal integration with
these shape functions can also result in instability due to the possibility of sampling gradients of
zero at nodal points, as discussed in the following sections.

2.2. Model problem

The governing equations for elasticity in d -dimensions are considered as a model problem for
numerical integration of Galerkin meshfree methods:

r � � C b D 0 on �

n � � D h on @�h
u D g on @�g

(7)

where u is the displacement field, � D C W©.u/ is the Cauchy stress tensor, C is the elasticity tensor,
©.u/D1=2.r ˝ uC u˝r/ is the strain tensor, n is the surface normal on @�, b is the body force,
h is the prescribed traction on @�h, and g is the prescribed displacement on @�g .

The weak form of (7) asks to find u 2
�
H 1
g

�d
, such that for all kinematically admissible test

functions v 2
�
H 1
0

�d
the following holds:

a.v;u/ D .v; b/� C .v; h/@�h (8)

where the linear and bilinear forms for the above are defined as

a.v; u/ D
Z
�

©.v/ W C W ©.u/d� (9)

.v;b/� D
Z
�

v � bd� (10)

.v;h/@�h D
Z
@�h

v � hd�: (11)

Using finite dimensional approximations for u and v, the discrete form of (8) asks to find uh 2
ŒH 1

g �
d such that the following equation holds for all kinematically admissible vh 2

�
H 1
0

�d
:

a.vh;uh/ D .vh; b/� C .vh;h/@�h : (12)

2.3. Nodal integration methods

2.3.1. Direct nodal integration. The discrete form in the previous section necessitates numerical
quadrature. Perhaps the simplest quadrature rule for meshfree methods is nodal integration, where
shape functions are directly evaluated at the nodes, which has been termed direct nodal integration
(DNI) in the literature. Using this technique, the bilinear form in (12) is evaluated as

aDhvh;uhi D
NPX
LD1

©L.vh/ W C W ©L.uh/WL (13)

where ©L.uh/ D ©
�
uh.xL/

�
, aDh�; �i is the DNI quadrature version of the bilinear form in (12) and

WL is the integration weight associated with node L.
For DNI and discretizations with spacing h, oscillating modes of wavelength 2h are admitted in

the solution of the discrete problem with little or no energy due to gradients being evaluated directly
at the nodes [13–15].
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2.3.2. Stabilized conforming nodal integration. SCNI has been introduced in [15, 23] to remedy
the instability in DNI. In this method, gradients are smoothed over conforming cells that partition
the domain as shown in Figure 1(a), and the smoothing operation is converted to a cell boundary
integral using the divergence theorem. In this way, gradients are not directly evaluated at the
nodes and the oscillating modes in DNI are precluded. The cells can be generated by, for example,
Voronoi diagrams.

The smoothing zones are chosen as conforming so that the first order integration constraint (for
Galerkin linear exactness) is satisfied [15]. This condition is the requirement to satisfy the following
divergence equality with the set of test functions and the chosen numerical integration:

^Z
�

r‰Id� D

^Z
@�

‰Ind� (14)

where ‘^’ denotes numerical integration. SCNI employs divergence with a smoothed gradient Qr in
each nodal representative domain �L by

Qr‰I .xL/ D
1

WL

Z
�L

r‰Id� D
1

WL

Z
@�L

‰Ind�: (15)

If the smoothing domains ¹�LºNPLD1 are conforming such as those in Figure 1(a), nodal integration
with smoothed gradients Qr meets the condition (14) when the boundary integration for smoothing
(15) and boundary conditions in (12) use the same quadrature rule [15]:

^Z
�

Qr‰Id� D
NPX
LD1

Qr‰I .xL/WL D
NPX
LD1

^Z
@�L

‰Ind� D

^Z
@�

‰Ind�: (16)

With the smoothed gradient operator (15), the bilinear form in (12) is evaluated with nodal
integration as

aS hvh;uhi D
NPX
LD1

Q©L.vh/ W C W Q©L.uh/WL (17)

where aS h�; �i is the bilinear form for SCNI, and Q©L
�
uh
�
D 1=2. Qr ˝ u.xL/C u.xL/˝ Qr/ is the

smoothed strain evaluated at xL.

Figure 1. Nodal smoothing zones for (a) stabilized conforming nodal integration (SCNI) and (b) stabilized
non-conforming nodal integration (SNNI).
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2.3.3. Stabilized non-conforming nodal integration. For classes of problems where material sepa-
ration occurs, shape functions can be reconstructed so that nodes reassociate. This formulation is
termed semi-Lagrangian as nodes are located at material points, while kernels are defined in the
current configuration [40, 41]. Reconstructing conforming representative nodal domains necessary
for SCNI, however, is extremely tedious for this class of problems, and also prohibitively expensive
in three dimensions. In this case, relaxation of the conforming condition on the smoothing zones, as
shown in Figure 1(b), is a necessary simplification, and results in stabilized non-conforming nodal
integration (SNNI) [40, 41], which employs the smoothed gradient

Qr‰I .xL/ D
1

NWL

Z
@ N�L

‰Ind� (18)

where NWL D
R
N�L

d� and N�L is a non-conforming nodal representative domain, for example, box
shaped. SNNI also possesses superior stability over DNI but can yield non-convergent solutions
under certain discretizations because of the relaxation of the conforming conditions and subsequent
failure to meet the integration constraint [17]. In this paper, SNNI and its stabilized and convergent
variants are considered as reference methods for comparison, because they are often employed in
problems where SCNI is not possible.

2.4. Instability in nodal integration

With limited boundary influence of the discretization at hand, that is, when the surface to volume
ratio is small, or for sufficiently fine discretizations, the instability in nodal integration methods can
be examined in a unified fashion as follows.

Consider the calculation of the internal energy by nodal integration for the one-dimensional
elasticity problem in a uniform discretization. For an interior node (with no influence from the
boundary), consider m nodes covering the nodal location xL on each side of the node, giving a total
of 2mC 1 nodes covering the location. A gradient is computed at this node as

uh;x.xL/ D ‰L�m;x.xL/uL�m C : : :C‰L;x.xL/uL C : : :C‰LCm;x.xL/uLCm: (19)

When sufficiently smooth (at least C 1/, symmetric kernels are employed, the term‰L;x.xL/ can be
shown to be zero when computed directly, and also when using averaging and smoothing operations.
The remaining terms, using the uniformity and symmetry of the discretization are

uh;x.xL/ D 2‰L�m;x.xL/ .uL�m � uLCm/C 2‰L�mC1;x.xL/ .uL�mC1 � uLCm�1/C : : :

C 2‰L�1;x.xL/ .uL�1 � uLC1/ :
(20)

For modes of alternating displacement of unity at each node uL�p D uLCp for any p, the gradient
is identically zero, and interior nodes have no contribution to the internal energy of the system. This
is the essential difficulty of undersampling using only nodes.

Note that no particular property of the shape functions other than smoothness and symmetry were
invoked. Thus, regardless of whether the gradients are smoothed, direct, or averaged, the results
still hold and spurious oscillatory zero-energy or low-energy modes can appear in the solution with
any of these nodal integrations. The result also suggests that only energy from the boundary can
be expected to keep the mode in check, which is similar to the discussions in the literature [25].
The consequence is, for discretizations that have sufficiently small surface to volume ratio or for
sufficiently fine discretizations, the modes are expected to be present in the solution.

To illustrate this instability, consider the node distribution in Figure 2 for construction of a linear
elastic stiffness matrix, discretized with the fully integrated bilinear finite element method (FEM)
and nodally integrated linear RKPM with quartic B-spline kernels and a normalized support of 2.0.
For two-dimensional elasticity, there are three proper zero-eigenvalue modes for translation and
rotation. The fourth lowest eigenvalue mode for the fully integrated bilinear finite element method
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Figure 2. Discretization and fourth eigenvalue mode for the stiffness matrix for fully integrated finite
elements.

Figure 3. Fourth eigenvalue mode of the stiffness matrix for nodal integration methods.

shown in Figure 2 is a stable mode of deformation. In contrast, for DNI and SNNI, the first non-
zero eigenvalue mode is a spurious, oscillatory mode as shown in Figure 3, where the node-to-node
oscillations are clearly visible for both methods.

Because the cause of these unstable modes is the trial function gradients evaluating as zero, the
choice of the test functions is irrelevant, and introducing different Petrov-Galerkin test functions
cannot be expected to preclude the modes. Thus, modifying test functions for variational consistency
discussed in Section 3.4 alone will not suppress these modes for uniform discretizations; although
for non-uniform discretizations, it has been observed in [29] that the stability is improved.

2.5. Additional stabilization for stabilized conforming nodal integration and stabilized
non-conforming nodal integration

The stabilization of these low energy modes in SCNI and SNNI can be accomplished by includ-
ing strain averaging over subdivisions of the smoothing cells. For SCNI, each nodal representative
domain can be triangulated, and for SNNI, the smoothing zones can simply be divided into equal
parts, as shown in Figure 4. Strains are evaluated at the centroid xKL of NS sub-cells in order to pro-
vide additional coercivity and avoid undersampling of the saw-tooth modes. The form employed is
based on maintaining satisfaction of the linear patch test for SCNI [25]:

aMS hvh;uhi D aS hvh;uhi C aM hvh;uhi (21)

where aS hvh;uhi is the bilinear form with SCNI or SNNI smoothing, aMS hvh;uhi is the bilinear
form for modified stabilized conforming nodal integration or modified stabilized non-conforming
nodal integration (MSNNI) and
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Figure 4. Stabilization schemes for (a) modified stabilized conforming nodal integration (MSCNI) and (b)
modified stabilized non-conforming nodal integration (MSNNI).

aM hvh;uhi D
NPX
LD1

NSX
KD1

c
h�
Q©L.vh/ � ©KL .v

h/
�
W C W

�
Q©L.uh/ � ©KL .u

h/
�
W L
K

i
(22)

is the additional stabilization where 0:0 6 c 6 1:0, ©KL
�
uh
�
D ©

�
uh
�
xKL
��

is the strain evaluated
at the centroid of the sub-cell, andW K

L is the weight of the sub-cell calculated from the weight WL.
It is clear from (22) that for c > 0:0 additional coercivity is added to the solution. Herein, the value
of c D 0:2 is chosen, as larger values have been shown to reduce solution accuracy [42]. Thus, a
drawback of this stabilization is that an artificial parameter is introduced, which needs to be selected
carefully to ensure stability and also avoid destroying the accuracy of the smoothed integration
methods. The other drawback of this method is that many additional evaluation points are needed to
provide stabilization, which is detrimental to efficiency.

3. ACCELERATED STABILIZED AND CONVERGENT NODAL INTEGRATION

3.1. Implicit gradient expansion

Consider the following extrapolation of an RK approximation uh.x/ from a point Nx:

uh.x/ � Ouh.x/ D
NPX
ID1

‰I .Nx/uI C
NPX
ID1

‰rI .Nx/ � .x � Nx/uI (23)

where ‘�’ denotes an inner product and ‰rI .x/ is a vector of implicit gradient approximations to be
defined. The functions ¹‰rI .x/º

NP
ID1 are constructed such that the following equivalence is satisfied:

NPX
ID1

‰rI .Nx/ � .x � Nx/x
˛
I D

NPX
ID1

r‰I .Nx/ � .x � Nx/x˛I ; j˛j 6 n: (24)

It can be seen that the expansion in (23) is equivalent to the first order Taylor expansion when uh.x/
is of order j˛j 6 n, and is termed the implicit gradient expansion herein.

Utilizing (2), the condition (24) can be rephrased into the following gradient reproducing
conditions:

NPX
ID1

‰rI .x/ x˛I D rx˛; j˛j 6 n: (25)
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Construction of the functions‰rI .x/ can be performed by employing the same form as‰I .x/ in (1):

‰rI i .x/ D

8<
:
X
j˛j6n

.x � xI /˛bi˛.x/

9=
;ˆa.x � xI /: (26)

The unknown coefficients ¹bi˛.x/ºj˛j6n are determined by enforcing (25), consequently, the
functions in (26) are constructed as [38]:

‰rI i .x/ D HT
i M�1.x/H.x � xI /ˆa.x � xI / (27)

where Hi is a column vector of the form:

Hi D Œ0; : : : ; 0; �1; 0; : : : ; 0�T

"

.i C 1/th entry
: (28)

For example, in two dimensions with linear basis, the vector Hi takes on the following values:

H1 D Œ 0; �1; 0 �T

H2 D Œ 0; 0; �1 �T :
(29)

In three dimensions with linear basis, the vector Hi takes on the values:

H1 D Œ 0; �1; 0; 0 �T

H2 D Œ 0; 0; �1; 0 �T

H3 D Œ 0; 0; 0; �1 �T :

(30)

One can observe that the construction of (27) has the same complexity as (3), and the resulting com-
putational cost of the stabilization introduced by the expansion (23) described in the next subsection
is similar to direct nodal integration.

3.2. Naturally stabilized nodal integration

The implicit gradient expansion introduced in the previous section leads naturally to a stabilized
integration when employed for the strain at each node. The form of stabilization is similar to that
introduced in the finite element context in [43], but here introduced in the Cartesian coordinates and
instead uses an extrapolation of the type (23). The ideas here are presented in three dimensions, but
the application to lower dimensions is straightforward.

First, consider the decomposition of the bilinear form in (12) with nodal integration zones �L:

a.vh;uh/ D
NPX
LD1

8̂<
:̂
Z
�L

©.vh/ W C W ©.uh/d�

9>=
>;: (31)

Now consider an implicit gradient expansion of the form in (23) for the strains in �L with Nx D xL:

©.uh.x// � ©L.uh/C .x � xL/©L. Ouhx/C .y � yL/©L. Ou
h
y/C .´ � ´L/©L. Ou

h
´/ � O©L.u

h/ (32)

where ©L. Ouhx/ � ©
�
Ouhx.xL/

�
, ©L

�
Ouhy
�
� ©

�
Ouhy.xL/

�
, ©L

�
Ouh´
�
� ©

�
Ouh´.xL/

�
, and
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Ouhx.xL/ D
NPX
ID1

‰rI1.xL/uI

Ouhy.xL/ D
NPX
ID1

‰rI2.xL/uI

Ouh´.xL/ D
NPX
ID1

‰rI3.xL/uI :

(33)

Substituting (32) into (31) for each of the strains, one obtains, for each nodal domain �L:Z
�L

O©L.vh/ W C W O©L.uh/d� D
Z
�L

©L.vh/ W C W ©L.uh/d�

C

Z
�L

.x � xL/
2 ©L.Ovhx/ W C W ©L. Ou

h
x/d�

C

Z
�L

.y � yL/
2 ©L.Ovhy/ W C W ©L. Ou

h
y/d�

C

Z
�L

.´ � ´L/
2 ©L.Ovh´/ W C W ©L. Ou

h
´/d� :

(34)

In arriving at (34), the following assumption has been utilized:Z
�L

.x � xL/ d� D
Z
�L

.y � yL/ d� D
Z
�L

.´ � ´L/ d� D 0: (35)

The effect of the assumption (35) is expected to be negligible, because in general, nodes are located
at or near the centroid of the domain �L. Moreover, for nodes located on the edges of the domain,
the condition (35) will, in general, be satisfied. In numerical experiments, it has been observed that
these terms have very little effect and only increase computational cost.

Moving the constant quantities in (34) out of the integrals, it is possible to evaluate the non-
constant terms analytically viaZ

�L

O©L.vh/ W C W O©L.uh/d� D ©L.vh/ W C W ©L.uh/WL C ©L.Ovhx/ W C W ©L. Ou
h
x/MLx

C ©L.Ovhy/ W C W ©L. Ou
h
y/MLy C ©L.Ovh´/ W C W ©L. Ou

h
´/ML´

(36)

where

MLx D

Z
�L

.x � xL/
2 d�

MLy D

Z
�L

.y � yL/
2 d�

ML´ D

Z
�L

.´ � ´L/
2 d�;

(37)

which are the second moments of inertia of each nodal domain. Employing (36) in (31), the
numerical integration of the internal force results in a stabilized direct nodal integration:

aNDhvh; uhi D aDhvh;uhi C aN hvh; uhi (38)
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where aDhvh;uhi is the quadrature version of the bilinear form with DNI (13), and

aN hvh;uhi D
NPX
LD1

°
©L.Ovhx/ W C W ©L. Ou

h
x/MLx C ©L.Ovhy/ W C W ©L. Ou

h
y/MLy

C©L.Ovh´/ W C W ©L. Ou
h
´/ML´

± (39)

is the stabilization introduced naturally by the implicit gradient expansion of the strains at each node.
The additional terms in the stabilization are necessarily positive for non-zero strains and quadratic
forms of a.�; �/ and thus provide additional coercivity. The constants associated with the additional
terms occur completely naturally, and thus no tuning of any parameters is required, which is in
contrast to other stabilized methods [13, 25]. Stabilization with (38) is termed naturally stabilized
nodal integration (NSNI) herein. For nonlinear problems, we propose a stress update analogous to
the form (39) for facilitation of stabilization in explicit dynamic formulations, which is given in
Appendix A.

Let us reexamine the calculation of the internal energy in a uniform discretization of a one-
dimensional elasticity problem, problematic for nodal integration. Again, considering a node with
2mC 1 nodes covering the nodal point, the computation of the stabilizing term ©L. Ou

h
x/ � Ou

h
x;x.xL/

for its contribution to the internal energy in one dimension is

Ouhx;x.xL/ D ‰
r
L�m;x.xL/uL�m C‰

r
L�mC1;x.xL/uL�mC1 C : : :C‰

r
L;x.xL/uL C : : :

C‰rLCm�1;x.xL/uLCm�1 C‰
r
LCm;x.xL/uLCm

(40)

where ‰rI;x�‰
r
I1;x . Using the symmetry and uniformity of the discretization one obtains

Ouhx;x.xL/D‰
r
L�m;x.xL/.uL�mCuLCm/C‰

r
L�mC1;x.xL/.uL�mC1CuLCm�1/C: : :C‰

r
L;x.xL/uL:

(41)
Modes of alternating displacement of unity at each node leads to

Ouhx;x.xL/ D ˙
�
2‰rL�m;x.xL/ � 2‰

r
L�mC1;x.xL/C : : :C .�1/

m‰rL;x.xL/
�
; (42)

which is non-zero for sufficiently smooth kernels, in contrast to (20), and thus the oscillatory mode
is unlikely to be admitted due to the associated additional energy. It is interesting to note the implicit
gradient expansion introduces terms that are not zero at nodal locations, and undersampling of
saw-tooth modes is avoided.

Figure 5 shows the fourth eigenvalue mode of the previously employed RK discretization for sta-
bility analysis using MSNNI and NSNI, both showing very good agreement with the mode shape
of FEM in Figure 2. The corresponding eigenvalues are 1.28 and 1.32 for MSNNI and NSNI,
respectively, which are also in agreement of the value of 1.30 for fully integrated FEM.

Figure 5. Fourth eigenvalue mode of the stiffness matrix for stabilized nodal integration methods.
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3.3. Complexity analysis of modified stabilized non-conforming nodal integration and naturally
stabilized nodal integration

To estimate the operation counts, multiplication and division (M/D), and addition and subtraction
(A/S) are considered. For MSNNI in d -dimensions, for each nodal integration point the functions
‰I .x/must be calculated 2dC1 times in order to construct smoothed gradients with box smoothing
zones and evaluate the shape functions at the node itself. In addition, each gradient r‰I .x/ must
be calculated in the center of the sub-cells. Consequently, the total operation count for one node,
for evaluating all shape functions necessary for forming the stiffness matrix, body force, and mass
matrix is

M/D:
�
.2d C 1/.2d C 1/

�
s3 C

�
.2d C 1/.2k C 1/C 2d .6dk C 2d C 2k C 1/

�
s2

C
�
k.2d C 1/C 2d .2dk C k/

�
s C k.2d C 1/C 2dC1dk

A/S:
�
.2d C 1/.2d C 1/

�
s3 C

�
.2d C 1/.k � 2/C 2d .3dk � 4d C k � 2/

�
s2

C
�
k.2d C 1/C 2d .2dk � d C k/

�
s � k.2d C 1/ � 2d .2d � k/

(43)
where s D .nC d/Š=nŠd Š, and k is the number of shape functions covering a given node.

In contrast to MSNNI, using NSNI, the functions ‰I .x/, r‰I .x/, ‰rI i .x/, and r‰rI i .x/ need
only be calculated once for each node, which gives substantially less CPU burden. Consequently,
the total operation count for evaluating all shape functions for one node necessary for forming the
stiffness matrix, body force, and mass matrix is

M/D: .2d C 1/s3 C .d2 C 6dk C 3d C 2k C 1/s2 C .2d2k C k C 3dk/s

C dk.d C 3/C k

A/S: .2d C 1/s3 C .d2 C 3dk � 3d C k � 2/s2 C .2d2k C 3dk � d2 C k � 2d/s

� dk.d C 1/C 2d � k:

(44)

For uniform discretizations with n D 1, the cost ratios of (43) versus (44) are presented in Tables I
and II, for two and three dimensions, respectively, for various normalized support sizes. It can be
seen that in both cases, the cost savings in constructing the discrete equations is significant. For two
dimensions, 5–7 times cost savings can be observed, and for three dimensions, a cost savings of an
order of magnitude can be achieved (12–18 times). The details of the complexity analysis for the
two methods can be found in Appendix B, following [44].

Table I. Operation count ratios of MSNNI versus NSNI
in 2-D.

1 < a < 1.5 1.56 a < 2.5 2.56 a < 3.5

M/D ratio 7.39 6.38 5.77
A/S ratio 7.21 6.10 5.48

Table II. Operation count ratios of MSNNI versus
NSNI in 3-D.

1 < a < 1.5 1.56 a< 2.5 2.56 a <3.5

M/D ratio 20.30 15.69 13.22
A/S ratio 18.88 14.44 12.14
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3.4. Variationally consistent naturally stabilized nodal integration

Variational consistency plays an important role in quadrature for meshfree methods for attaining
optimal convergence in an efficient manner. To achieve high accuracy and optimal convergence
using conventional integration methods such as Gaussian integration, very high order quadrature
is required, which is prohibitively expensive. A way to circumvent this problem is to satisfy the
variational consistency conditions, which are the requirements to satisfy an nth order patch test.

The two requirements for nth order variational consistency are nth order reproducing condi-
tions of the trial functions, and satisfaction of the nth order integration constraints by the test
functions [17]. It is possible to construct a set of trial functions that satisfy the reproducing condi-
tions using shape functions such as those in (1) and a separate set of test functions that satisfy the
integration constraints.

Let us reexamine this condition for the proposed stabilization. To arrive at (14), a problem with
a linear solution is considered for examining linear Galerkin exactness with quadrature, leading to
nodal coefficients

uI1 D c10 C c11xI C c12yI C c13´I
uI2 D c20 C c21xI C c22yI C c23´I
uI3 D c30 C c31xI C c32yI C c33´I :

(45)

Utilizing the gradient reproducing conditions (25), the terms Ouhx , Ouhy , and Ouh´ in (33) are constant,
thus ©L

�
Ouhx
�
D ©L

�
Ouhy
�
D ©L

�
Ouh´
�
D 0 and the additional stabilization (39) vanishes, that is,

aNDhvh; uhi D aDhvh; uhi: (46)

Using the above, it is easily shown following [17] that the condition for first order variational
consistency for NSNI is the constraint (14).

Satisfaction of the constraint can be straightforwardly accomplished by introducing assumed
gradients for the test functions as in [17], while leaving the additional terms in (39) unmodified:

N‰I;i .x/ D ‰I;i .x/CRI .x/�I i (47)

where .�/;i � @.�/=@xi and �I i is a constant coefficient and

RI .x/ D
²
1 if x 2 supp .‰I .x//
0 if x … supp .‰I .x//

: (48)

Substitution of (47) into (14) yields the coefficients

�I i D

0
@ ^Z
@�

‰Inid� �

^Z
�

‰I;id�

1
A, ^Z

�

RId� : (49)

Note that no particular type of numerical integration has been specified in the introduction of the test
function gradients. The coefficients in (49) make any numerical integration first order variationally
consistent, and thus applies to Gaussian integration, DNI, SNNI, and other variationally inconsistent
methods. For SCNI which satisfies (14), the formulation leads to coefficients �I i of zero, and no
correction is introduced. The NSNI approach with the variationally consistent correction (47)–(49)
is termed Variationally consistent naturally stabilized nodal integration (VC-NSNI) herein.

The fourth lowest eigenvalue modes are shown in Figure 6 for variationally consistent DNI
and SNNI (denoted herein with the prefix ‘VC-’) and their stabilized counterparts VC-NSNI and
VC-MSNNI, respectively, using the previously employed RK discretization. It can be seen that
employment of variationally consistent test function gradients alone cannot preclude the oscillatory
modes, because of the instability resulting from the choice of trial functions, which agrees with
the discussion in Section 2.4. It can also be seen in Figure 6 that for VC-MSNNI and VC-NSNI,
the introduction of test function gradients (47) in the variationally consistent correction does not
degrade the stability of the already stable methods MSNNI and NSNI, and have nearly the exact
same eigenvalues for this mode. Lastly, the mode shape for VC-MSNNI and VC-NSNI both agree
well with the shape for fully integrated FEM.
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Figure 6. Fourth lowest eigenvalue mode of the stiffness matrix for variationally consistent integration
methods.

Figure 7. Eigenvalues of stiffness matrices: (a) 30 lowest modes and (b) 200 lowest modes.

The two stable methods VC-MSNNI and VC-NSNI differ however when the spectrum of eigen-
values is examined. The first lowest 30 modes agree reasonably well with fully integrated FEM for
both cases, as seen in Figure 7(a), but when the first lowest 200 modes are examined, VC-NSNI
shows much better agreement, as seen in Figure 7(b).

Because several techniques are employed to arrive at the present method VC-NSNI, matrix forms
and implementation details are given in Appendix C.

Remark
Whenever a Petrov-Galerkin formulation is employed, the stability of the discrete system requires
careful investigation. For the variationally consistent formulation given by (47)–(49), the stability
requires the coercivity of the bilinear form, which hinges on the coefficients of the correction being
small [17]. This, in turn, requires adequate quadrature accuracy to yield a small enough residual
of the integration constraint. In reference [17], it was demonstrated that several nodal integration

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 107:603–630
DOI: 10.1002/nme



ACCELERATED, CONVERGENT, STABLE NODAL INTEGRATION IN MESHFREE METHODS 617

schemes, including DNI, are adequate for effective corrections when reproducing kernel approxima-
tion functions with linear bases are used. If the bilinear form is coercive, an important implication
for both static and dynamic problems is that the system matrix will also be positive definite [45].

4. NUMERICAL EXAMPLES

4.1. Patch test

In order to verify the variational consistency of VC-NSNI, consider a linear patch test for the Poisson
problem in two dimensions with the solution u D x C 2y. The corresponding boundary value
problem is

r2u D 0 in �

ru � n D n1 C 2n2 on @�h
u D x C 2y on @�g

(50)

where � W .�1; 1/ � .�1; 1/; @�h W �1 6 x 6 1; y D 1I x D 1; �1 6 y 6 1, and
@�g D @�n@�h. The problem is solved with NSNI and VC-NSNI to demonstrate that first order
variational consistency is violated and satisfied for these methods, respectively. A non-uniform dis-
cretization shown in Figure 8(a) is considered, with linear RKPM using cubic B-spline kernels with
a normalized support of 1.5. The L2 norms and H 1 semi-norms of the solution error are shown in
Table III, where it can be seen that the linear patch test is passed for the variationally consistent pro-
posed stabilized nodal integration. It is also seen that NSNI does not satisfy variational consistency.
The solutions for the two methods are shown in Figure 8(b) and Figure 8(c), where NSNI exhibits
visible solution error.

Figure 8. Linear patch test: (a) reproducing kernel particle method discretization, (b) solution by natu-
rally stabilized nodal integration, and (c) solution by variationally consistent naturally stabilized nodal

integration (exact).

Table III. Norms of error in the linear patch test.

L2 norm H1 semi-norm

NSNI 1.67E-01 4.92E-01

VC-NSNI 2.02E-14 6.05E-14
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4.2. Convergence in Poisson equation

To examine the convergence and efficiency of the various quadrature formulations discussed herein,
consider the following Poisson problem:

r2u D sin .�x/ sin .�y/ in �

u D 0 on @�
(51)

where � W .�1; 1/ � .�1; 1/. The solution to the problem is

u D �
1

2�2
sin .�x/ sin .�y/: (52)

The domain is discretized non-uniformly and refined uniformly as shown in Figure 9, using 121,
441, 1681, and 6561 nodes. Linear RKPM using cubic B-spline kernels with a normalized support
of 2.0 is employed for the study. Convergence of the error is shown in Figure 10 for the various

Figure 9. Discretizations used for convergence in Poisson problem.

Figure 10. Convergence of nodal integration methods (rates indicated in legend).
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methods discussed. Here it can be seen that only the stabilized and variationally consistent methods
(VC-NSNI and VC-MSNNI) give the optimal rate of convergence in both norms. VC integration
alone does not give optimal convergence because of the unstable modes that are not kept in check.
It can also be seen that stabilization alone also does not give optimal rates because of violation
of variational consistency. Thus, it appears that both stabilization and variational consistency are
necessary to ensure optimal convergence with nodal integration.

Comparing the two stable and convergent methods, over an order of magnitude of CPU time
(about 16 times for the finest) is saved using VC-NSNI versus VC-MSNNI, as seen in Figure 11.
Here, the CPU time includes only shape function construction and stiffness matrix assembly.
From Table I, for the kernel support employed, it is expected that the shape function cost should
be decreased by roughly six times. The difference may be caused by the increased assembly
time because of the increased number of neighbors in MSNNI, which employs smoothed inte-
gration or differences caused by implementation. Lastly, from Figure 11, it can be seen that
the increase in CPU time for constructing variationally consistent test functions for all methods
is marginal.

The CPU time versus error is shown in Figure 12 for the various methods. Lines that are closer
to the origin are more effective because they give the least error and CPU time. Because VC-NSNI
and VC-MSNNI are the only stable methods that converge optimally, the comparison of these is
the primary case of interest. From the figure, it is clear that VC-NSNI is the more effective method
for both norms, and that for a given level of error, roughly an order of magnitude less CPU time
is required compared to VC-MSNNI. Moreover, it is arguable that VC-NSNI is the most effective
method of all, because, while VC-DNI and NSNI provide similar effectiveness in the L2 norm,
for the H 1 semi-norm, VC-DNI is far worse, and NSNI has reduced effectiveness as the level of
refinement increases.

Figure 11. Scaling of CPU time with increase in degrees of freedom.

Figure 12. Effectiveness of nodal integration methods.
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4.3. Tension test

Consider the necking of a steel bar undergoing a large axial displacement. As shown in Figure 13,
the model of the bar is slightly tapered in the middle. The dimensions of the bar indicated in the
figure are L0 D5.3334 cm, a0 D0.6298 cm, and a1 D0.6413 cm. This experiment has been carried
out in [46] with data obtained for the force-displacement relationship and necking at the center of
the bar. The material is modeled with J2 plasticity and isotropic hardening. The elastic properties of
the bar are Young’s modulus E D206.9 GPa and Poisson’s ratio � D0.29 [46], and the yield stress
is taken as

K. Nep/ D �
0
y C ˛ Ne

p C
�
�1y � �

0
y

� �
1 � e�ˇ Ne

p
�

(53)

where Ne is the equivalent plastic strain, �0y D0.45 GPa, ˛ D0.12924 GPa, �1y D0.715 GPa , and
ˇ D16.93.

Figure 13. Tension test: (a) depiction of problem with force F and dimensions indicated and (b) RKPM
discretization.

Figure 14. Tension test: progressive deformation with nodal integration at various levels of elongation with
equivalent plastic strain values indicated in the legend.
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Figure 15. Tension test: progressive deformation with stabilized nodal integration at various levels of
elongation with equivalent plastic strain values indicated in the legend.

Figure 16. Comparison of various methods with experimental data from [46] in the tension test: (a) reduction
of radius in the necking region and (b) load displacement curve.

The semi-Lagrangian formulation [40, 41] is considered where shape functions are continually
re-constructed due to employment of semi-Lagrangian kernels. This type of formulation is a primary
case of interest for this paper aside from linear problems, because the re-construction of shape func-
tions constitutes a large portion of overall CPU time. Linear basis with a normalized support of 1.6
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is employed with a quartic B-spline kernel in the RK approximation, and the bar is discretized using
6693 nodes. Based on the previous examples, four methods of interest are selected for comparison:
SNNI, DNI, VC-MSNNI, and VC-NSNI.

The progressive deformation of the bar for the unstabilized nodal integration methods DNI and
SNNI are shown in Figure 14 at various levels of elongation. The spurious modes of alternating
displacement are clearly seen near the ends of the bar, and instead of the strain localizing in the
center of the bar, the strain localizes at the location of these instabilities. In contrast, these modes are
completely absent in the solutions obtained from VC-NSNI and VC-MSNNI as shown in Figure 15,
where strain is seen to localize at the correct location, at the center of the bar. Because of the spurious
modes in the unstabilized nodal integrations, they are seen to give very poor results when compared
with the experimental data, as shown in Figure 16, while the stabilized nodal integrations VC-NSNI
and VC-MSNNI agree well with the experimental data.

4.4. Taylor bar impact

The Taylor bar impact problem [47] was first performed by Wilkins and Guinan in [48] and sub-
sequently by many others. An aluminum bar with an initial height and radius of 2.346 cm and
0.391 cm, respectively, impacts a rigid wall with an initial velocity of 373.0 m/s. For the aluminum
material, J2 plasticity with isotropic hardening is considered with material properties Young’s mod-
ulus E D 78.2 GPa, Poisson’s ratio � D 0.30, and density 	 D 2700 kg/m3, and the yield stress is
taken as

K. Nep/ D �Y .1C 125 Nep/
0:1 (54)

where �Y D 0.29 GPa.
The semi-Lagrangian formulation is again considered, with linear basis and quartic B-spline ker-

nel functions with a normalized support of 2.8, and 29,637 nodes discretize the bar. The wall is
also modeled and is considered frictionless, and a kernel contact algorithm [41] is employed for
the bar-wall interaction. The four integration methods of interest used in the previous example are
again employed.

Figure 17. Final deformation on the face of the Taylor bar for various nodal integration methods.
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Table IV. Dimensions of deformed Taylor bar and CPU times.

Radius (cm) Height (cm) Normalized CPU

SNNI 0.839 1.649 2.46
DNI 0.838 1.660 0.70
VC-MSNNI 0.801 1.649 8.15
VC-NSNI 0.775 1.651 1.00
RKPM [4] 0.827 1.645 -
Particle in cell [49] 0.78 1.65 -
Finite element [48] 0.742 1.652 -
Experimental [48] - 1.651 -

Figure 18. Final deformation of the Taylor bar for various nodal integration methods.

The deformed shape of the face of the bar is shown in Figure 17 with material deformation
plotted using the connectivity of the preprocessing mesh used to generate the RKPM discretization.
Here, the difference in solutions is quite dramatic; DNI and SNNI both clearly show the spurious
oscillatory modes in the solution, while the stabilized methods do not.

The deformed height and radius of the bar, and normalized CPU times for the four methods
are shown in Table IV, along with several reference solutions and the experimental deformed
height. First, it is seen that a speed-up factor of over eight for VC-NSNI versus VC-MSNNI
is observed. The reason the range of speed up shown in Table II is not observed is because of
the additional calculations performed for both methods, for example, node neighbor search and
stress update.

For the deformed dimensions in Table IV, it can be seen that DNI and SNNI predict a
very large radius compared with the reference solutions, likely because of the very little resis-
tance to the oscillatory mode of deformation. Another explanation is the fact that the Taylor
bar actually splits because of these modes as seen in Figure 18, while VC-NSNI and VC-
MSNNI give contiguous solutions. For the deformed height of the bar, all methods give reasonable
heights compared with the reference solutions except for DNI, and VC-NSNI is closest to the
experimental data.

5. CONCLUSION

In this paper, a new stabilized nodal integration method is introduced for meshfree methods under
the RKPM framework. The method employs an implicit gradient expansion of the strains at each
node that naturally results in a stabilized nodal integration and is devoid of tunable parameters.
Because of the implicit construction of the gradient, high efficiency is attained, and the complexity
of the method is similar to direct nodal integration.

Variationally consistent integration was also introduced for the proposed stabilization. The com-
bined method is able to pass the patch test, and studies demonstrated optimal convergence of the
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method. One interesting result of the convergence study was that both stabilization and variation-
ally consistent integration were shown to be necessary to attain optimal convergence for nodal
integration. In addition, the eigenvalue analysis showed that stability was not sacrificed by the
introduction of variationally consistent test functions, and CPU time studies showed that effi-
ciency was not strongly affected by introducing variationally consistent integration. The proposed
method was also shown in several examples to be effective in providing stable solutions for large
deformation problems.

The VC-MSNNI method was the primary basis for comparison because it offers both stability and
optimal convergence in nodal integration, and is also suitable for problems with material separation.
Compared with this method, the complexity was shown to be between 5–20 times lower for the
proposed VC-NSNI method depending on support and spatial dimension. In addition, the method
was demonstrated to provide superior stability over VC-MSNNI in an eigenvalue analysis.

The method presented herein shows good performance and high effectiveness, and can be used to
significantly decrease CPU time in problems where a large portion of computation time is spent on
shape function construction, for example, in linear problems, or when semi-Lagrangian kernels are
employed in nonlinear problems. In addition, for Lagrangian formulations, the method is expected
to provide similar efficiency because state and field variables are only needed at nodes.

APPENDIX A: NONLINEAR IMPLEMENTATION OF NATURALLY STABILIZED
NODAL INTEGRATION

For objective integration of stress rates, we consider the procedure given in [50]. From time n to
time nC1 with generalized displacement increment
dn D dnC1�dn, for the calculation of stress
¢nC1I at node I the trial stress ¢nC1I;trial is first calculated as

¢nC1I;trial D QI¢
n
IQT

I C De
©I

QI D IC
�
I � 1

2
!I
��1

!I
!I D

1
2

�
GI �GT

I

�
;

(A.1)

where

GI D LI
�
IC 1

2
LI
��1

.LI /ij D
NPP
JD1

‰J;j .xI /
dJ i

�©I D
1
2

�
GI CGT

I

�
;

(A.2)

and De is the elastic co-rotational material response tensor. The Cauchy stress ¢nC1I is then
computed, by, for example for plasticity, return mapping.

For stabilization, denote the stress gradient at the nodes as ¢I;i with increment 
¢I;i . The stress
gradient update is performed as follows:

¢nC1I;i D QI¢
n
I;iQ

T
I C�¢I;i

�¢I;i D Dep
I �©I;i

�©I;i D
1

2

�
GI;i CGT

I;i

�
;

(A.3)

where Dep
I is the consistent tangent moduli computed at node I and

.LI;i /jk D

NPX
JD1

‰rJ i;k.xI /
dJj : (A.4)
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APPENDIX B: COMPLEXITY ANALYSIS

B.1. Operation counts for elementary operations

The bulk of the cost in forming reproducing kernel (RK) shape functions and their derivatives are
the matrix operations involved. The size of matrices in forming RK shape functions are the size
of the basis vector s. Operation counts for elementary operations involved in terms of multiplication
and division, and addition and subtraction are shown in Table B.1.

B.2. Operation counts for reproducing kernel shape functions

For complexity analysis, it is convenient to express the RK approximation function ‰I .x/ as the
product of the kernel function ˆa.x � xI / and a correction function C.xI x � xI /:

.

‰I .x/ D C.xI x � xI /ˆa.x � xI / (B.1)

where

C.xI x � xI / D b.x/H.x � xI / (B.2)

b.x/ D HT .0/M�1.x/ (B.3)

M.x/ D
NPX
ID1

H.x � xI /HT .x � xI /ˆa.x � xI /: (B.4)

The derivatives of (B.1) with respect to xj can be taken by product rule:

‰I;j .x/ D C;j .xI x � xI /ˆa.x � xI /C C.xI x � xI /ˆa;j .x � xI / (B.5)

where

C;j .xI x � xI / D b;j .x/H.x � xI /C b.x/H;j .x � xI / (B.6)

b;j .x/ D HT .0/M�1;j .x/: (B.7)

The term M�1;j .x/ can be found by differentiating the identity M�1.x/M.x/ D I where I is the
identity matrix:

M�1;j .x/ D �M�1.x/M;j .x/M�1.x/: (B.8)

Table B.1. Operation counts for elementary matrix operations.

Operation M/D A/S

Inner product: x � y s s � 1

Outer product: x˝ y s2 0

Matrix-scalar multiplication: �A s2 0

Matrix-vector multiplication: Ax s2 s2 � s

Matrix-matrix multiplication: AB s3 s3 � s2
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In the following, let I denote a shape function index associated with the k shape functions
covering a nodal integration point xL. The number k is called the overlapping number.

The complexity of constructing the set of shape functions ¹‰I .xL/ºNPID1 is

M/D: s3 C .2k C 1/s2 C ks C k
A/S: s3 C .k � 2/s2 C k.s � 1/:

(B.9)

The complexity of constructing the set of shape functions and their gradients ¹‰I .xL/;
r‰I .xL/ºNPID1 is

M/D: .2d C 1/s3 C .6dk C 2d C 2k C 1/s2 C .2dk C k/s C 2dk C k

A/S: .2d C 1/s3 C .3dk � 4d C k � 2/s2 C .2dk � d C k/s C 2d � k:
(B.10)

Note that the above takes into consideration repeated computations for shape functions and deriva-
tives for multiple dimensions, as well as precise consideration of overlap numbers and provides a
slightly sharper estimate than given in [44].

B.3. Complexity of modified stabilized non-conforming nodal integration and naturally stabilized
nodal integration

Modified stabilized non-conforming nodal integration (MSNNI) with box smoothing cells with
boundaries integrated with single point integration gives 2d smoothing evaluation points and asso-
ciated stabilization sub-cells. For a node located at xL, let xSm

L denote an associated smoothing zone
integration point and xSt

L an associated stabilization point. For MSNNI, the overlapping number k
is considered as the total number of shape functions covering any of the various necessary evalua-
tion points, because in practice, often only a single list of neighbors is constructed for all the shape
function evaluations because of the node neighbor search cost. All terms and their operation counts
necessary for MSNNI are shown in Table B.2.

The complexity of constructing the set of shape functions at a node ¹‰I .xL/ºNPID1 and associated

2d smoothing points
®
‰I

�
xSm
L

�¯NP
ID1

for MSNNI is thus

M/D: .2d C 1/
�
s3 C .2k C 1/s2 C ks C k

�
A/S: .2d C 1/

�
s3 C .k � 2/s2 C ks � k

�
:

(B.11)

The complexity of constructing the set of shape functions gradients
®
r‰I

�
xSt
L

�¯NP
ID1

at each of the
stabilization points xSt

L in MSNNI is

Table B.2. Operation counts for matrix operations for modified stabilized
non-conforming nodal integration.

Forming M/D operations A/S operations Computed for all

M.x/ 2ks2 .k � 1/s2 xL; xSm
L
; xSt
L

M;j .x/ 6ks2 3.k � 1/s2 C 2 xSt
L
; j

M�1.x/ s3 s3 � 2s2 C s xL; xSm
L
; xSt
L

M�1;j .x/ 2s3 C s2 2.s3 � s2/ xSt
L
; j

b.x/ s2 s2 � s xL; xSm
L
; xSt
L

b;j .x/ s2 s2 � s xSt
L
; j

C.xI x � xI / s s � 1 xL; xSm
L
; xSt
L
; I

C;j .xI x � xI / 2s 2s � 1 xSt
L
; j; I

‰I .x/ 1 0 xL; xSm
L
; I

‰I;j .x/ 2 1 xSt
L
; j; I
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Table B.3. Operation counts for matrix operations in naturally stabilized
nodal integration.

Forming M/D operations A/S operations Computed for all

M.x/ 2ks2 .k � 1/s2 xL

M;j .x/ 6ks2 3.k � 1/s2 C 2 xL; j

M�1.x/ s3 s3 � 2s2 C s xL

M�1;j .x/ 2s3 C s2 2
�
s3 � s2

�
xL; j

b.x/ s2 s2 � s xL

bi .x/ s2 s2 � s xL; i

b;j .x/ s2 s2 � s xL; j

bi;j .x/ s2 s2 � s xL; i; j

C.xI x � xI / s s � 1 xL; I

C i .xI x � xI / s s � 1 xL; i; I

C;j .xI x � xI / 2s 2s � 1 xL; j; I

C i;j .xI x � xI / 2s 2s � 1 xL; i; j; I

‰I .x/ 1 0 xL; I

‰I;j .x/ 2 1 xL; j; I

‰r
I i
.x/ 1 0 xL; i; I

‰r
I i;j

.x/ 2 1 xL; i; j; I

M/D: 2d
�
.2d C 1/s3 C .6dk C 2d C 2k C 1/s2 C .2dk C k/s C 2dk

�
A/S: 2d

�
.2d C 1/s3 C .3dk � 4d C k � 2/s2 C .2dk � d C k/s C 2d � k

�
:

(B.12)

Consequently, the total complexity of evaluating all shape functions for a nodal integration point xL
is given by (43).

For NSNI, the construction of the function ‰rI i .x/ can also be expressed as a the product of the
kernel ˆa.x � xI / and a correction function C i .xI x � xI /:

‰rI i .x/ D C
i .xI x � xI /ˆa.x � xI / (B.13)

where

C i .xI x � xI / D bi .x/H.x � xI / (B.14)

bi .x/ D HT
i M�1.x/: (B.15)

Derivatives of (B.13) with respect to xj are computed directly as

‰rI i;j .x/ D C
i
;j .xI x � xI /ˆa.x � xI /C C i .xI x � xI /ˆa;j .x � xI / (B.16)

where

C i;j .xI x � xI / D bi;j .x/H.x � xI /C bi .x/H;j .x � xI / (B.17)

bi;j .x/ D HT
i M�1;j .x/: (B.18)

For NSNI, the necessary calculations at a node are shown in Table B.3. Consequently, the
complexity is given as (44).
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APPENDIX C: MATRIX FORMS OF VARIATIONALLY CONSISTENT NATURALLY
STABILIZED NODAL INTEGRATION

C.1. Poisson problem

The matrix form for the Poisson problem in two dimensions using the present method variationally
consistent naturally stabilized nodal integration is given below:

NPP
LD1

°
NBT .xL/B.xL/WL C BTx .xL/Bx.xL/MLx C BTy .xL/By.xL/MLy

±
d

D
NPP
LD1

NT .xL/s.xL/WL C
NPhP
LD1

NT .xL/h.xL/SL

(C.1)

where NPh is the number of integration points on the natural boundary, SL is an associated weight
of those points, and

NBI .xL/ D
�
N‰I;1.xL/ N‰I;2.xL/

�T
; BI .xL/ D Œ‰I;1.xL/ ‰I;2.xL/�

T ;

BxI .xL/ D
h
‰rI1;1.xL/ ‰

r
I1;2.xL/

iT
; ByI .xL/ D

h
‰rI2;1.xL/ ‰

r
I2;2.xL/

iT
;

NI .xL/ D ‰I .xL/; dI D uI ;

(C.2)

where ‰I is the RK shape function in (3), ‰I;j is the direct derivative of ‰I with respect to xj ,
N‰I;j is constructed by the VC correction of ‰I;j given by (47)–(49), and ‰rI i;j .xL/ is the direct
differentiation of (27) with respect to xj .

C.2. Elasticity

The matrix form of Elasticity in two dimensions, using variationally consistent naturally stabilized
nodal integration is

NPP
LD1

°
NBT .xL/DB.xL/WL C BTx .xL/DBx.xL/MLx C BTy .xL/DBy.xL/MLy

±
d

D
NPP
LD1

NT .xL/b.xL/WL C
NPhP
LD1

NT .xL/h.xL/SL

(C.3)

where NPh is the number of integration points on the natural boundary, SL is an associated weight
of those points, D is the matrix corresponding to the tensor C, and

NBI .xL/ D

2
4 N‰I;1.xL/ 0

0 N‰I;2.xL/
N‰I;2.xL/ N‰I;1.xL/

3
5 ; BI .xL/ D

2
4‰I;1.xL/ 0

0 ‰I;2.xL/
‰I;2.xL/ ‰I;1.xL/

3
5 ;

BxI .xL/ D

2
4‰

r
I1;1.xL/ 0

0 ‰rI1;2.xL/
‰rI1;2.xL/ ‰

r
I1;1.xL/

3
5 ; ByI .xL/ D

2
4‰

r
I2;1.xL/ 0

0 ‰rI2;2.xL/
‰rI2;2.xL/ ‰

r
I2;1.xL/

3
5 ;

NI .xL/ D
�
‰I .xL/ 0

0 ‰I .xL/

	
; dI D

�
uI1
uI2

	
:

(C.4)

where ‰I is the RK shape function in (3), ‰I;j is the direct derivative of ‰I with respect to xj ,
N‰I;j is constructed by the VC correction of ‰I;j given by (47)-(49), and ‰rI i;j .xL/ is the direct
differentiation of (27) with respect to xj
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