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Abstract Meshfree approximations are ideal for the gradient-type stabilized
Petrov–Galerkin methods used for solving Eulerian conservation laws due to
their ability to achieve arbitrary smoothness, however, the gradient terms are
computationally demanding for meshfree methods. To address this issue, a
stabilization technique that avoids high order differentiation of meshfree shape
functions is introduced by employing implicit gradients under the reproducing
kernel approximation framework. The modification to the standard approximation
introduces virtually no additional computational cost, and its implementation
is simple. The effectiveness of the proposed method is demonstrated in several
benchmark problems.

1 Introduction

While Galerkin methods have proven successful in a variety of problems, the
application of standard versions of these methods can yield disastrous results for
non-self-adjoint problems, such as the Eulerian descriptions of conservation laws
with strong convection. In particular, when boundary layers are present, these
methods yield large oscillations that destroy the solution. A class of stabilized
Petrov–Galerkin methods [1–3] has been developed that provide stable solutions
for these problems.

Stabilized methods have been analyzed mathematically [2–4], can be justified by
the variational multiscale framework [5, 6], and can be constructed by static con-
densation of bubble functions [7–9]. In these methods, portions of the differential
operator, or the entire operator, are included in the test function. The stream-
line upwind Petrov–Galerkin (SU/PG) method [1] was motivated by performing
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stabilization in a consistent and streamline manner, and also put to rest notions
of artificial diffusion. The Galerkin/least squares (G/LS) method [2] gave a more
general framework to achieve stability by employing a weighted least squares of the
residual. The subgrid scale (SGS) method gave improved stability for higher order
elements [3] and reaction-dominated problems [7].

Though originally developed for finite elements, these approaches have been
applied to meshfree methods as well. The reproducing kernel particle method
(RKPM) with the standard stabilization approach has been applied to flow problems
[10]. Suitable stabilization parameters for meshfree methods have been discussed
[11], and stabilized meshfree and finite element coupled schemes have also been
proposed [12] to achieve a combination of the computational efficiency of finite
elements with the flexibility of handling difficult topological changes of the domain
such as moving obstacles. A higher order accurate time integration scheme [13]
has also been developed for meshfree methods for convection-dominated problems.
Although the higher order derivatives involved in the gradient-type stabilization
techniques can be calculated straightforwardly by taking advantage of the arbitrary
smoothness in the meshfree approximation functions, they are computationally
demanding.

The issue of computational efficiency of meshfree methods with gradient-type
stabilization for convection-dominated problems is the cost of constructing deriva-
tives of meshfree approximations. One remedy is to introduce implicit gradients
[14], which originated from the synchronized convergence approximation [15,
16], where the completeness properties of approximation derivatives are imposed
directly. Implicit gradients have been utilized for easing the computational cost of
meshfree collocation methods [14], which require higher order derivatives. Implicit
gradients have also been used to achieve gradient-type regularization for strain
localization problems [17] and avoid the issue of boundary conditions associated
with these methods.

In this work, the implicit gradient reproducing kernel particle method (IG-
RKPM) is introduced for convection-dominated problems. A gradient reproducing
condition is employed to construct the stabilizing gradient terms. This allows three
standard stabilization techniques to be performed under a unified framework without
the explicit computation of higher order derivatives of the shape functions. The
proposed technique is computationally efficient, and it also simplifies stabilization
procedures.

The remainder of this text is organized as follows. Section 2 reviews the
numerical difficulties associated with convection-dominated problems, and common
methods for stabilization. The implicit gradient reproducing kernel particle method
is then introduced in Section 3, and the selection of a suitable stabilization parameter
for meshfree methods is discussed. Several benchmark problems are solved in
Section 4 to demonstrate the effectiveness of the proposed method. Concluding
remarks are then given in Section 5.
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2 Stabilization for Convection-Dominated Problems

2.1 Advection–Diffusion Equation

The advection–diffusion equation is considered herein as a model problem for
convection-dominated problems. The strong form asks to find u such that

Lu D s in 


u D g on @
g

Bu D h on @
h

(1)

where s is a source term, @
g and @
h are the essential and natural boundaries of
the domain, respectively, the flux boundary conditions Bu D kru� n are considered
herein, and the operator L in (1) is

Lu D �r� .K� ru � au/ (2)

where a is the advection velocity and K is the diffusivity tensor. Without loss of
generality, we consider a divergence-free advection field and the case of isotropic
diffusion with K D Ik, where I is the identity tensor, and k is a constant scalar, for
which Lu D � �kr2u � a� ru

�
.

The weak form of (1) is to find u 2 U such that

B .v; u/ D L.v/ 8v 2 V (3)

where

B .v; u/ D .krv;ru/
 C .v; a� ru/
; (4)

L.v/ D .v; s/
 C .v; h/	h
: (5)

Here U D ˚
u 2 H1 .
/

ˇ
ˇ u D g on 	g

�
, V D ˚

v 2 H1 .
/
ˇ
ˇ v D 0 on 	g

�
, and

.�; �/
 and .�; �/	h
denote the L2 inner product on the domain and natural boundary,

respectively. The Galerkin method for solving (3) is to find uh 2 Uh that satisfies

B
�
vh; uh

� D L
�
vh
�
; 8vh 2 Vh (6)

where Uh � U and Vh � V are suitable finite-dimensional subspaces.
For discrete solutions of the advection–diffusion equation with grid dimension or

node spacing h, the critical value defining how the numerical solution will behave is
the grid Péclet number Peh D kak h=2k. When the grid Péclet number is greater than
unity, standard Bubnov–Galerkin methods lose coercivity and become unstable, and
the instability manifests as large oscillations in the presence of fine-scale features
such as boundary layers which can appear in the solution of the model problem (1).
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2.2 Stabilized Methods

The stabilized methods SU/PG, G/LS, and SGS can be phrased in terms of the
Galerkin form of the original problem with a modified test function expressed in
a unified fashion as:

Qvh D vh C �Lvh (7)

where � is a stabilization parameter, and L is a differential operator that varies
depending on the method:

L D Ladv SU=PG Œ1�

L D L G=LS Œ2�

L D �L� SGS Œ3�

(8)

In the above, L adv is the advective portion of L , and L� is the adjoint of L :

Ladv D a� r; (9)

L� D � �kr2 C a� r� : (10)

Stabilized methods are well justified [2–4], and can also be viewed as approxi-
mate variational multiscale methods [4, 6]. Stability estimates for SU/PG and SGS
require invoking inverse estimates for the shape functions, while for G/LS stability
follows directly. The stabilized form of the problem (6) can be stated as to find
uh 2 Uh � U such that

B
� Qvh; uh

� D L
� Qvh
�
; 8Qvh 2 Vh (11)

where Vh � V , and U and V are adequate Sobolev spaces.

3 Implicit Gradient RKPM for Stabilization
of Convection-Dominated Problems

3.1 Reproducing Kernel Approximation

The reproducing kernel (RK) approximation uh(x) of a function u(x) is constructed
by the product of a kernel function ˚� .x � xI/ and a correction function [18, 19]:

‰I .x/ D bT .x/H .x � xI/ ˚� .x � xI/ (12)
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where 
 I(x) is the RK shape function, H .x � xI/ D �
1 x y x2 : : : yn

	T
is a

column vector containing the complete nth order monomials, and bT(x) is a row
vector of coefficients to be determined. The correction function bT .x/H .x � xI/

allows the approximation to reproduce any linear combination of monomials
contained in H .x � xI/: The kernel function ˚� .x � xI/ has compact support
measure �, and the order of continuity of ˚� .x � xI/ determines the continuity of

 I(x).

The coefficient vector bT(x) is obtained by enforcing the following reproducing
conditions:

NPX

ID1
‰I .x/ xi

1Ix
j
2I D xi

1x
j
2 0 � i C j � n: (13)

Substituting (12) into (13), the RK shape functions are constructed as

‰I .x/ D H.0/TM.x/�1H .x � xI/ ˚� .x � xI/ (14)

where

M .x/ D
NPX

ID1
H .x � xI/HT .x � xI/ ˚� .x � xI/ (15)

is called the moment matrix.

3.2 Implicit Gradient Reproducing Kernel Particle Method

The stabilization method SU/PG requires constructing second order derivatives
of the approximation functions in (14), and for GL/S and SGS, third order
derivatives are required, and construction of higher order derivatives of meshfree
shape functions can be particularly expensive due to the need to take derivatives
of M.x/�1. To avoid this computational expense, the implicit gradient reproducing
kernel particle method is introduced. The basic idea is to achieve the same form
of stabilized test functions (7) without explicit differentiation. To accomplish this,
the following modification to the reproducing condition (13) is introduced for
construction of the test functions:

NPX

ID1
Q‰˛

I .x/ xi
1Ix

j
2I D xi

1x
j
2 C �L

�
xi
1x

j
2

�
; 0 � i C j � n (16)
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where Q‰˛
I is the IG-RKPM shape function and L is the operator in (8). The

reproducing condition (16) can be expressed in a generalized fashion as

NPX

ID1
Q‰˛

I .x/ xi
1Ix

j
2I D xi

1x
j
2 C �

nX

iCjD0
˛ijDij

�
xi
1x

j
2

�
; 0 � i C j � n (17)

where Dij D @iCj=@xi
1@xj

2 and the coefficients ˛ij are determined based on the
operator L. The above can then be recast as [17]:

NPX

ID1
Q‰˛

I .x/ .x1 � x1I/
i.x2 � x2I/

j D
ıi0ıj0 C �˛ij.�1/iCjiŠjŠ; 0 � i C j � n:

(18)

Consider now the implicit gradient shape function in the following form:

Q‰˛
I .x/ D bT

˛ .x/H .x � xI/ ˚� .x � xI/ (19)

where bT
˛(x) is a row vector of coefficients which satisfy (17). Following the

same procedure as the previous sub-section, the coefficients bT
˛(x) can be obtained,

resulting in the following construction for the implicit gradient approximation:

Q‰˛
I .x/ D HT

˛M.x/�1H .x � xI/ ˚� .x � xI/ (20)

where H˛ is a matrix containing terms from the right-hand side of (18). The values
in this matrix are presented in Table 1.

Remark Comparing (20) to (14), it can be seen that the first term on the right-
hand side of (20) is the only modification of the standard RK approximation.
Stabilization using IG-RKPM is thus very straightforward compared to the explicit
version, can be added to existing codes easily, and introduces virtually no additional
cost. This is in contrast to explicit differentiation, which requires considerable more
computational expense and implementation effort.

An important component of meshfree formulations is the selection of domain
integration. For Gaussian integration, high order rules are necessary in order to
ensure solution accuracy, while nodal integration yields poor accuracy and is
unstable without special treatment [20, 21]. Herein we employ higher order SCNI
[22, 23] which provides accurate and stable solutions and avoids the need of
expensive high order quadrature.

Table 1 Implicit gradient
RKPM vector.

Method HT
˛

SU/PG [1] Œ1; ��a1;��a2; 0; : : : ; 0�

G/LS [2] Œ1; ��a1;��a2;�2�k;�2�k; 0; : : : ; 0�

SGS [3] Œ1; ��a1;��a2; 2�k; 2�k; 0; : : : ; 0�
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3.3 Selection of the Stabilization Parameter

The selection of the stabilization parameter was traditionally based on obtain-
ing the exact solution at nodes in the one-dimensional Dirichlet problem of
(1) in the absence of a source term [1]. The exact solution for this particular
case is

ue.x/ D C1 C C2e
ax=k (21)

where C1 and C2 depend on the prescribed boundary conditions. Consider the trial
and test functions approximated by

uh D
NPX

ID1
‰IuI ;

Qvh D
NPX

ID1
Q‰IuI ;

(22)

where f‰IgNP
ID1 is the set of standard trail shape functions, e.g., finite element or RK

approximations,
˚ Q‰I

�NP

ID1 is the set of corresponding stabilized test shape functions,
and NP is the number of approximation functions.

Substitution of (22) into (11) yields

NPX

JD1
B
� Q‰I ; ‰J

�
uJ D 0; 8I: (23)

Due to the lack of Kronecker delta property in the RKPM shape functions, the
relationship between the generalized coordinates ue

I and the exact nodal values
bue

I 	 ue .xI/ D A C BeaxI=k must be considered:

ue
I D

NPX

JD1
ƒIJ
�1bue

I (24)

where ƒIJ D ‰J .xI/. Note that for linear finite elements, ƒIJ D ıIJ . Substitution of
the above into (23), and considering the partition of unity in the trial functions, the
constants associated with the boundary conditions disappear:

NPX

JD1

8
<

:

Z




k Q‰I;x‰J;xd
C
Z




a Q‰I‰J;xd


9
=

;
EJ D 0; 8I (25)
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where EI D
XNP

JD1ƒIJ
�1eaxJ=k. Using a stabilized shape function with nodal

stabilization parameter � I :

Q‰I D ‰I C �IL‰I (26)

we have, picking row I in (25):

�I D �

Z




k‰I;xEd
C
Z




a‰IEd


Z




kfL‰Ig;xEd
C
Z




aL‰IEd

(27)

where EI.x/ D
XNP

JD1‰J;xEJ . For linear finite element methods in uniform
discretizations, the above equation is not a function of nodal index, and yields the
classical stability parameter for SU/PG [1]:

� D h

2a




coth .Peh/ � 1

Peh

�

: (28)

In [11] it has been discussed that for RKPM, parameters in the form of (27)
depend on the approximation functions on the global level due to the transformation
between generalized values uI and nodal values uh(xI) and cannot be simplified to a
form such as (28). Thus, the generalization of the condition (27) for higher spatial
dimensions is not straightforward. Herein, we employ the classical parameter (28)
which is often generalized to higher spatial dimensions as [1]:

� D h

2a




coth .Peh;a/ � 1

Peh;a

�

(29)

where Peh;a D kak ha=2k, and ha is the grid (or element) dimension along the
direction of advection. For RKPM, the spacing ha may be taken as the length of
a representative nodal domain in the direction of the advection. The parameter (29)
has been shown to be suitable for RKPM with linear basis, so long as the support
parameter is not larger than roughly three times the nodal spacing [11].

4 Numerical Examples

In all numerical examples, RK approximations with linear basis and quartic B-spline
kernels with a normalized support of two are employed. In this case, all stabilization
methods with implicit gradients are identical due to the order of the basis vector
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used. In the comparisons made, “RKPM” denotes RKPM with no stabilization,
“SU/PG RKPM” denotes RKPM with standard (explicit) SU/PG stabilization, and
“IG-RKPM” denotes implicit gradient RKPM. For domain integration, high order
SCNI [20] is employed with 2nd order Gaussian quadrature in each nodal cell.

4.1 One-dimensional Model Problem

Consider the one-dimensional homogenous version of the model problem (1) on a
unit domain with a=k D 200:0, and s D 1:0, giving a grid Péclet number of 5.0 with
21 nodes employed. RKPM, RKPM with SU/PG stabilization, and IG-RKPM are
compared in Fig. 1. RKPM without stabilization yields large spurious oscillations in
the solution. The two stabilized methods give solutions which agree with the exact
solution, and very little difference between the two is observed, indicating that a
large increase in efficiency can be obtained with little lost by employing implicit
stabilization.

4.2 Advection Skew to the Discretization with Outflow
Boundary

Here a two-dimensional Dirichlet version of (1) with advection skew to the
discretization is considered, as shown in Fig. 2, where the jump in inflow boundary
condition along x D 0:0 is located at y D 0:2. A characteristic of this problem is that
both internal layers and boundary layers exist in the solution. The boundary layers
cause difficulty for numerical methods, just as in the one-dimensional case. Constant
advection and isotropic diffusion parameters are chosen as a D .cos ™; sin ™/ and
k D 10�6, respectively, and the domain is taken to be Œ0:0; 1:0��Œ0:0; 1:0� so that the
flow is convection-dominated. The domain is discretized by 31 � 31 nodes, which
gives a grid Péclet number much larger than unity.

Fig. 1 Comparison between
RKPM, explicit SU/PG, and
IG-RKPM in the model
problem. Markers indicate the
solution at nodal locations.
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Fig. 2 Problem statement for
advection skew to the
discretization.

Fig. 3 Advection skew to the discretization with ™ D atan.0:5/ for (a) RKPM, and (b) IG-RKPM.

First, the case of ™ D atan.0:5/ is considered, with RKPM and IG-RKPM
employed. As seen in Fig. 3, the magnitude of the RKPM solution is several
orders of magnitude greater than the exact solution (essentially pure advection of
the boundary condition), while IG-RKPM gives a stable solution. The values of
™ D atan.1:0/ and ™ D atan.2:0/ are then considered with IG-RKPM, where the
method exhibits stability in the presence of the fine boundary layers as shown in
Fig. 4. The slight overshoots in the solution are expected in linear methods which
do not have the variation diminishing property.
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Fig. 4 Advection skew to the discretization with IG-RKPM for (a) ™ D atan.1:0/, and (b) ™ D
atan.2:0/:

Fig. 5 Thermal boundary
layer problem statement.

4.3 Thermal Boundary Layer Problem

Consider the problem statement shown in Fig. 5 with linearly distributed advection
a D .2:0y; 0:0/, and diffusivity k D 7:0 � 10�4. The domain is taken as
Œ0:0; 1:0� � Œ0:0; 0:5� and is discretized by 31 � 16 nodes. This problem can be
interpreted as one exhibiting a thermal boundary layer on a steady flow between
two plates, where the top plate has unit velocity and the bottom plate is fixed. The
grid Péclet number calculated from the advection speed at the top surface of the
domain and the chosen nodal spacing is larger than unity. The RKPM and IG-RKPM
methods are considered, with the results shown in Fig. 6. Again, RKPM gives an
oscillatory solution while IG-RKPM gives a stable solution.

5 Conclusion

Meshfree methods offer smooth approximation spaces suitable for the gradient-type
stabilization employed for convection-dominated problems. While for linear finite
elements, all of the standard stabilization methods coincide due to vanishing higher
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Fig. 6 Solutions for the thermal boundary layer problem for (a) RKPM and (b) IG-RKPM.

order derivatives on element interiors, these methods can be properly constructed
by the RK approximation using linear basis. Gradient terms necessary, however,
are computationally expensive, due to the moment matrix inversion involved in the
gradients of meshfree shape functions. This problem is particularly exacerbated in
the G/LS and SGS methods where third order derivatives appear in the weak form
of the problem.

In this work, a new approach to construct a stable RKPM method for convection-
dominated problems is presented. Terms for the gradient-type stabilized methods are
implicitly introduced into the reproducing conditions under a unified framework that
can include the SU/PG, G/LS, and SGS methods. The implicit gradients completely
circumvent the costly derivatives otherwise necessary for stabilization. The only
deviation from the standard RKPM method is the modification of the constant vector
in the RK approximation for the test functions, and thus virtually no additional
computational cost is introduced, and implementation is simple. The benchmark
problems tested showed good performance of the proposed method and agreement
with solutions by explicit stabilization.
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