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Abstract: In the past two decades, meshfree methods have emerged into a new class of computational methods with considerable success. In
addition, a significant amount of progress has been made in addressing the major shortcomings that were present in these methods at the early
stages of their development. For instance, essential boundary conditions are almost trivial to enforce by employing the techniques now
available, and the need for high order quadrature has been circumvented with the development of advanced techniques, essentially eliminating
the previously existing bottleneck of computational expense in meshfree methods. Given the proper treatment, nodal integration can be made
accurate and free of spatial instability, making it possible to eliminate the need for a mesh entirely. Meshfree collocation methods have
also undergone significant development, which also offer a truly meshfree solution. This paper gives an overview of many classes of
meshfree methods and their applications, and several advances are described in detail. DOI: 10.1061/(ASCE)EM.1943-7889.0001176.
© 2017 American Society of Civil Engineers.

Author keywords: Meshfree methods; Particle methods; Galerkin meshfree methods; Collocation meshfree methods.

Introduction

The finite-difference method (FDM) and the finite-element
method (FEM) rely on a mesh (or stencil) to construct the local
approximation of functions and their derivatives for solving partial
differential equations (PDEs). A few drawbacks commonly en-
countered in these methods are:
• Time consuming in generating a quality mesh in arbitrary

geometry for desired accuracy;
• Difficulty in constructing approximations with arbitrary order of

continuity, making the solution of PDEs with higher order dif-
ferentiation or problems with discontinuities difficult to solve;

• Tediousness in performing h-adaptive or p-adaptive refinement;
and

• Ineffectiveness in dealing with mesh entanglement related
difficulties (such as those in large deformation and fragment-
impact problems).
Meshfree methods all share a common feature that alleviates

or eliminates these issues: the approximation of unknowns in
the PDE is constructed based on scattered points without mesh
connectivity. As shown in Fig. 1, the approximation function at
a point in FEM is constructed at the element-level natural coordi-
nate and then transformed to the global Cartesian coordinate,
whereas meshfree approximation functions are constructed using
only nodal data in the global Cartesian coordinates directly. These
compactly supported meshfree approximation functions form a par-
tition of unity subordinate to the open cover of the domain with
controllable orders of continuity and completeness, independent
from one another. Using this class of approximation functions, it

becomes possible to relax the strong tie between the quality of
the discretization and the quality of approximation in FEM, and
the procedures in h-adaptivity are significantly simplified. Special
basis functions can be embedded in the approximation to capture
essential characteristics of the PDE at hand, and arbitrary disconti-
nuities can be introduced into the approximation as well.

Generally speaking, meshfree methods have developed under
two branches of formulations:
• The Galerkin meshfree methods based on the weak form of

PDEs. While no mesh is needed in the construction of the
approximation, domain integration is required, and special tech-
niques to enforce essential boundary conditions are needed.
Advances in domain integration and enforcement of bound-
ary conditions are discussed in the section “Galerkin-Based
Meshfree Method”; and

• The collocation meshfree methods based on the strong form of
PDEs. Because of the ease of constructing smooth meshfree ap-
proximations, PDEs can be solved directly at the collocation
points without special domain integration and essential bound-
ary condition procedures, as will be presented in the section
“Strong Form Collocation-Based Meshfree Method.”
A wide variety of meshfree methods have been proposed over

the years. Fig. 2 summarizes the attributes of some selected meth-
ods, along with some mesh-based methods for comparison. The
table is roughly ordered by the dates the methods were proposed
(or when the first robust version was proposed), which also gives
some historical perspective. In Fig. 3, an alternative analysis is pre-
sented and made slightly more precise, where these methods are
shown at the intersection of the solution method (columns) and
the approximation employed (rows). In this paper, it is the authors’
intention to elucidate the relationship between the various meshfree
methods, and present advancements that have been made over the
years. Throughout the paper, the following abbreviations have been
introduced:
• CPDI: convected particle domain interpolation (Sadeghirad

et al. 2011);
• C-SPH: corrected SPH (Dilts 1999);
• DEM: diffuse element method (Nayroles et al. 1992);
• DNI: direct nodal integration;
• EFG: element free Galerkin (Belytschko et al. 1994b, 1995a;

Lu et al. 1994);
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Fig. 1. (a) Patching of a finite element shape function from local element domains; (b) a meshfree approximation function constructed directly in the
global Cartesian coordinates
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c Continually reconstructed
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e Employs diffuse derivatives (Bessa et al. 2014)
f Can construct for any integration.

Fig. 2. Attributes of selected mesh-based and meshfree methods
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• FEM: finite element method (Zienkiewicz and Taylor 1977);
• FMM: free mesh method (Yagawa and Yamada 1996);
• FPM: finite point method (Oñate et al. 1996a);
• GFD: generalized finite difference (Liszka and Orkisz 1980;

Liszka 1984);
• GFEM: generalized finite element method (Melenk 1995;

Strouboulis et al. 2001);
• GI: gauss integration;
• GIMP: generalized interpolation material point (Bardenhagen

and Kober 2004);
• GRKCM: gradient RKCM (Chi et al. 2013);
• HPC: hp clouds (Duarte and Oden 1996b, a);
• IGC: isogeometric collocation (Auricchio et al. 2010);
• IGA: isogeometric analysis (Cottrell et al. 2009; Hughes

et al. 2005);
• KC: kernel contact (Chi et al. 2015; Guan et al. 2011);
• L-RBCM: localized RBCM (Chen et al. 2008);
• LRPIM: local radial point interpolation method (Liu and

Gu 2001);
• LS: least squares;
• MaxEnt: maximum entropy (Arroyo and Ortiz 2006; Sukumar

2004);
• MFEM: meshless finite element method (Idelsohn et al. 2003f);
• MFS: method of finite spheres (De and Bathe 2000);
• MLPG: meshless local Petrov-Galerkin (Atluri and Zhu 1998);
• MLS: moving least squares (Lancaster and Salkauskas 1981;

Liszka 1984);

• MLSPH: moving least squares particle hydrodynamics
(Dilts 1999);

• MPM: material point method (Sulsky et al. 1994, 1995);
• MPS: moving particle semi-implicit (Koshizuka and Oka 1996);
• MQ: multiquadrics;
• M-SCNI: modified SCNI (Puso et al. 2008);
• M-SNNI: modified SNNI (Chen et al. 2007b);
• NEM: natural element method (Braun and Sambridge 1995;

Sukumar and Belytschko 1998);
• NSNI: naturally stabilized nodal integration (Hillman and

Chen 2016);
• NURBS: non-uniform rational B-splines;
• OTM: optimal transportation meshfree (Li et al. 2010);
• PD: peridynamics (Silling and Askari 2005; Silling et al. 2007);
• PFEM: particle finite element method (Idelsohn et al.

2003b, 2004);
• PFEM-2: second generation PFEM (Idelsohn et al. 2012,

2014);
• PPU: particle partition of unity method (Griebel and

Schweitzer 2000);
• PU: partition of unity;
• PUM: partition of unity method (Babuška and Melenk 1997;

Melenk and Babuška 1996);
• RBCM: radial basis collocation method (Hu et al. 2007; Kansa

1990a; b; Wong et al. 1999);
• RBF: radial basis function (Hardy 1971, 1990);
• RK: reproducing kernel (Liu et al. 1995b);

Solution Scheme (Discretization)

Approximation Weak form Strong form

Local 
Polynomial

Lagrangian 
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No 
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Direct 
derivatives FEM 

Smoothed 
derivatives SFEM 
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No 
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Direct derivatives EFG, MLPG, 
MLSPHc/C-SPHc

Diffuse derivativesa DEM Peridynamics
(PD)b, GFD 

VCI derivatives Meshfree VCI, 
Meshfree SCNI 

Enriched XEFG 

RK Lagrangian
Smoothed derivatives Meshfree SCNI
Direct derivatives RKPM RKCM 
Diffuse derivativesa GRKCM 

Continuously reconstructed SLRKPM 

PU
Polynomial enriched hp clouds (HPC), 

MFS 
Polynomial and/or other enriched PUM, PPU

MaxEnt Lagrangian MaxEnt method 
Continuously reconstructed OTM
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Lagrangian NEM 

Continuously reconstructed MFEM, 
PFEM

Radial basis functions RPIM, LRPIM RBCM

Weighted least squares FPM
Kernel approximation SPH3

WLS of pair-wise gradients MPS 
aImplicit, diffuse and synchronized derivatives, and generalized finite differences are equivalent, 
see the section “Derivative Approximations in Meshfree Methods”
bEmploys diffuse derivatives (Bessa et al. 2014)
cConsidered weak form here due to weakened approximation requirements.

Fig. 3. Methods shown at the intersection of approximation function and solution method
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• RKCM: reproducing kernel collocation method (Aluru 2000;
Hu et al. 2011);

• RKPM: reproducing kernel particle method (Chen et al. 1996;
Liu et al. 1995b);

• RPIM: radial point interpolation method (Wang and Liu 2002);
• SCNI: stabilized conforming nodal integration (Chen et al.

2001, 2002);
• SFEM: smoothed finite element method (Liu et al. 2007a);
• SGFEM: stable GFEM (Gupta et al. 2013, 2015);
• SLRKPM: semi-Lagrangian RKPM (Guan et al. 2009);
• SNNI: stabilized nonconforming nodal integration (Chen

et al. 2007b);
• SPH: smoothed particle hydrodynamics (Gingold and

Monaghan 1977; Lucy 1977);
• VCI: variationally consistent integration (Chen et al. 2013);
• VC-MSNNI: variationally consistent MSNNI (Hillman

et al. 2014);
• VC-NSNI: variationally consistent NSNI (Hillman and

Chen 2016);
• WLS: weighted least squares;
• XEFG: extended EFG (Rabczuk and Areias 2006; Rabczuk et al.

2007i);
• XFEM: extended finite element method (Belytschko and Black

1999; Moës et al. 1999); and
• XIGA: extended IGA (Benson et al. 2010; Ghorashi et al. 2012).

Early Development

The early development of meshfree methods can be traced back
to smoothed particle hydrodynamics (SPH) by Lucy (1977) and
Gingold and Monaghan (1977) for astrophysics modeling. SPH
was formulated by kernel estimation (Monaghan 1982, 1988) of
conservation equations. The method later gained traction in solid
mechanics as a way to solve problems difficult for mesh-based
methods such as fragment-impact problems (Benz and Asphaug
1995; Johnson et al. 1996; Libersky and Petschek 1991; Randles
and Libersky 1996). The accuracy, tensile instability, and spatial
instability of SPH have been examined (Belytschko et al. 2000;
Liu et al. 1995b; Swegle et al. 1994, 1995), and formulations have
been proposed to correct the deficiencies in SPH (Bonet and
Kulasegaram 2000; Dilts 1999; Monaghan 2000; Randles and
Libersky 1996, 2000). These later enhancements of SPH have mo-
tivated the development of many more modern meshfree methods.
A prime example is the introduction of RKPM (Liu et al. 1995b) as
a correction of SPH for enhanced consistency and stability.

Another branch of numerical methods for solving PDEs that do
not rely on a grid structure is the class of generalized finite differ-
ence (GFD) methods. One of the earliest finite difference methods
using scattered points is attributable to Jensen (1972). However,
a difficulty associated with this method was the selection of an
appropriate star (collection of neighbors) such that the resulting
matrix for determining weights at a point is not singular, analogous
to the moving least-squares (MLS) requirements (this is in fact not
a coincidence, see the section “Meshfree Approximation Func-
tions”). An algorithm was introduced to avoid this difficulty, and
also improve the accuracy of mixed derivatives (Perrones and Kao
1974). A robust GFD method by Liszka and Orkisz (Liszka and
Orkisz 1980; Liszka 1984) considered an arbitrary number of
neighbors for higher accuracy and matrix stability, resulting in an
overdetermined system solved by weighted least-squares. In mesh-
free terminology, this method employs second order basis with dif-
fuse derivatives for the solution of the strong form of the problem
(see the section “Derivative Approximations in Meshfree Meth-
ods”). Liszka later formalized the inclusion of the approximation

of the primary variable (Liszka 1984) and independently arrived
at the moving least-squares (MLS) approximation (Lancaster and
Salkauskas 1981) by Lancaster and Salkauskas. Many modern
meshfree methods originate from the employment of this approxi-
mation for solving PDEs.

Galerkin Meshfree Methods

The first general meshfree approach for solving boundary value
problems under the Galerkin framework was the diffuse-element
method (DEM) introduced by Nayroles, Touzot, and Villon, which
employed an MLS approximation for test and trial functions
(Nayroles et al. 1992). They also independently derived the MLS
approximation (Lancaster and Salkauskas 1981). In this method,
derivatives in the weak form are approximated by the differentia-
tion of a certain portion of the basis functions, which are consid-
ered diffuse derivatives. The section “Meshfree Approximation
Functions” gives an in depth discussion on the relationship between
diffuse derivatives and several other meshfree approximations.
Belytschko et al. (1994b, 1995a) and Lu et al. (1994) introduced
the element-free Galerkin (EFG) method as an improvement of
DEM. They introduced Lagrange multipliers to enforce boundary
conditions, and used the full derivative of the MLS approximation
functions in the Galerkin solutions of PDEs. Further, they intro-
duced higher order quadrature based on a background mesh
to achieve enhanced accuracy in the Galerkin solution. Taking ad-
vantage of the ability to embed discontinuities into the approxima-
tion without remeshing, as well as straightforward h-refinement,
EFG was effectively applied to fracture mechanics problems
(Belytschko and Tabbara 1996; Belytschko et al. 1994a, 1995a).

Motivated by wavelet analysis, Liu, Jun, and Zhang (Liu et al.
1995b) introduced the reproducing kernel particle method (RKPM)
based on the reproducing kernel (RK) approximation around the
same time as the EFG method was proposed (Fig. 2). They dem-
onstrated that the discrete version of the RK kernel estimate offered
favorable properties over DEM and SPH, and could serve as a cor-
rection to SPH, which is particularly inaccurate near boundaries.
It was shown by Chen et al. (1996) that the discretizations of
the continuous form of the RK approximation and the moment
matrix needs to be done in a consistent manner in order to preserve
polynomial reproducibility. A direct discrete reproducing kernel
approximation was then introduced (Chen et al. 1997) to avoid
the trouble of determining the integration weights based on the
continuous RK approximation. Error and convergence estimates
for RKPM with monomial bases have since been well established
(Chen et al. 2003; Han and Meng 2001; Liu et al. 1996a, 1997c).
Based on the RKPM method, a multiresolution extension has been
proposed (Liu and Chen 1995; Liu et al. 1996a, c, 1997a), as well
as a related framework that can yield synchronized convergence
and a hierarchical partition of unity (Li and Liu 1998, 1999b, a).
RKPM has been shown to be particularly effective for large defor-
mation problems (Chen and Wu 1997; Chen et al. 1996, 1998a,
2000a, e; Yoon and Chen 2002; Yoon et al. 2001), smooth contact
(Chen and Wang 2000a; Wang 2000; Wang et al. 2014), multibody
contact, and fragment-impact problems (Chen et al. 2011; Chi
et al. 2015; Sherburn et al. 2015), among others (see “Applications
of Meshfree Methods”). Adaptive refinement can also be imple-
mented with relative ease compared to the conventional mesh-based
methods (Liu and Chen 1995; Liu et al. 1997a; Rabczuk and
Belytschko 2005; Rabczuk and Samaniego 2008; You et al. 2003).

One major difference between meshfree and finite-element ap-
proximations is that the meshfree approximations such as MLS and
RK are constructed without the need of mesh topology and they are
typically rational functions. Domain integration of the weak form
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poses considerable complexity in the Galerkin meshfree method.
Employment of Gauss quadrature rules yields integration errors
when background calls do not coincide with the shape function
supports (Dolbow and Belytschko 1999). Conversely, direct nodal
integration results in rank deficiency and loss of accuracy. The
previously mentioned EFG and RKPM methods with Gauss quad-
rature or nodal integration do not pass the linear patch test for
nonuniform point distributions. A stabilized conforming nodal
integration (SCNI) has been introduced by Chen et al. (2001) to
ensure passing the linear patch test in arbitrary discretizations
and to remedy rank deficiency of direct nodal integration. More
recently, an extension of SCNI for quadratic basis functions has
been proposed (Duan et al. 2012). A generalization of conditions
for passing the linear patch test (for Galerkin exactness) to arbitrary
order has also been recently introduced by Chen, Hillman, and
Rüter under the framework of variational consistency (Chen et al.
2013). A variationally consistent integration (VCI) approach has
been proposed that can be used as a correction of any quadrature
rules such as nodal integration to achieve optimal rates of conver-
gence. Stabilization of nodal integration has also been proposed,
including adding a residual of the equilibrium equation to the
nodally-integrated potential energy functional (Beissel and
Belytschko 1996), the stress point method by taking derivatives
away from the nodal points (Randles and Libersky 2000), and
an approach based on an iterative correction of nodal integration
for passing the patch test in conjunction with a least-squares type
stabilization (Bonet and Kulasegaram 2000). Methods based on
implicit gradients embedded in the RK approximation as a stabi-
lization of SCNI, called gradient SCNI (G-SCNI) (Chen et al.
2007b) and implicit gradient expansion of nodal integration, named
naturally stabilized nodal integration (NSNI) (Hillman and Chen
2015) have also been proposed. An in depth discussion of progress
made on quadrature will be presented in the section “Domain
Integration in Galerkin Meshfree Methods.”

A series of meshfree methods have emerged based on the par-
tition of unity (PU) framework by Melenk and Babuška (Babuška
and Melenk 1997; Melenk and Babuška 1996). A general survey
of mathematical results concerning PU methods has been provided
(Babuška et al. 2003). Duarte and Oden introduced a meshfree
method called hp clouds based on PU, where the MLS approx-
imations were enriched extrinsically (adding additional degrees of
freedom in the PU approximation) with higher order complete
polynomials (Duarte and Oden 1996a). This gave the ability to per-
form p-adaptivity since bases could vary in space, in contrast to the
MLS-based methods where this would introduce a discontinuity.
The completeness of the approximation depends on the order of
the complete monomials in the higher order enrichment. They also
proposed p-refinement in the enrichment of MLS with constant
bases [using the Shepard function (Shepard 1968)]. This concept
was extended to FEM for an h-p finite-element method (Oden et al.
1998). An important offshoot of the PU method is the celebrated
XFEM (Belytschko and Black 1999; Moës et al. 1999), which is an
active area of research in finite elements.

The partition of unity finite-element method was later rede-
signed in a more general fashion and was labeled the generalized
finite-element method (GFEM) (Strouboulis et al. 2000a, b, 2001).
Efforts have been devoted to algorithms that ease the linear depend-
ency that can occur in PU methods, and adaptive integration tech-
niques have been proposed to enhance integration of enrichment
functions (Strouboulis et al. 2000a). A GFEM implementation has
been proposed where meshes that are completely independent of
geometry can be employed by using automatic generation of do-
main-conforming integration cells, with handbook enrichments for
features like corners, which greatly alleviates difficulty in meshing

for solving PDEs on complex domains (Strouboulis et al. 2000b,
2001). In this approach, opposite to many meshfree Galerkin meth-
ods, the approximation is mesh-based but the integration scheme is
meshfree. More recently, stable GFEM (SGFEM) has been pro-
posed that gives better conditioning of the stiffness matrix over
GFEM (Gupta et al. 2013, 2015). An approach where a local sol-
ution can be embedded in the global solution under the framework
of partition of unity to achieve computational efficiency and accu-
racy has also been recently introduced (Duarte and Kim 2008;
Gupta et al. 2012). In this global-local approach, the local solution
is patched together by the global partition of unity functions. This
method has been applied to fracture modeling (Kim et al. 2010;
Kim and Duarte 2015; Pereira et al. 2012).

Based on the partition of unity methods, Griebel and Schweitzer
(2000) introduced the particle-partition of unity method, which
considered the aspects of constructing a meshfree partition of unity
method under an arbitrary distribution of points. They systemati-
cally examined issues such as quadrature and constructing a PU
subordinate to open cover (Griebel and Schweitzer 2002a), solvers
and parallelization (Griebel and Schweitzer 2002b, 2003a), and
boundary conditions in this noninterpolatory method (Griebel and
Schweitzer 2003b).

In Galerkin meshfree methods, integration of the weak form
often performed by a background mesh [cf. (Belytschko et al.
1994b)]. The meshless local Petrov-Galerkin (MLPG) method
(Atluri and Shen 2002; Atluri and Zhu 1998) introduced by Atluri
and Zhu (1998) employed a local weak form for an MLS-based
meshfree method, where the weak form is formulated in local do-
mains and avoids background cell integration. The local domain
was selected to coincide with supports of test functions, resulting
in each row of the stiffness matrix being integrated over the local
support of the test functions. They have also extended this method
to a boundary integral technique (Zhu et al. 1998). De and Bathe
introduced the method of finite spheres (De and Bathe 2000, 2001)
as a special case of MLPG, with additional modifications to im-
prove boundary condition enforcement and quadrature.

A number of other Galerkin meshfree methods have been intro-
duced, a selection of methods is discussed here for the sake of brev-
ity. The natural-element methods (NEMs) (Braun and Sambridge
1995; Sukumar and Belytschko 1998) employ natural neighbor in-
terpolation, based on Voronoi diagrams of a set of arbitrarily dis-
tributed points. This includes the Sibson interpolants (Sibson 1980)
and Laplace interpolants (non-Sibsonian interpolants) (Belikov
et al. 1997), which are positive functions with partition of unity
and first order completeness. The radial point interpolation method
(RPIM) (Wang and Liu 2002) uses a combination of radial and pol-
ynomial basis functions, which gives completeness, the interpola-
tion property, and offers efficient derivative computation. The local
RPIM (LRPIM) (Liu and Gu 2001) employs the same approxima-
tion, but with a local weak form for a method without background
cells. Convex approximations for meshfree computation based on
the principle of maximum entropy (MaxEnt) (Jaynes 1957) to
achieve unbiased statistical influence of nodal data have been pro-
posed for the Galerkin solution of PDEs (Arroyo and Ortiz 2006;
Sukumar 2004). The approximation functions constructed by maxi-
mum entropy (a measure of uncertainty) subjected to monomial
reproducibility constraints are positive, can interpolate affine func-
tions exactly, and have a weak Kronecker-delta property at the
boundary. Based on the framework of optimal transport theory
(Benamou and Brenier 1999), the optimal transportation meshfree
(OTM) method (Li et al. 2010) has been introduced, which uses
maximum entropy approximations. In order to discretize the
equations, material points are employed for mass transport, and
MaxEnt is employed for mapping of configurations. The MaxEnt

© ASCE 04017001-5 J. Eng. Mech.
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approximation is continually reconstructed and has been applied to
fragment-impact problems (Li et al. 2012, 2013). Recently, higher
order versions of maximum entropy approximations have been de-
veloped (Cyron et al. 2009; González et al. 2010; Rosolen et al.
2013; Sukumar 2013). This approximation, as well as the RK
and MLS approximations, were recently generalized under a uni-
fied framework (Wu et al. 2011), and have been employed for con-
vex approximations and the weak Kronecker-delta property in the
meshfree method (Wang and Chen 2014; Wu et al. 2015; Zhuang
et al. 2014).

Several other methods employ a mesh in an unconventional
sense to alleviate mesh distortion difficulties in the mesh-based
methods. Based on the particle-in-cell methods by Harlow,
Brackbill and coauthors (Brackbill and Ruppel 1986; Brackbill
et al. 1988; Harlow 1964), Sulsky et al. introduced the material
point method (Sulsky and Schreyer 1996; Sulsky et al. 1994,
1995), which employs an Eulerian background mesh for discreti-
zation of PDEs while the masses, stresses, and state variables live
and are updated at Lagrangian points. The generalization of MPM
(Bardenhagen and Kober 2004) to the generalized interpolation
material point (GIMP) method avoids the cell-crossing instability
due to rough interpolation functions in MPM by employing particle
functions that smooth the grid approximation. The convected par-
ticle domain interpolation (CPDI) method has been developed to
improve GIMP by allowing the particle domains to distort for more
accuracy under shear deformation and large rotations (Sadeghirad
et al. 2011). CPDI also incorporates a modification to the back-
ground discretization to avoid the expensive integration that would
be necessary for integrating over the distorted particle domains.
The free mesh method (Yagawa and Yamada 1996) reconstructs
nodal connectivity of a point cloud for FEM computation on the
fly. Similarly, the meshless finite-element method (Idelsohn et al.
2003f) and the particle finite-element method (PFEM) (Idelsohn
et al. 2003b, 2004) reconstruct Delaunay tessellations (Idelsohn
et al. 2003a) that give bounded OðnÞ time for efficiency, and use
non-Sibsonian interpolation (Belikov et al. 1997). In more recent
developments, a second generation of PFEM (PFEM-2) has been
proposed that uses a fixed mesh that allows much larger time steps
and avoids mesh reconstruction (Idelsohn et al. 2012, 2014).

Collocation Meshfree Methods

An alternative approach to address domain integration issues in
the Galerkin meshfree method is by collocation of strong forms.
In fact, collocation methods have been around eight decades (Barta
1937; Frazer et al. 1937; Lanczos 1938; Slater 1934). Although
methods for interpolation of scattered data have existed for at least
five decades (cf. Franke 1982 and references therein), it appears
that employing them for strong form collocation methods for solv-
ing PDEs did not emerge until Kansa’s seminal work (Kansa
1990a, b). The radial basis collocation method (RCBM) (Kansa
1990a, b) employs radial basis functions in the numerical solution
of PDEs using strong form collocation. The originator of the radial
basis function (RBF) is Hardy (Hardy 1971, 1990) who introduced
them for interpolation problems. Hardy showed that multiquadric
RBFs are related to a consistent solution of the biharmonic poten-
tial problem and thus have a physical foundation (Hardy 1990). It
has been shown that RBFs are related to prewavelets (Buhmann
and Micchelli 1992; Chui et al. 1996) and multiquadric RBFs
and their partial derivatives have exponential convergence (Madych
and Nelson 1990). The theoretical foundation of the RBF method
for solving PDEs has been established (Franke and Schaback
1998), and error estimates for the solution of smooth problems
have been derived (Wendland 1999). A radial basis collocation

method has been applied to singularity problems (Hu et al. 2005),
Hamilton-Jacobi equations (Cecil et al. 2004), and fourth-order
elliptic and parabolic problems (Li 2005). The weights for the
weighted radial basis collocation equations for optimal conver-
gence have been derived (Hu et al. 2007). Methods for incorporat-
ing weak and strong discontinuities have also been proposed (Chen
et al. 2009; Wang et al. 2010), and mixed formulations have been
developed for constraint problems (Chi et al. 2014).

Most RBFs with collocation lead to very ill-conditioned discrete
systems. Remedies have been suggested by the use of multizone
decomposition of the domain (Wong et al. 1999). It has been ob-
served that the condition numbers of the discrete system of direct
collocation methods can be greatly reduced by domain decompo-
sition (Kansa and Hon 2000). The shape parameter of an RBF
determines the locality of the RBF function and thus greatly influ-
ences the linear dependency and in turn the condition number of the
discrete system (Hon and Schaback 2001). Localized RBFs have
been introduced (Wendland 1995) and truncated multiquadric
RBFs have been proposed by Kansa and Hon (2000) to reduce
the bandwidth of the discrete system. Global and local RBFs have
been investigated (Fasshauer 1999) and smoothing methods and
multilevel algorithms have been suggested. More recently, intro-
ducing compactly supported partition of unity functions in conjunc-
tion with RBFs has been proposed to alleviate ill-conditioning
while maintaining exponential convergence (Chen et al. 2008).

Alternatively, approximations such as MLS or RK can be
employed for the collocation solution of PDEs, which naturally in-
troduces compactly supported approximations. The finite-point
method (Oñate and Idelsohn 1998; Oñate et al. 1996a, b) employs
weighted least-squares approximations at each node. Collocation
methods based on the RK approximation have also been introduced
(Aluru 2000; Hu et al. 2011). It has been shown that strong form
collocation methods based on approximations with monomial
reproducing conditions exhibit algebraic convergence rates (Hu
et al. 2011). Implicit gradients (Li and Liu 1999b, a) have been
introduced to ease the burden of computing second order deriva-
tives of RK shape functions in the collocation of second order
PDEs (Chi et al. 2013).

The moving particle semi-implicit method (Koshizuka and Oka
1996) has been proposed as an improvement of SPH in the simu-
lation of incompressible fluids. A Lagrangian description is utilized
such that the tracking of free surfaces is handled naturally. Deriva-
tive approximations based on a weighted average of gradients
calculated for each particle pair are employed to solve the Navier-
Stokes equation explicitly, and the Poisson problem for pressure is
solved implicitly. This method has been applied to the analysis
of dam breaking (Koshizuka and Oka 1996), breaking waves
(Koshizuka et al. 1998), and vapor explosions (Koshizuka et al.
1999), among others. More recently, several stability enhancements
have been proposed for this method (Ataie-Ashtiani and Farhadi
2006; Khayyer andGotoh 2010, 2011;Kondo andKoshizuka 2011).

A strong form-based meshfree method peridynamics (Silling
and Askari 2005) has been proposed based on the reformulation
of governing solid mechanics equations into nonlocal integral
equations (Silling 2000). Because the governing equations do not
contain derivatives, the formulation accommodates the presence of
discontinuities without modification. This method has been shown
to be a simple and effective approach in modeling fracture and frag-
mentation as it does not employ explicit tracking of cracks or en-
richment functions. A state-based peridynamics (a generalization
of the original bond-based method) has been proposed (Silling
et al. 2007) to allow standard constitutive models to be employed
with the method. Recently, plasticity, viscoplasticity, and con-
tinuum damage mechanics have been incorporated in this context
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(Foster et al. 2010; Tupek et al. 2013; Warren et al. 2009). Peridy-
namics has been shown to converge to the local model when the
length-scale goes to zero (Silling and Lehoucq 2008). Very re-
cently, this method has been shown to be related to classical mesh-
free methods (Bessa et al. 2014), where it was demonstrated that for
uniform discretizations, the deformation gradient in peridynamics
is equivalent to one constructed by implicit gradients with quadratic
basis, or Savitzky-Golay filters (Savitzky and Golay 1964).

This paper is organized as follows. MLS and RK type approx-
imations are first introduced in the section “Meshfree Approxima-
tion Functions,” to demonstrate the unique properties of this class
of approximations that rely only on a point discretization, and elu-
cidate the relationship between several meshfree approximations
commonly employed. For consistency in presenting the procedures
of formulating discrete meshfree equations, and to introduce the
recent advances in meshfree solution procedures and their appli-
cations, the RK approximation is generally employed throughout
the paper although other types of meshfree approximations are
available as described previously. In the section “Galerkin-Based
Meshfree Method,” the Galerkin meshfree method is presented,
and the associated approaches for imposing the essential boundary
conditions are discussed. Recent advances in domain integration
and the associated convergence, stability, and efficiency issues are
also addressed. An alternative approach for solving PDEs by strong
form collocation with meshfree approximations is presented in
the section “Strong Form Collocation-Based Meshfree Method.”
The well-established radial basis collocation method and the most
recent reproducing kernel collocation methods are discussed, and
their convergence and stability properties are outlined. Various
meshfree formulations for large deformation problems are intro-
duced in the section “Meshfree Method for Large Deformation
Problems,” and the recent developments of meshfree-based kernel
contact formulations and numerical algorithms are also presented.
Several application problems in hyperelasticity, plasticity, damage,
contact, and fragment-impact are given in the section “Applications
of Meshfree Methods” to demonstrate the effectiveness of meshfree
methods compared to the conventional finite-element methods. The
paper concludes with closing remarks in the section “Conclusions
and Outlook.”

Meshfree Approximation Functions

In this section, several approximation functions employed in mesh-
free methods are reviewed. Although there are many, for brevity, a
few representative meshfree approximations have been chosen as
they form the basis for many Galerkin-based and collocation-based
meshfree methods.

Approximations Based on Least-Squares Methods

Let the domain of interest Ω̄ ¼ Ω ∪ ∂Ω be discretized by a set of
Np points S ¼ fx1; : : : ;xNpjxI ∈ Ω̄g with corresponding point
numbers that form a set Z ¼ fIjxI ∈ Sg. The weighted least-
squares approximation of a set of sample data fðxI ; uIÞgI∈Z near
x̄, denoted by uhx̄ðxÞ, can be expressed as

uhx̄ðxÞ ¼
Xn
i¼1

piðxÞbiðx̄Þ ¼ pðxÞTbðx̄Þ ð1Þ

where fpiðxÞgni¼1 is the set of basis functions; and fbiðx̄Þgni¼1 are
the corresponding coefficients that are functions of the local position
x̄. The coefficients fbiðx̄Þgni¼1 are obtained by the minimization of a
weighted least-squares measure, sampled at the discrete points in S

Jx̄ ¼
X
I∈Z

waðx̄ − xIÞ½pTðxIÞbðx̄Þ − uI �2 ð2Þ

where waðx̄ − xIÞ is a weight function with compact support
ωI ¼ fxjwaðx − xIÞ ≠ 0g; and the support size is denoted as a.
The cardinality of the set of point numbers of neighbors of x, Gx ¼
fIjwaðx − xIÞ ≠ 0g defines m neighbors of x whose weight
functions waðx − xIÞ are nonzero at x.

Minimization of Jx̄ with respect to bðx̄Þ leads to

bðx̄Þ ¼ Aðx̄Þ−1
X
I∈Gx̄

waðx̄ − xIÞpðxIÞuI;

Aðx̄Þ ¼
X
I∈Gx̄

pðxIÞpTðxIÞwaðx̄ − xIÞ ð3Þ

Substituting Eq. (3) into the local approximation in Eq. (1) the
weighted least squares (WLS) approximation can be expressed as

uhx̄ðxÞ ¼
X
I∈Gx̄

ΨIðx̄;xÞuI ;

ΨIðx̄;xÞ ¼ pðxÞTAðx̄Þ−1pðxIÞwaðx̄ − xIÞ ð4Þ

The WLS approximation constructs a polynomial function (as a
function of x), which is a least-squares fit of the local data near x̄,
with each data point weighted with waðx̄ − xIÞ. In the finite-point
method (Oñate et al. 1996a), the WLS approximation is employed
at each nodal point (setting x̄ ¼ xI for each node I).

An interesting case is obtained if x̄ → x in Eqs. (1)–(3). The
approximation is then no longer defined with respect to some point
in the domain x̄, but is only a function of x, and thus a global
approximation is obtained in contrast to WLS. Essentially, for
any given point x, one finds a weighted least squares fit of the local
data, but it is never evaluated anywhere else like in WLS. This
approximation is termed the moving-least squares (MLS) approxi-
mation (Lancaster and Salkauskas 1981), which is obtained by
letting x̄ → x in Eqs. (1)–(3):

uhðxÞ ¼
X
I∈Gx

ΨIðxÞuI;

ΨIðxÞ ¼ pðxÞTAðxÞ−1pðxIÞwaðx − xIÞ;
AðxÞ ¼

X
I∈Gx

pðxIÞpTðxIÞwaðx − xIÞ ð5Þ

The authors would like to provide remarks as follows:
• By setting waðx̄ − xIÞ ¼ 1, one obtains the least-squares (LS)

approximation

uhðxÞ ¼
X
I∈Z

ΨIðxÞuI;

ΨIðxÞ ¼ pðxÞTA−1pðxIÞ;
A ¼

X
I∈Gx

pðxIÞpTðxIÞ ð6Þ

• The relationship between the least squares (LS), weighted
least squares (WLS), and moving least squares (MLS) approx-
imations is summarized in Table 1 (Chen and Belytschko 2011);

• In the case that m ¼ n minimization of Eq. (2) leads to the solu-
tion pTðxIÞbðxIÞ ¼ uI , equivalent to enforcing interpolation of
the data. In this context, it has been shown that the finite-
element approximation can be interpreted as a least-squares
fit of the nodal values in each element with m ¼ n (Nayroles
et al. 1992);

• In the case m > n a weighted least-squares fit of the data is
obtained. This means that the MLS functions fΨIðxÞgI∈Z are
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not interpolants, and uI is not the nodal value of uhðxÞ,
i.e., uhðxIÞ ≠ uI . The imposition of Dirichlet boundary condi-
tions in the Galerkin approximation requires a different ap-
proach than in FEM, and will be discussed in the section
“Enforcement of Essential Boundary Conditions”;

• Choosing constant basis pðxÞ ¼ f1g in MLS results in a
Shepard function (Shepard 1968);

• The order of continuity in the weight function determines the
order of continuity in the MLS approximation. The weight func-
tion is directly analogous to the kernel function in the RK
approximation, so the discussion of constructing weights is de-
ferred to section “Construction of Weight Functions and Kernel
Functions for MLS and RK”;

• If the basis function vector consists of complete monomials,
that is, pTðxÞ ¼ fxαgnjαj¼0

, xα ≡ xα1

1 · xα2

2 ; : : : ; xαd
d , jαj ¼P

d
i¼1 αi, then the approximation in Eq. (5) is nth order completeX

I∈Gx

ΨIðxÞpðxIÞ ¼ pðxÞ ð7Þ

• At any given point x, a sufficient number of points’weight func-
tions need to cover x for AðxÞ to be invertible. In addition, the
points’ position cannot be collinear (or coplanar in three dimen-
sions) so that a linearly dependent system is avoided, see Liu
et al. (1997c) for details; and

• For better conditioning of AðxÞ, MLS with shifted and normal-
ized bases can be considered

ΨIðxÞ ¼ pð0ÞTAðxÞ−1p
�
x − xI

a

�
waðx − xIÞ;

AðxÞ ¼
X
I∈Gx

p

�
x − xI

a

�
pT

�
x − xI

a

�
waðx − xIÞ ð8Þ

The MLS approximation in Eq. (5) was introduced for surface
fitting through a given data set fðxI ; uIÞgI∈Z (Lancaster and
Salkauskas 1981; Liszka 1984). This approach was later rediscov-
ered in the diffuse-element method (Nayroles et al. 1992) for solv-
ing PDEs, where ΨIðxÞ is used as an approximation function, and
uI in Eq. (5) became the unknown coefficients to be solved by the
Galerkin procedure. In the diffuse-element method, derivatives in
the weak form are approximated by the differentiation of the basis
functions in Eq. (1), which are considered diffuse derivatives,
which will be discussed further in the section “Derivative Approx-
imations in Meshfree Methods.”

The celebrated element free Galerkin method by Belytschko
(Belytschko 1994b, 1995a; Lu et al. 1994), which is regarded as
the pioneering work that popularized meshfree methods, is an im-
provement of DEM where the full derivatives of the MLS approxi-
mation are used in the Galerkin method. TheMLS approximation is
also employed in MLPG (Atluri and Zhu 1998), moving least
squares particle hydrodynamics (MLSPH) (Dilts 1999), moving

least squares RKPM (Li and Liu 1996; Liu et al. 1997c), hp clouds
(Duarte and Oden 1996b, a), and the finite-point method (Oñate
et al. 1996a) among others (Fig. 2).

Kernel Estimate

The concept of a kernel estimate (KE) was first introduced by Lucy
(1977) and Gingold and Monaghan (1977) as a starting point of
formulating SPH. Although in SPH the kernel estimate is applied
directly to a PDE, the smoothing function used in this process plays
the same role as the test function in the Galerkin approximation. To
examine the completeness in the KE, consider the kernel estimate
of a function uðxÞ, denoted by uhðxÞ, as

uhðxÞ ¼
Z
Rd

uðsÞφaðx − sÞds ð9Þ

where φaðxÞ is a kernel function (called a smoothing function in
SPH) with support measure a. If the compactly supported kernel
φaðxÞ mimics a delta function
1. φaðxÞ → δðxÞ as a → 0; and
2. ∫φaðxÞdΩ ¼ 1.

then the kernel estimate of a function when a → 0 can be ob-
tained by replacing φaðx − sÞ by δðx − sÞ in Eq. (9), and thus
uhðxÞ → uðxÞ as a → 0.

Considering a finite domain, the integration in Eq. (9) can then
be carried out numerically at the set of points S, as before, as

uhðxÞ ¼
Z
Ω
ϕaðx − sÞuðsÞds

≃ X
I∈Gx

ϕaðx − xIÞΔVIuI ð10Þ

The approximation in Eq. (10) can be written in terms of KE
shape functions ΨIðxÞ

uhðxÞ ¼
X
I∈Gx

ΨIðxÞuI;

ΨIðxÞ ¼ ϕaðx − xIÞΔVI ð11Þ

For kernels with properties such as normalization and sym-
metry, the KE approximation can satisfy partition of unity or even
first order completeness under certain conditions such as in uniform
node distributions of the interior of the domain. However, near the
boundary and in irregular node distributions, partition of unity is
not satisfied in general, as illustrated in Fig. 4. This has motivated
the development of several corrections to SPH [there are numerous
reviews, refer to Li and Liu (2007) for more details] and alternative
meshfree methods such as RKPM (Chen et al. 1996; Liu et al.
1995a, b).

Table 1. Comparison of LS, WLS, and MLS Approximations

Method Approximation Least-squares measure Least-squares approximation

LS uhðxÞ ¼ pðxÞTb J ¼ P
I∈Z½pTðxIÞb − uI �2 uhðxÞ ¼ pðxÞTA−1P

I∈ZpðxIÞuI
A ¼ P

I∈ZpðxIÞpTðxIÞ
WLS uhx̄ðxÞ ¼ pðxÞTbðx̄Þ Jx̄ ¼ P

I∈Gx̄
waðx̄ − xIÞ½pTðxIÞbðx̄Þ − uI �2 uhx̄ ¼ pðxÞTA−1ðx̄ÞPI∈Gx̄

pðxIÞwaðx̄ − xIÞuI
Aðx̄Þ ¼ P

I∈Gx̄
pðxIÞpTðxIÞwaðx̄ − xIÞ

MLS uhðxÞ ¼ pðxÞTbðxÞ Jx ¼ P
I∈Gx

waðx − xIÞ½pTðxIÞbðxÞ − uI �2 uhðxÞ ¼ pðxÞTAðxÞ−1PI∈Gx
pðxIÞwaðx − xIÞuI

AðxÞ ¼ P
I∈Gx

pðxIÞpTðxIÞwaðx − xIÞ
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Reproducing Kernel Approximation

The reproducing kernel particle method (Chen et al. 1996; Liu et al.
1995a, b) was formulated based on the reproducing kernel (RK)
approximation under the Galerkin framework. The RK approxima-
tion (Liu et al. 1995a, b) was proposed for solving PDEs to improve
the accuracy of the SPH method for finite domain problems. In this
method, the kernel function in the kernel estimate was modified by
introducing a correction function to allow reproduction of various
functions

uhðxÞ ¼
Z
Ω
Φðx;x − sÞuðsÞds;

Φðx;x − sÞ ¼ ϕaðx − sÞCðx;x − sÞ;
Cðx;x − sÞ ¼ PTðx − sÞcðxÞ ð12Þ

where Cðx;x − sÞ is the correction function. The vector Pðx − sÞ
forms a basis, while the coefficients cðxÞ are solved for by consid-
ering the Taylor expansion of uðsÞ

uðsÞ ¼
X∞
jαj¼0

ð−1Þα
α!

ðx − sÞα∂αuðxÞ ð13Þ

where α is a multi-index with the notation α¼ðα1;α2; :::;αdÞ,
jαj¼α1þα2þ ···þαd; xα¼xα1

1 ·xα2

2 ; :::;xαd
d ; α!¼α1!α2!; :::;αd!;

and ∂α ¼ ∂α1∂α2 ; : : : ;∂αd=∂xα1

1 ∂xα2

2 ; : : : ;∂xαd
d . Substituting

Eq. (13) into the kernel estimation in Eq. (12) leads to

uhðxÞ ¼ ~m0ðxÞuðxÞ þ
X∞
jαj¼1

ð−1Þα
α!

~mαðxÞ∂αuðxÞ;

~m0ðxÞ ¼
Z
Ω
Φðx; x − sÞds;

~mαðxÞ ¼
Z
Ω
ðx − sÞαΦðx; x − sÞds ð14Þ

For nth order completeness, the following conditions for the
moments ~mαðxÞ should be satisfied

~m0ðxÞ ¼ 1;

~mαðxÞ ¼ 0; jαj ¼ 1; : : : ; n ð15Þ

These conditions can be expressed as�Z
Ω
Pðx − sÞPTðx − sÞds

�
cðxÞ ¼ Pð0Þ ð16Þ

Solving for cðxÞ, one obtains the continuous reproducing kernel
approximation

uhðxÞ ¼
Z
Ω
Φðx;x − sÞuðsÞds;

Φðx;x − sÞ ¼ ϕaðx − sÞPTð0ÞM−1ðxÞPðx − sÞ;

MðxÞ ¼
Z
Ω
Pðx − sÞPTðx − sÞds ð17Þ

where MðxÞ is the moment matrix; the term comes from the
vanishing moments of the Taylor expansion of uðsÞ.

In practice, numerical integration must be employed in order to
form an approximation, which can be carried out as

uhðxÞ ¼
X
I∈Gx

Φðx;x − xIÞuIΔVI ≡
X
I∈Gx

ΨIðxÞuI ;

Φðx;x − xIÞ ¼ ϕaðx − xIÞPTð0ÞM−1ðxÞPðx − xIÞ;
MðxÞ ¼

X
I∈Gx

Pðx − xIÞPTðx − xIÞΔVI ð18Þ

The shape functions in Eq. (18) and their summation are shown
in Fig. 5 for n ¼ 1 for illustration, where the same kernel as the KE
is employed, demonstrating that the correction corrects incomplete-
ness in the KE approximation near boundaries in uniform discre-
tizations. The KE and corresponding RK shape functions and their
summation is shown in Fig. 6 for a nonuniform discretization,
which demonstrates that the RK approximation also corrects for
incompleteness in the KE in nonuniform node distributions as well.
The RK approximation can also provide arbitrarily higher order
completeness if desired.

Chen et al. (1996) showed that the numerical integration of the
moment matrix and the RK approximation in Eq. (17) must be
evaluated in a consistent manner [i.e., using the same quadrature
weights ΔVI in Eq. (18)] in order to preserve the consistency of
the approximation. A discrete reproducing kernel approximation
was then introduced that satisfies the reproducing conditions while
omitting the quadrature weights (Chen et al. 1997)

uhðxÞ ¼
X
I∈Gx

ΦIðxÞuI ;

ΨIðxÞ ¼ pTðx − xIÞcðxÞϕaðx − xIÞ ð19Þ

Under the discrete framework, ϕaðx − xIÞ plays the same role
as the weight function waðx − xIÞ in MLS. The coefficient vector
cðxÞ is obtained by enforcing the exact reproduction of the bases,
that is, if uI ¼ piðxIÞ, then uhðxÞ ¼ piðxÞ
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Fig. 4. Partition of unity check of KE approximation in (a) uniform discretization; (b) nonuniform discretization
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X
I∈Gx

ΦIðxÞpðxIÞ ¼ pðxÞ ð20Þ

When fpiðxÞgni¼1 is a set of complete monomials, obtaining
cðxÞ from Eq. (20) yields the same approximation as MLS in
Eq. (5), and the remarks in the section “Approximations Based
on Least-Squares Methods” apply. Conversely, if nonmonomial
bases are used as fpiðxÞgni¼1, solving cðxÞ from Eq. (20) yields
a different approximation than MLS. Further, the RK approxima-
tion can be extended to achieve synchronized convergence (Li and
Liu 1998, 1999b, a) and implicit gradient approximations (Chen
et al. 2004), which deviate from the MLS approximation as will
be discussed in the section “Derivative Approximations in Mesh-
free Methods.” Detailed discussions of RK approximation proper-
ties can be found in the literature [cf. (Han et al. 2002; Liu et al.
1996b, 1997c)]. The RK approximation is the basis of the repro-
ducing kernel particle method (RKPM) (Chen et al. 1996; Liu et al.
1995b), the reproducing kernel collocation method (RKCM)
(Hu et al. 2011), among others (Figs. 2 and 3).

Construction of Weight Functions and Kernel
Functions for MLS and RK

Hereafter the terms kernel and weights are used interchangeably, as
they play the exact same role in the least squares of Eqs. (1) and (2)
and discrete RK of Eqs. (19) and (20) approximations. Typically
kernel functions are chosen as smooth, compactly supported func-
tions. For example, the cubic B-spline kernel function shown in
Fig. 7 is

ϕaðx − sÞ≡ ϕaðzÞ ¼

8>>>><
>>>>:

2

3
− 4z2 þ 4z3 for 0 ≤ z ≤ 1

2

4

3
− 4zþ 4z2 − 4

3
z3 for

1

2
≤ z ≤ 1

0 for z > 1

;

z ¼ jx − sj
a

ð21Þ

A multidimensional kernel function ϕaðx − xIÞ can be
constructed by using the kernel function in one-dimension with
box support as

ϕaðx − xIÞ ¼
Yd
i¼1

ϕaiðxi − xiIÞ ð22Þ

Alternatively, one can construct a multidimensional kernel with
spherical support from the one-dimensional kernel as

ϕaðx − sÞ ¼ ϕaðzÞ; z ¼ kx − sk
a

ð23Þ

The box support in Eq. (22) and spherical support in Eq. (23) are
illustrated in Fig. 8.
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Fig. 5. KE and RK approximations in a uniform discretization: (a) shape functions; (b) partition of unity check
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Fig. 6. KE and RK approximations in a nonuniform discretization: (a) shape functions; (b) partition of unity check
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Fig. 7. Kernel function

© ASCE 04017001-10 J. Eng. Mech.

 J. Eng. Mech., -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

02
/0

8/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Partition of Unity Methods

The hp clouds (HPC) (Duarte and Oden 1996b, a) and the
generalized finite-element method (GFEM) (Duarte et al. 2000;
Strouboulis et al. 2001) were developed based on the general
framework of the partition of unity (Babuška and Melenk 1997;
Melenk and Babuška 1996). The partition of unity property is
essential for convergence in Galerkin approximation of PDEs
(Babuška and Melenk 1997). Let a domain be covered by overlap-
ping patches ωI , Ω̄ ⊂∪I∈Z ωI , each of which is associated with a
function that is nonzero only in ωI , and has the following property:X

I∈Gx

Ψ0
I ðxÞ ¼ 1 ð24Þ

An example of a partition of unity function is the Shepard
function. The partition of unity can be used as a paradigm for
construction of approximation functions with desired order of
completeness or with enrichment of special bases representing
characteristics of the PDEs. An example of PU is the following
approximation (Babuška and Melenk 1997):

uhðxÞ ¼
X
I∈Gx

Ψ0
I ðxÞ

�Xk
i¼1

aiIPiðxÞ þ
Xl

i¼1

qiIgiðxÞ
�

ð25Þ

where fPiðxÞgki¼1 are monomial bases used to impose complete-
ness; and fqiIðxÞgli¼1 are other enhancement functions. Eq. (25)
is called an extrinsic adaptivity.

MLS and RK with constant basis yields a PU function Ψ0
I ðxÞ,

and MLS and RK with complete monomials of degree k, denoted as
Ψk

I ðxÞ, can be viewed as PU with intrinsic enrichment (adding
functions to the bases) (Belytschko et al. 1996b). Duarte and Oden
(1996a) extended PU with extrinsic refinement as follows:

uhðxÞ ¼
X
I∈Gx

Φk
I ðxÞ

�
uI þ

Xl

i¼1

biIqiðxÞ
�

ð26Þ

where qiðxÞ is an extrinsic basis which can be a monomial basis
of any order greater than k or a special enhancement function. The
extrinsic adaptivity allows the basis to vary from node to node,
whereas intrinsic basis in MLS and RK cannot be changed with-
out introducing a discontinuity. A good overview and compari-
son of the meshfree approximations discussed can be found in the
literature [cf. (Belytschko et al. 1996b; Li and Liu 2007; Liu
2009)]. A reproducing kernel element method (RKEM) that uses
finite element shape functions as the PU function with enriched

bases has been proposed to achieve combined advantages of FEM
(Kronecker-delta property) and polynomial reproducibility (Liu
et al. 2004).

Derivative Approximations in Meshfree Methods

Several techniques have been employed for approximating deriv-
atives in meshfree methods. Remarkably, though several research-
ers independently arrived at various approximations that seem
unique, all of the approximations discussed in this paper are very
closely related, and in most cases equivalent. The derivations of
these methods can be unified and made clear under the discrete
RK/MLS approximation with nonshifted monomial basis.

Direct Derivatives
The simplest way to obtain an approximation of derivatives is
to directly differentiate an approximation of the primary variable.
In this way, the derivatives in the solution of PDEs are consistent
with the approximation. This was first introduced in the EFG
method (Belytschko et al. 1994b) for solving the PDEs with MLS.
If the MLS approximation in Eq. (5) is considered, an approxima-
tion for the derivative can be obtained by differentiating the
approximation of the primary variable

∂αuðxÞ ≃ ∂αuhðxÞ ¼
X
I∈Gx

∂αΨIðxÞuI ;

∂αΨIðxÞ ¼ ∂αpðxÞTAðxÞ−1pðxIÞwaðx − xIÞ
þ pðxÞT∂αAðxÞ−1pðxIÞwaðx − xIÞ
þ pðxÞTAðxÞ−1pðxIÞ∂αwaðx − xIÞ ð27Þ

where α is a multi-index. The cost of computing the previous equa-
tion is generally high because the cost in computing MLS/RK
shape functions is mostly comprised of matrix operations (Hu et al.
2009). Thus, differentiation of AðxÞ−1, and the many matrix oper-
ations involved makes this type of derivative computationally ex-
pensive. Conversely, using these definitions, one is able to obtain
higher accuracy in the solution of PDEs than diffuse derivatives
used in DEM (Belytschko et al. 1994b). The direct derivative is
employed in most Galerkin and collocation methods.

Diffuse Derivatives
In the diffuse-element method (Nayroles et al. 1992), derivatives in
the Galerkin equation are approximated by diffuse derivatives of
uhðxÞ. In this method, when differentiating the MLS approxima-
tion, the derivatives of the coefficients of the bases in Eq. (1) are
neglected, which actually vary due to the moving nature of the

Fig. 8. Supports of the two-dimensional kernel function: (a) rectangular; (b) circular
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approximation (x̄ → x). To make this clear, examining Eqs. (1) and
(5) one can observe that for the MLS approximation

uhðxÞ ¼ pðxÞTAðxÞ−1
X
I∈Gx

pðxIÞwaðx − xIÞuI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bðxÞ

ð28Þ

In the diffuse derivatives, the derivatives of uðxÞ are approxi-
mated as

∂αuðxÞ ≃ ∂αpðxÞTbðxÞ
¼ ∂αpðxÞTAðxÞ−1

X
I∈Gx

pðxIÞwaðx − xIÞuI

≡ X
I∈Gx

Ψα
I ðxÞuI ð29Þ

By employing Eq. (29) the approximation to ∂αuðxÞ is just as
smooth as the approximation to uðxÞ, and it retains the complete-
ness properties of the true derivative ∂αuhðxÞ (Nayroles et al.
1992). One other advantage of this method is that taking derivatives
of AðxÞ−1 is circumvented, although at the cost of accuracy in the
solution of PDEs as mentioned earlier.

The diffuse derivative can be derived as follows. Rather than
differentiating the approximation of the primary variable to obtain
an approximation of derivatives, one can consider constructing an
approximation to the derivative directly. First, at a given fixed point
x̄, one can construct a weighted least-squares approximation as in
Eq. (4). Then, an approximation to ∂αuðxÞ at x̄, can be obtained by
differentiation of that approximation with respect to the moving
variable x

∂αuðxÞ ≃ ∂αuhx̄ðxÞ ¼
X
I∈Gx̄

∂αΨIðx; x̄ÞuI;

∂αΨIðx; x̄Þ ¼ ∂αpðxÞTAðx̄Þ−1pðxIÞwaðx̄ − xIÞ;
Aðx̄Þ ¼

X
I∈Gx̄

pðxIÞpTðxIÞwaðx̄ − xIÞ ð30Þ

Finally, the approximation is made global by taking x̄ → x as in
the MLS approximation

∂αuðxÞ ≃ ½∂αuhx̄ðxÞ�x̄→x ¼
X
I∈Gx

Ψα
I ðxÞuI ð31Þ

where Ψα
I is the diffuse derivative shape function in Eq. (29).

Implicit Gradients and Synchronized Derivatives
The implicit gradient was introduced as a regularization in strain
localization problems without taking direct derivatives (Chen et al.
2004), where the idea came directly from the synchronized RK
approximation (Li and Liu 1998, 1999b, a) as a way to approximate
derivatives. In the implicit gradient method, derivative approxima-
tions are constructed directly by employing the same form as the
RK shape function in Eq. (19)

Ψα
I ðxÞ ¼ cαðxÞpðx − xIÞϕaðx − xIÞ ð32Þ

The coefficients cαðxÞ are obtained from the following gradient
reproducing conditions, analogous to Eq. (20)X

I∈Gx

Ψα
I ðxÞpðxÞ ¼ ∂αpðxÞ ð33Þ

Following the usual procedures in RK approximations, the
implicit gradient RK approximation can be obtained as

∂αuðxÞ ≃ X
I∈Gx

Ψα
I ðxÞuI ;

Ψα
I ðxÞ ¼ ∂αpðxÞTMðxÞ−1pðxIÞwaðx − xIÞ;

MðxÞ ¼
X
I∈Gx

pðxIÞpTðxIÞwaðx − xIÞ ð34Þ

Comparing Eq. (34) to Eq. (29), one can see that implicit gra-
dient are indeed diffuse derivatives. Implicit gradients have been
employed for regularization in strain localization problems (Chen
et al. 2004) to avoid the need of ambiguous boundary conditions
associated with the standard gradient-type regularization methods,
and easing the computational cost of meshfree collocation methods
(Chi et al. 2013). The idea has also been introduced as a stabiliza-
tion of meshfree solutions of convection dominated problems with-
out the need for high order differentiation of the test function
(Hillman and Chen 2016).

It has been shown that Eq. (34) is equivalent to (Chen et al.
2004)

Ψα
I ðxÞ ¼ pαMðxÞ−1pðx − xIÞwaðx − xIÞ;

MðxÞ ¼
X
I∈Gx

pðx − xIÞpTðx − xIÞwaðx − xIÞ;
pα ¼ ½ 0; : : : ; 0; α!ð−1Þjαj; 0; : : : ; 0 �T ;

↑ α entry ð35Þ
which is the same expression as the synchronized derivatives
(Li and Liu 1998, 1999b, a), scaled by α!, with the difference in
sign emanating from the convention in shifting the bases. In this
form the reproduction of derivative terms can be seen by examining
alternative vanishing moment conditions in Eqs. (14) and (15).
Using this idea, it was shown that by employing certain linear com-
binations of synchronized derivatives and the RK approximation,
synchronized convergence can be obtained in the L2 norm and Hk

norms up to some order k with the proper selection of coefficients
Cα in the following (Li and Liu 1998):

~ΨIðxÞ ¼ ΨIðxÞ þ
Xn
jαj¼1

CαΨα
I ðxÞ ð36Þ

Because the additional terms in the previous equation satisfy
partition of nullity, they termed the resulting approximation in
Eq. (36) a hierarchical partition of unity (Li and Liu 1999b, a).
Synchronized derivatives have been developed for improving accu-
racy in the Helmholtz equation, obtaining high resolution in locali-
zation problems, and stabilization in computational fluid dynamics
(Li and Liu 1999a).

Generalized Finite Difference Methods
The finite difference work by Liszka and Orkisz (1980) and Liszka
(1984) generalized previous works in finite differences to arbitrary
point distributions. Derivative approximations were constructed
directly by satisfaction of truncated Taylor expansions. The gener-
alized finite difference method starts with the Taylor expansion of
function uðxÞ about at point uðxIÞ truncated to a given order n
(Liszka 1984)

uðxIÞ ¼
Xn
jαj¼0

ð−1Þα
α!

ðx − xIÞα∂αuðxÞ ð37Þ

In order to solve for approximations of the derivatives, and the
approximation of uðxÞ, the previous equation can be evaluated atm
points in a stencil (or star in GFD terminology) surrounding x, and
one obtains the system
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u ¼ RðxÞJuhðxÞ≡RðxÞuh
JðxÞ ð38Þ

where uhðxÞ ≃ fuðxÞ; : : : ; ∂αuðxÞ; : : : ; ∂ jαj¼nuðxÞgT is the vec-
tor of unknowns; J is a diagonal matrix of fð−1Þα=α!gnjαj¼0

; and

u ¼ fu�x1�; : : : ; u�xI�; : : : ; u�xm�gT ð39Þ

RðxÞ ¼

8>>>>>>>>>><
>>>>>>>>>>:

1 x − x1 : : : ðx − x1Þα

..

. ..
. ..

.

1 x − xI : : : ðx − xIÞα

..

. ..
. ..

.

1 x − xm : : : ðx − xmÞα

9>>>>>>>>>>=
>>>>>>>>>>;

¼

8>>>>>>>>>><
>>>>>>>>>>:

pTðx − x1Þ
..
.

pTðx − xIÞ
..
.

pTðx − xmÞ

9>>>>>>>>>>=
>>>>>>>>>>;
ð40Þ

where I ¼ 1; : : : ;m is a local node numbering. If the number of
points in the star (stencil) is equal to the number of unknowns, then
a solution to the system can be obtained by solving Eq. (38) directly,
which is the method proposed by Jensen (1972). Selecting a suitable
star such that the resulting system is not linearly dependent was one
of the essential troubles of the early GFDmethods, as the number of
points in the star was fixed, and each point in the star had to be of
sufficient quality to avoid linear dependence, leading to a difficult
situation. While effort was made at the time for better star selection
(Liszka and Orkisz 1980; Liszka 1984) greatly improved upon the
method by considering that a larger number of points in the star could
be used, and the resulting overdetermined system could be solved by
least squares, or weighted least squares

TðxÞuh
JðxÞ�RTðxÞWðxÞu ð41Þ

whereWðxÞ is a matrix of weights; and with the proper selection of
WðxÞ

WðxÞ�

2
6666666664

waðx − x1Þ · · · 0 · · · 0

..

. . .
. ..

.

0 waðx − xIÞ 0

..

. . .
. ..

.

0 · · · 0 · · · waðx − xmÞ

3
7777777775
ð42Þ

TðxÞ¼RTðxÞWðxÞRðxÞ is exactly the matrix AðxÞ for MLS, and
the moment matrix MðxÞ in the discrete RK approximation with
monomials.

Solving the system in Eq. (41) results in

uhðxÞ ¼
X
I∈Gx

J−1M−1ðxÞPðx − xIÞwaðx − xIÞuI ð43Þ

Then, to obtain the approximation for uðxÞ, one can premultiply
the right hand side of Eq. (43) by Pð0Þ to obtain the first row of the
vector uh on the left hand side of Eq. (43), and as the first entry of
J−1 is unity, immediately the MLS approximation is obtained. One
can also identify a row in the left hand side of Eq. (43) correspond-
ing to the approximation of ∂αuðxÞ, as the premultiplication of the
right hand side of Eq. (43) by pα in Eq. (35), and one can see
immediately that the generalized finite differences are also indeed
the diffuse derivative approximations.

Comparing the GFD and synchronized derivatives to the RK
approximation, one can observe that the moment matrix contains

information on how to approximate the primary variable as well as
derivatives.

Savitzky–Golay Filters and Peridynamics
Very recently, Bessa et al. (2014) made the connection between
synchronized derivatives, Savitzky-Golay filters (Savitzky and
Golay 1964), and peridynamics. They showed that under uniform
discretizations, the deformation gradient in nodally collocated
state-based peridynamics (Silling et al. 2007) is equivalent to em-
ploying Savitzky-Golay filters for constructing the deformation
gradient. In addition, they showed that this approximation was
a special case of diffuse derivatives with the quadratic basis and
flat kernels. They suggested that this was likely also true in the
nonuniform case, as the procedures described in this paper to gen-
erate diffuse derivatives could be considered as a generalization
of Savitzky-Golay filters. The precise connection between mesh-
free approximations and peridynamics under general nonuniform
discretizations will be discussed in a forthcoming paper by the
authors.

Galerkin-Based Meshfree Method

The meshfree approximation functions discussed in the previous
sections can be used to form finite dimensional spaces for the
numerical solution of PDEs under either the Galerkin framework
(this section) or the strong form collocation framework (see “Strong
Form Collocation-Based Meshfree Method”). For demonstration
purposes, consider the following elasticity problem:

∇ · σþ b ¼ 0 in Ω ð44Þ

n · σ ¼ h on ∂Ωh ð45Þ

u ¼ g; on ∂Ωg ð46Þ

where u is the displacement vector; σ ¼ C∶εðuÞ is the Cauchy
stress tensor;C is the elasticity tensor; εðuÞ� ∇su≡ 1=2ð∇ ⊗ uþ
u ⊗ ∇Þ is the strain tensor; n is the surface normal on ∂Ω; b is the
body force; h is the prescribed traction on ∂Ωh; g is the prescribed
displacement on ∂Ωg; ∂Ωg ∪ ∂Ωh ¼ ∂Ω; and ∂Ωg ∩ ∂Ωh ¼ ∅.

In the Galerkin statement of the problem, the solution and its
variation are approximated by uh and vh, respectively, as

uhðxÞ ¼
X
I∈Gx

ΨIðxÞuI;

vhðxÞ ¼
X
I∈Gx

Ψ̂IðxÞvI ð47Þ

where ΨI and Ψ̂I are meshfree shape functions, possibly different
from each other; and fuIgNp

I¼1 is the set of unknowns. In the
Bubnov-Galerkin case Ψ̂IðxÞ ¼ ΨIðxÞ.

Enforcement of Essential Boundary Conditions

Essential boundary condition enforcement in the traditional finite-
element method is generally straightforward because of the prop-
erty that nodal coefficients in the approximation coincide with the
values at the nodes, and therefore, kinematic constraints can be im-
posed directly on the nodal coefficients. Conversely, most meshfree
methods do not enjoy this property, and special attention must be
paid to enforcing essential (Dirichlet) boundary conditions. The
enforcement of essential boundary conditions in meshfree methods
can generally be classified into two types of enforcement: (1) strong
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enforcement at nodes, i.e., collocation of the essential boundary
condition at nodes on the essential boundary; and (2) weak enforce-
ment of conditions along the essential boundary. A few exceptions
to these cases are noted later in the text. The Galerkin approxima-
tion of Eqs. (44)–(46) has been formulated with the methods to be
discussed as follows.

Strong Enforcement of Essential Boundary Conditions
One way to strongly enforce essential boundary conditions at nodes
is to utilize the relationship between nodal coefficients and field
values at the nodes (Atluri et al. 1999; Chen andWang 2000b; Chen
et al. 1996; Günther and Liu 1998; Wagner and Liu 2000; Zhu and
Atluri 1998), called the transformation method or collocation
method. It appears that several researchers had arrived at this for-
mulation independently around the same time. These relationships
yield matrix equations that operate on nodal values, and thus kin-
ematic constraints can be imposed directly with static condensa-
tion. This transformation can be constructed such that inverting
a transformation matrix only related to the constrained degrees
of freedom is necessary (Chen and Wang 2000b; Wagner and
Liu 2000; Zhu and Atluri 1998). In essence, this method is a special
case of the Lagrange multiplier method where the approximation of
the multiplier is a delta function (Chen and Wang 2000b).

Modification to the standard meshfree approximation functions
has been proposed so that nodal degrees of freedom coincide with
field variables (Chen and Wang 2000b; Chen et al. 2003; Gosz and
Liu 1996; Kaljevic and Saigal 1997). Some of these special con-
structions of shape functions are introduced at constrained nodes
only, such as the use of a singular weight function (Chen and Wang
2000b; Kaljevic and Saigal 1997), as first suggested by Shepard, as
well as Lancaster and Salkauskas (Lancaster and Salkauskas 1981;
Shepard 1968). MLS and RK methods that have interpolation prop-
erty can also be constructed (Chen et al. 2003). Coupling with FEM
shape functions in the discretization on the boundary has also
been proposed, to take advantage of the finite-element method’s
ability to easily impose boundary conditions [see, e.g., (Fernández-
Méndez and Huerta 2004; Krongauz and Belytschko 1996)].

Methods that impose boundary conditions strongly offer very
simple implementation of enforcement of essential boundary con-
ditions. In addition, compared to other methods mentioned later in
the text, no additional degrees of freedom, special matrix terms
with boundary integration, or parameters to choose are present.
With these approaches, a kinematically admissible finite dimen-
sional space can be constructed, and the Galerkin approximation
of Eqs.(44)–(46) can be formulated as seeking uh ∈ Uh ⊂ ½H1

g�d
such that ∀vh ∈ Vh ⊂ ½H1

0�dZ
Ω
εðvhÞ∶C∶εðuhÞdΩ ¼

Z
Ω
vh · bdΩþ

Z
∂Ωh

vh · hdΓ ð48Þ

Weak Enforcement of Essential Boundary Conditions
In the seminal work on EFG by Belytschko et al. (1994b),
Lagrange multipliers were employed to weakly enforce boundary
conditions. In this approach, the Galerkin approximation seeks
ðuh; λhÞ ∈ Uh × Λh such that ∀ðvh; γhÞ ∈ Vh × Γh, with Uh ⊂ U,
Vh ⊂ V, Γ ⊂ Γh, and Λ ⊂ Λh, the following equation holds:Z

Ω
εðvhÞ∶C∶εðuhÞdΩþ

Z
∂Ωg

γh · uhdΓ

¼
Z
Ω
vh · bdΩþ

Z
∂Ωh

vh · hdΓþ
Z
∂Ωg

vh · λhdΓ−
Z
∂Ωg

γh · gdΓ

ð49Þ

where U ¼ V ¼ ½H1ðΩÞ�d; Λ ¼ Γ ¼ ½L2ð∂ΩgÞ�d; and λh and γh
are approximations of the Lagrange multiplier λ and its variation
γ, respectively

λhðxÞ ¼
X
I∈Gx

φIðxÞλI ;

γhðxÞ ¼
X
I∈GB

x

φ̂IðxÞγI ð50Þ

where φI and φ̂I are shape functions; GB
x is the set of nodes asso-

ciated with the enforcing the essential boundary conditions which
cover x; and fλIgNp

I¼1 is a set of additional unknowns, representing
tractions on the essential boundary.

While straightforward, this method results in a positive semide-
finite matrix and also adds degrees of freedom to the system. In
addition, to ensure numerical stability, the choice of the finite di-
mensional spaces is subject to the Babuška-Brezzi stability condi-
tion. Alternatively, the Lagrange multiplier can be replaced by its
physical counterpart (e.g., the traction in elasticity) as constructed
by the primary approximation space, and the resulting method does
not suffer from these issues (Lu et al. 1994). This approach is a
special case of Nitche’s method (Nitsche 1971) with penalty param-
eter of zero, which in this case the bilinear form is not guaranteed to
be coercive (Griebel and Schweitzer 2003b).

Imposing essential boundary conditions weakly using the
penalty method has been employed in meshfree formulations
(cf. Atluri and Zhu 1998; Zhu and Atluri 1998), and is an attractive
choice due to its simplicity. It does not add degrees of freedom, and
it is simple to implement. However, using this approach, the sol-
ution may not converge optimally (Fernández-Méndez and
Huerta 2004). In addition, the solution error is sensitive to the
choice of penalty parameter employed, as large parameters can
cause ill-conditioning of the system, while smaller parameters do
not enforce boundary conditions well (Fernández-Méndez and
Huerta 2004). Also, with the penalty method the weak form does
not attest to the strong form.

Nitche’s method (Nitsche 1971) can also be employed, which is
essentially a combination of the penalty method and the modified
variational principle. This method attests to the strong form, and
also relaxes the strong dependence of the solution accuracy on
the choice of the penalty parameter, thus addressing the issues with
the penalty method. Using this technique, the solution is stable and
convergent with the proper selection of the penalty parameter
(Fernández-Méndez and Huerta 2004; Griebel and Schweitzer
2003a; Nitsche 1971). It has been shown that for two-dimensional
problems, if the penalty parameter is of order h−2 optimal conver-
gence can be achieved (Fernández-Méndez and Huerta 2004).
Alternatively, one can estimate a parameter that gives optimal

Fig. 9. Convergence of linear FEM and linear RKPM in a second order
PDE with a smooth solution
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convergence by using an eigenvalue problem (Griebel and
Schweitzer 2003a). Using this approach, the Galerkin problem is
to find uh ∈ Uh such that ∀ vh ∈ Uh the following equation holds:Z

Ω
εðvhÞ∶C∶εðuhÞdΩ −

Z
∂Ωg

n · ½C∶εðvhÞ� · uhdΓ

−
Z
∂Ωg

vh · n · ½C∶εðuhÞ�dΓþ β
Z
∂Ωg

vh · uhdΓ

¼
Z
Ω
vh · bdΩþ

Z
∂Ωh

vh · hdΓþ
Z
∂Ωg

n · ½C∶εðvhÞ� · gdΓ

þ β
Z
∂Ωg

vh · gdΓ ð51Þ

where β is a penalty parameter; and Uh ⊂ ½H1�d. It is useful to
mention a few other approaches that do not strictly fall into any one
of the two categories. D’Alembert’s principle can also be used to
enforce constraints (Günther and Liu 1998). Boundary conditions
can also be imposed strongly by employing one layer of finite el-
ements in a novel way (Zhang et al. 2002).

To summarize, due to the lack of Kronecker delta property,
imposing boundary conditions in meshfree methods is not as
straightforward as in finite elements. However, substantial efforts
have been made to address this issue, and many methods offer ease
of implementation as well as other attractive features. In particular,
Nitche’s method is straightforward to implement, efficient, and op-
timally convergent and stable given the proper selection of the pen-
alty parameter (Griebel and Schweitzer 2003a). Another attractive
option is modifying the approximation space near the boundary
(Chen and Wang 2000b; Chen et al. 2003; Kaljevic and Saigal
1997), where no matrix construction and operations are involved
as in transformation methods (Atluri et al. 1999; Chen and Wang
2000b; Chen et al. 1996; Günther and Liu 1998; Wagner and Liu
2000; Zhu and Atluri 1998). In this approach, there is also no
stability condition, nor selection of any parameters. The method
is simple to implement, efficient, and it can be easily introduced
into existing finite-element codes that implicitly operate on gener-
alized displacements.

Lastly, several meshfree methods do not require special treat-
ment of boundary conditions such as the maximum entropy method
(Arroyo and Ortiz 2006; Sukumar 2004), which enjoys the weak
Kronecker delta property. An interesting recent development is the
introduction of a generalization of MLS, RK, and ME approxima-
tions, where consistency, convexity, and the weak Kronecker delta
property can be obtained in various combinations such as MLS
with weak Kronecker delta at the boundary, and higher order con-
vex approximations (Wu et al. 2011, 2015).

Convergence of the Galerkin Meshfree Method in PDEs

The convergence of the Galerkin meshfree method using
MLS/RK/PU approximation with pth order completeness has been
shown to be (Chen et al. 2003; Han and Meng 2001; Liu et al.
1996a, 1997c)

ku − uhkl;Ω ≤ Capþ1−ljujpþ1;Ω; l ≥ 0 ð52Þ

where a is the maximum support dimension of the approximation
functions; and C is independent of a and p. While the convergence
rate in meshfree approximations with pth order completeness
yields the same rate of convergence compared to that of p-order
finite elements, the constant C can be made smaller in meshfree
methods with proper selection of smoothness in the meshfree
approximation. Consider a Poisson problem on Ω∶�0; 1� × �0; 1�
with a high order solution

∇2u ¼ ðx2 þ y2Þexy in Ω
u ¼ exy on ∂Ω ð53Þ

The problem is solved with linear finite elements (p ¼ 1, C0

continuity) and linear RKPM with quintic B-spline kernels with
normalized support of 2.5 (p ¼ 1, C4 continuity), both with uni-
form discretizations of 81; 289; 1,089; and 4,225 nodes. As shown
in Fig. 9, both methods yield similar rates of convergence, yet
the error is much lower for RKPM. The final ratio between the
errors in this case is roughly 1=8 for the L2 norm and 1=6 for the
H1 seminorm.

Domain Integration in Galerkin Meshfree Methods

A key issue in weak form-based Galerkin methods is the choice of
a quadrature scheme to perform domain integration. The problems
at hand can be generally categorized as follows: (1) influence of
domain integration error on solution error and convergence rates;
and (2) rank instability in the solution with the choice of particular
quadrature schemes such as nodal integration.

Quadrature Schemes for Efficient and Convergent Meshfree
Solutions
In the early development of meshfree methods, Gauss integration
using background cells, as shown in Fig. 10, was commonly
employed (Belytschko et al. 1994b, 1996b; Chen et al. 1996;
Liu et al. 1995a). However, difficulty in obtaining accuracy in
domain integration can be encountered when shape functions are
rational, as they often are in meshfree methods (Fig. 2), and Gauss
integration cannot always accurately evaluate integrals in the Ga-
lerkin equation. Another major source of quadrature error is the

Fig. 10. Gauss integration with a zoom-in showing nodal supports
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misalignment of integration cells and shape function supports (Dol-
bow and Belytschko 1999), which is typically the case in a general
setting, as shown in Fig. 10. As a result of these difficulties, large
errors can be introduced into the solution if careful attention is not
paid to domain integration, and optimal convergence rates can be
lost. In particular, the solutions under uniform discretizations gen-
erally do not suffer from integration issues, while the solutions
under nonuniform discretizations are sensitive to the choice of
domain integration (Chen et al. 2013).

For illustration, various orders of quadrature are employed in
background Gauss cells for RKPM with linear basis, for solving
Eq. (53) with the nonuniform discretizations shown in Fig. 11.
As shown in Fig. 12, 5 × 5 Gauss integration is needed to attain
optimal convergence rates (at least a rate of two and one in the
L2 norm H1 seminorm, respectively).

It has been recognized by many researchers that high order
quadrature is necessary in order to ensure acceptable convergence
rates and accuracy in the solution (Babuška et al. 2008; Chen et al.
2001, 2013; Dolbow and Belytschko 1999); this is prohibitively
expensive in any practical problem. Because of this difficulty, many
approaches have been developed to circumvent this issue.

The solution error due to misalignment of meshfree supports
and integration cells has motivated several algorithms. Constructing

cells that align with the supports can significantly reduce the sol-
ution error due to numerical integration (Dolbow and Belytschko
1999). Procedures have been proposed to construct integration cells
based on the structure of approximations as well as the overlap-
ping compact supports (Griebel and Schweitzer 2002a). In a similar
spirit, other support integration schemes have also been developed
(Liu and Belytschko 2010).

One condition leveraged in meshfree literature is the divergence
constraint (often termed the integration constraint) on the test func-
tion space and numerical integration, necessary for satisfying the
linear patch test (Bonet and Kulasegaram 2000; Chen et al. 2001;
Krongauz and Belytschko 1997):Z

^

Ω
∇Ψ̂IdΩ ¼

Z
^

∂Ω
Ψ̂IndΓ ð54Þ

where ^ over the integral symbol denotes numerical integration.
An iterative technique to satisfy this condition via modification
of approximation functions has been proposed (Bonet and
Kulasegaram 2000).

One particularly effective approach to achieve Eq. (54) is the
stabilized conforming nodal integration (SCNI) by Chen et al.
(2001), which employs nodal integration with gradients smoothed
over conforming representative nodal domains, as shown in
Fig. 13(c), converted to boundary integration using the divergence
theorem

~∇ΨIðxLÞ ¼
1

WL

Z
ΩL

∇ΨIdΩ ¼ 1

WL

Z
∂ΩL

ΨIndΓ ð55Þ

where WL is the integration weight associated with node L; and ~∇
denotes the smoothed gradient operator. In this method, smoothed
gradients are employed for both test and trial functions, as the
approximation in Eq. (55) enjoys first order completeness (Chen
et al. 2013). If the smoothing domains fΩLgNP

L¼1 are conforming,
nodal integration with smoothed gradients ~∇ meets the condition
of Eq. (54) (Chen et al. 2001). The smoothed gradient at the nodal
point in Eq. (55) is then introduced in the weak form and integrated
with nodal integration to form the stiffness matrix [see Chen et al.
(2001) for details]. This approach has also been applied to large
deformation problems with strain smoothing applied to the nodal
evaluation of the deformation gradient (Chen et al. 2002).

This method yields optimal convergence for linear approxima-
tion spaces, as shown in Fig. 14, and provides a far more effective
approach than Gauss integration. In addition, the method can serve
as a correction to direct nodal integration (DNI), as shown in
Fig. 13(a), which suffers from significant convergence problems,
as shown in Fig. 12. For fragment-impact problems where main-
taining conforming cells is cumbersome, a nonconforming version
of SCNI has been proposed (Guan et al. 2009, 2011), termed

Fig. 12. Convergence of RKPM with linear basis with various integration methods Gauss integration with qth order quadrature is denoted GI-q

Fig. 11. Nonuniform discretizations used in the convergence study
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stabilized nonconforming nodal integration (SNNI); this scheme is
depicted in Fig. 13(b). The relaxation of the conforming condition
sacrifices optimal convergence, as shown in Fig. 14, but is still
efficient, and maintains superior stability over DNI. The reduced
accuracy in SNNI compared to SCNI can be corrected to recover
optimal convergence by variationally consistent integration (Chen
et al. 2013), and will be discussed later in the text.

The SCNI method has been extended to many methods and
problems: nonlinear solid mechanics problems (Chen et al. 2002),
the natural element method (Yoo et al. 2004), the Schrödinger equa-
tion (Chen et al. 2007a), plate and shell problems (Chen and Wang
2006; Wang and Chen 2004, 2008), and more recently, convection
dominated problems (Hillman and Chen 2016) and coupled analy-
sis of fluid-saturated porous media (Wei et al. 2016).

The concept of strain smoothing in SCNI has also been ap-
plied to the finite-element methods. The doctoral thesis of Guan
(2009) first introduced the strain smoothing in SCNI to finite
elements as the basis for coupling FEM and RKPM with unified
discretization and domain integration. Various nodal and element
strain smoothing techniques have been proposed by Liu et al. for
finite elements, and are termed the smoothed finite-element meth-
ods (Liu and Nguyen-Thoi 2010; Liu 2008; Liu et al. 2007a).
The SCNI method has been shown to be grounded in variational
principles (Sze et al. 2004).

In a recent development, a framework of variationally consistent
integration (VCI) has been proposed by Chen et al. (2013), where a
generalization of the integration constraints in SCNI to arbitrary
order revealed that the divergence condition in Eq. (54) is a special
case of an integration by parts constraint necessary in order to
obtain nth order Galerkin exactness in the solution

Z
^

Ω
∇Ψ̂I · εðuαÞdΩ¼−

Z
^

Ω
Ψ̂I∇ · εðuαÞdΩþ

Z
^

Γ
Ψ̂In · εðuαÞdΓ ∀ I;

jαj¼0;1; : :: ;n ð56Þ

where uα ¼ cαxα, and here the possibility of different test and trial
functions is considered. One significant result is that with the sat-
isfaction of these constraints, Galerkin orthogonality is restored up
to order n (Rüter et al. 2013). Approximation spaces compatible
with numerical integration in the form of the previous equation
have been termed VCI methods. Using this technique, optimal con-
vergence can be attained using far lower-order quadrature than
would otherwise be required (Chen et al. 2013). For VC conditions
for other mechanics problems, consult reference Chen et al. (2013).

A Petrov-Galerkin method with enriched test functions has been
proposed to satisfy the constraints, by leveraging the fact that
Eq. (56) involves the test functions, while the trial functions are
constructed to be nth order complete (Chen et al. 2013). This
method can be employed to correct any integration method at hand
(as well as any approximation space cf. Hillman et al. 2015), such
as nodal integration. As shown in Fig. 14, optimal convergence
rates can be attained using various low order quadrature schemes
(including DNI and SNNI) using the variationally consistent meth-
ods (denoted with prefix “VC”). A conforming method QC3 has
been proposed that satisfies the second order constraints, which
was shown to be a generalization of the SCNI technique to second
order (Duan et al. 2012). Recently, a second-order exact two-level
smoothing technique has been proposed that can provide further
efficiency over QC3 (Wang and Wu 2016). Mathematical analysis
of the effect of the accuracy of domain integration has been provided,
where a zero-row sum condition and corrected quadrature scheme to
achieve VC conditions was proposed (Babuška et al. 2008, 2009).

Stabilization of Nodal Integration
Several of the methods discussed previously offer viable quadrature
techniques to yield efficient and convergent solutions in the Galer-
kin meshfree method. However, nodal integration such as the direct
nodal integration scheme shown in Fig. 13(a), is often desired so
that stress and state variables live at the nodes, and also because it
offers a technique devoid of meshes. Another reason this method is

Fig. 14. Convergence of RKPM with linear basis with various integration methods with and without variational consistency

(a) (b) (c)

Fig. 13. Nodal integration schemes in meshfree methods: (a) direct nodal integration; (b) stabilized nonconforming nodal integration; (c) stabilized
conforming nodal integration

© ASCE 04017001-17 J. Eng. Mech.

 J. Eng. Mech., -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

02
/0

8/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



often pursued is its simplicity and efficiency. While the inaccuracy
and nonconvergent properties of nodal integration (see Beissel
and Belytschko 1996; Chen et al. 2001, 2013 for additional exam-
ples) can be addressed by methods mentioned earlier, as shown in
Fig. 14, the instability in the solution due to nodal integration type
methods is widely recognized (Beissel and Belytschko 1996;
Belytschko et al. 2000; Chen et al. 2001).

The instability resulting from nodal integration can be attrib-
uted to vanishing derivatives of short-wavelength (two times the
nodal spacing) modes, and thus have little or no energy, and can
grow unbounded in the solution (Beissel and Belytschko 1996;
Belytschko et al. 2000; Chen et al. 2001). In essence, the strain
energy density is severely underestimated for this mode.

One way to circumvent this instability is to employ methods that
minimize the least-squares residual (Beissel and Belytschko 1996;
Bonet and Kulasegaram 2000; Duan and Belytschko 2009; Fries
and Belytschko 2008). However, these methods involve second-
order derivatives of approximation functions, and typically a stabi-
lization parameter. Another way to circumvent this difficulty is to
calculate gradients in locations other than the nodes, often called
the stress point method (Dyka and Ingel 1995; Dyka et al. 1997;
Randles and Libersky 2000), which gives more reasonable strain
energy at the stress points. However, this method does require
additional techniques such as residual-based stabilization in order
to ensure convergent and stable solutions in all situations (Fries and
Belytschko 2008).

Utilizing Taylor expansions also allows one to obtain extra in-
formation around the integration points, and thus stabilize modes
that have zero or near-zero energy associated with them. The
origin of these methods is the unification of stabilization in finite
elements (Liu et al. 1985). The technique has been used to stabilize
nodal integration (Liu et al. 2007b; Nagashima 1999), and also
other types of low order quadrature (Chen et al. 2000e; Liu et al.
1996b). While stable, the drawback of this technique is that it
requires the calculation of high order derivatives.

Part of the dual motivation for the SCNI technique was that
it also stabilizes zero energy modes in direct nodal integration
by avoiding evaluating derivatives directly at nodal points (Chen
et al. 2001, 2002). In this method, the order of differentiation for
constructing a stable method is actually reduced, also leading to
enhanced efficiency. However, the smoothed integrations SCNI
and SNNI are subject to spurious, oscillatory low-energy modes
that can show up when the surface to volume ratio is sufficiently
small, or in sufficiently fine discretizations (Puso et al. 2008).

An example of this mode for the SNNI method, obtained by eigen-
value analysis, is shown in Fig. 15.

Stabilization of these modes for SCNI and SNNI has been
proposed (Puso et al. 2008), where these modes are penalized
throughout the smoothing domain, resulting in modified SCNI
(MSCNI) and modified SNNI (MSNNI) in the strain energy

aMShvh;uhi ¼ aShvh;uhi þ aMhvh;uhi ð57Þ

where aSh·; ·i is the strain energy with strain smoothing

aShvh;uhi ¼
XNP

L¼1

~εLðvhÞ∶C∶~εLðuhÞWL ð58Þ

Here ~εLðuhÞ�1=2½ ~∇ ⊗ uðxLÞ þ uðxLÞ ⊗ ~∇� is the smoothed
strain, and

aMhvh;uhi ¼
XNP

L¼1

XNS

K¼1

βf½~εLðvhÞ − εKL ðvhÞ�∶C∶½~εLðuhÞ

− εKL ðuhÞ�WK
Lg ð59Þ

is the additional stabilization where 0.0 ≤ β ≤ 1.0, εKL ðuhÞ ¼
ε½uhðxK

L Þ� is the strain evaluated at the centroid of subcells xK
L ,

and WK
L is the weight of the subcell calculated from the weight

WL. It is clear from Eq. (59) that for β > 0.0 additional coercivity
is added to the solution. The key to the success of this method in
SCNI is that the additional stabilization maintains linear exactness
of SCNI. The stabilized mode corresponding to the previous exam-
ple is shown for SNNI in Fig. 16(a).

An implicit gradient expansion has been proposed (Hillman and
Chen 2015) that employs implicit gradients (Chen et al. 2004; Chi
et al. 2013) (see section “Derivative Approximations in Meshfree
Methods”) in a Taylor expansion to yield stabilization without
explicit computation of higher order derivatives. In this approach,
the implicit gradient expansion of the strain around a node xL is
defined as, in two dimensions

ε½uhðxÞ� ≈ εLðuhÞ þ ðx − xLÞεLðûh
xÞ þ ðy − yLÞεLðûh

yÞ ð60Þ

where εLðûh
xÞ≡ ε½ûh

xðxLÞ�; εLðûh
yÞ≡ ε½ûh

yðxLÞ�; and first order
implicit gradients fΨα

I ðxÞgjαj¼1 are used to approximate the terms
in the expansion

(a) (b)

Fig. 15. (a) Discretization; (b) lowest energy mode of SNNI
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ûh
xðxLÞ ¼

X
I∈GxL

Ψð1,0Þ
I ðxLÞuI ;

ûh
yðxLÞ ¼

X
I∈GxL

Ψð0,1Þ
I ðxLÞuI ð61Þ

where Ψα
I ðxÞ is the implicit gradient shape function in Eq. (35).

Substituting Eq. (60) for the strains near each node, following
Hillman and Chen (2015), one obtains a stabilized strain energy
aNDh·; ·i

aNDhvh;uhi ¼ aDhvh;uhi þ aNhvh;uhi ð62Þ
where aDh·; ·i is the quadrature version of the nodally integrated
strain energy

aDhvh;uhi ¼
XNP

L¼1

εLðvhÞ∶C∶εLðuhÞWL ð63Þ

where εLðuhÞ ¼ ε½uhðxLÞ� is the nodal strain; and

aNhvh;uhi ¼
XNP

L¼1

½εLðv̂hxÞ∶C∶εLðûh
xÞMLx þ εLðv̂hyÞ∶C∶εLðûh

yÞMLy�

ð64Þ

is the additional stabilization, where MLx and MLy are the second
moments of inertia of the nodal domains about node L. Clearly, for
coercive forms of að· ; ·Þ, Eq. (64) adds additional stabilization for
the strain energy. The stabilized nodal integration in Eqs. (62)–(64)
has been termed naturally stabilized nodal integration (NSNI) be-
cause the constants in the stabilization come naturally from the dis-
cretization. Performing an eigenvalue analysis of the associated
stiffness matrix, the first non-zero energy mode is stable, as shown
in Fig. 16(b). It has been demonstrated through complexity analysis
that speed-up factors of up to 20 times could be achieved over
methods that involve additional sampling points (Hillman and
Chen 2015).

Another form of stabilization considers a displacement smooth-
ing and Taylor expansion Wu et al. (2016, 2015). This method has
been shown to be a very effective approach to give a stable solution
by nodal integration, without the use of numerical parameters or
background cells. Integration techniques based on the partition
of unity have been developed that do not require a mesh, and
have been applied as a nodal subdomain integration technique
(Duflot and Nguyen-Dang 2002; Romero and Armero 2002).

Nodal integrations with corrective VCI procedures and stabilization
can be formulated such that they do not detract from the meshfree
character of the method (Chen et al. 2013; Hillman et al. 2014;
Puso et al. 2008; Rüter et al. 2013; Wu et al. 2016, 2015).

To summarize, careful attention must be paid to domain integra-
tion in meshfree methods. If one does nothing and employs Gauss
integration, prohibitively expensive high order quadrature is re-
quired to ensure accuracy and optimal convergence in all discreti-
zations. Conversely, without special treatment, nodal integration
yeilds both inaccurate and unstable solutions. Despite this fact, sev-
eral effective methods have been developed over the past two dec-
ades to address these issues of accuracy, efficiency, and stability.
The SCNI method (Chen et al. 2001) has proven to be a robust
method in a variety of settings (Chen and Wang 2006; Chen et al.
2001, 2002; Hillman and Chen 2016; Wang and Chen 2004, 2008;
Wei et al. 2016), and is effective in terms of high accuracy and low
CPU time (Chen et al. 2001). While this method necessitates the
additional stabilization of Eqs. (57)–(59), this can be accomplished
straightforwardly [see Chen et al. (2007b), Hillman and Chen
(2016), and Puso et al. (2007, 2008) for more details and variations
on implementation]. A few new promising recent developments
are: (1) corrections to achieve arbitrary order Galerkin exactness
in any given integration method, which can achieve optimal con-
vergence with low order quadrature (Chen et al. 2013), and can
correct nodal integration methods for optimal convergence; (2) ex-
tensions of SCNI to achieve higher order Galerkin exactness (Duan
et al. 2012; Wang and Wu 2016); and (3) the accelerated stabiliza-
tion of Eqs. (60)–(64) [see Hillman and Chen (2015) for details],
which can avoid many issues associated with stabilized nodal in-
tegration proposed in the past. Although quadrature for meshfree
methods is still an active research topic, it appears that many of the
problems with domain integration are being resolved.

Strong Form Collocation-Based Meshfree Method

Meshfree Collocation Method

An alternative approach to address domain integration issues in
meshfree methods is to employ strong form collocation methods,
such as the finite-point method (Oñate et al. 1996a), the radial
basis collocation methods (Kansa 1990a, b), and the reproducing
kernel collocation method (Aluru 2000; Hu et al. 2011). For
demonstration, consider the application of strong form collocation
to the boundary value problem for elasticity in Eqs. (44)–(46).

(a) (b)

Fig. 16. Lowest energy modes of (a) modified SNNI; (b) NSNI
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Introducing the approximation uhðxÞ into Eqs. (44)–(46) and
enforcing the residuals to be zero at NC collocation points
fξJgNC

J¼1 ∈ Ω̄≡ Ω ∪ ∂Ω, one has

∇ · σ½uhðξJÞ� ¼ −bðξJÞ ∀ ξJ ∈ Ω;
n · σ½uhðξJÞ� ¼ hðξJÞ ∀ ξJ ∈ ∂Ωh;
uhðξJÞ ¼ gðξJÞ ∀ ξJ ∈ ∂Ωg

ð65Þ

The collocation in Eq. (65) is equivalent to the weighted residual
of Eqs. (44)–(46) as seeking uh ∈ ½H2�d such that ∀ w;wh;
wg ∈ ½L2�dZ

Ω
wðxÞ · f∇ · σ½uhðxÞ� þ bðxÞgdΩ;

þ
Z
∂Ωh

whðxÞ · fn · σ½uhðxÞ� − hðxÞgdΓ

þ
Z
∂Ωg

wgðxÞ · ½uhðxÞ − gðxÞ�dΓ ¼ 0 ð66Þ

The weighted residual in Eq. (66) leads to Eq. (65) when
w ¼ wh ¼ wg ¼

PNC
J¼1 δðx − ξJÞw̄J , where δð·Þ is the Dirac delta

function in d-dimensional space, and w̄J is the associated arbitrary
coefficient. In this approach the admissible approximation uh is
required to be in ½H2�d, which is difficult for the conventional
FEM approximation to achieve. However, for the general meshfree
approximations discussed in the section “Meshfree Approximation
Functions,” the regularity requirement can be readily met.

Let the approximation of u be

uhðxÞ ¼
X
I∈Gx

gIðxÞuI ð67Þ

where gI is the meshfree shape function associated with xI; and
uI is the corresponding coefficient. To use the terminology of col-
location methods, in this paper when discussing collocation, the
nodes in the set Z are called source points, and the number of
source points in the set is denoted by Ns. In matrix form, Eq. (65)
can be rewritten asP

I∈GξJ

LgIðξJÞuI ¼ −bðξJÞ ∀ ξJ ∈ Ω;P
I∈GξJ

BhgIðξJÞuI ¼ hðξJÞ ∀ ξJ ∈ ∂Ωh;P
I∈GξJ

BggIðξJÞuI ¼ gðξJÞ ∀ ξJ ∈ ∂Ωg

ð68Þ

where for two dimensions

L ¼

2
6664
ðλþ 2μÞ ∂2

∂x2 þ μ
∂2

∂y2 ðλþ μÞ ∂
∂x∂y

ðλþ μÞ ∂
∂x∂y μ

∂2

∂x2 þ ðλþ 2μÞ ∂2

∂y2

3
7775;

Bh ¼

2
6664
ðλþ 2μÞnx

∂
∂xþ μny

∂
∂y μny

∂
∂xþ λnx

∂
∂y

λny
∂
∂xþ μnx

∂
∂y μnx

∂
∂xþ ðλþ 2μÞny

∂
∂y

3
7775;

Bg ¼
�
1 0

0 1

�
ð69Þ

If Nc ¼ Ns, the approach is termed as the direct collocation
method (Hu et al. 2007). When Nc > Ns, Eq. (68) leads to an
overdetermined system and its solution can be obtained using a
least-squares method. The solution from an overdetermined system

usually offers better accuracy and is less sensitive to the nodal dis-
tribution; however, to achieve optimal accuracy, the least-squares
system needs to be properly weighted, which is referred to as the
weighted collocation method. The details will be discussed in the
section “Weighted Collocation Methods and Optimal Weights.”

Approximation Functions and Convergence for Strong
Form Collocation

Radial Basis Functions
Although any approximation in the C2 space can be used in the
collocation methods, the radial basis functions (RBFs) are popular
for collocation solutions of PDEs, tracing back to the seminal
work of Kansa (1990a, b). RBFs have been used in many applica-
tions, such as surface fitting, turbulence analysis, neural networks,
meteorology, and so forth. Hardy (1971) first investigated multi-
quadric RBFs for interpolation problems, and good performance
in scattered data interpolation using multiquadric and thin-plate
spline radial basis functions has been observed (Franke and Scha-
back 1998). Since then, the advances in applying RBFs to various
problems has progressed constantly. A few commonly used radial
basis functions are given as follows:

MultiquadricsðMQÞ∶ gIðxÞ ¼ ðr2I þ c2Þn−3=2 ð70Þ

Gaussian∶ gIðxÞ ¼

8>>><
>>>:

exp

�
− r2I
c2

�

ðr2I þ c2Þn−3=2 exp
�
− r2I
a2

� ð71Þ

Thin plate splines∶ gIðxÞ ¼
�
r2nI ln rI

r2n−1I

ð72Þ

Logarithmic∶ gIðxÞ ¼ rnI ln rI ð73Þ
where rI ¼ kx − xIk with k · k the Euclidean norm; and xI is the
source point of the RBF. The constant c involved in Eq. (70) and
Eq. (71) is called the shape parameter of RBF. The MQ RBF in
Eq. (70) is the most popular function used in the solution of PDEs;
the function is called reciprocal MQ RBF if n ¼ 1, linear MQ RBF
if n ¼ 2, cubic MQ RBF if n ¼ 3, and so on. Several types of
error bounds for MQ have been established (Madych 1992), local
errors of scattered data interpolation by RBFs in suitable variational
formulations have been investigated (Wu and Schaback 1993), and
the convergence of RBFs in Sobolev spaces has been demonstrated
(Yoon 2001). All of these studies show that there exists an expo-
nential convergence rate in RBFs. It has also been shown that
the convergence rate is accelerated for monotonically ordered c
(Buhmann and Micchelli 1992).

For a smooth function uðxÞ, the approximation, denoted by
uhðxÞ, is expressed by Eq. (67). There exists an exponential con-
vergence rate of RBFs given by Madych (1992)

ku − uhkl ≤ Cνηc=Hkukt ð74Þ
where 0 < η < 1 is a real number; Cν is a generic constant with
the subscript ν denoting that it is dependent on the Poisson’s
ratio ν; k · kl is the Sobolev l-norm; k · kt is induced from the
regularity requirements of the approximated function u and the
RBFs (Madych and Nelson 1990; Madych 1992), H is the radial
distance defined as H ≡HðΩ;SÞ ¼ supx∈Ω min

xI∈Z
kx − xIk; and
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η ¼ expð−θÞ with θ > 0. The accuracy and rate of convergence of
MQ-RBF approximations are determined by the number of basis
functions (the number of source points)NS and the shape parameter
c. The application of RBFs to partial differential equations is natu-
ral as the RBFs are infinitely differentiable [gIðxÞ ∈ C∞].

Moving Least Squares and Reproducing Kernel
The MLS/RK approximations described in the section “Meshfree
Approximation Functions” can be adopted in the collocation
methods, e.g., the reproducing kernel collocation method (RKCM)
(Aluru 2000; Hu et al. 2009, 2011), and the gradient reproducing
kernel collocation method (G-RKCM) (Chi et al. 2013). In addition
to first derivatives, higher order derivatives of MLS/RK approxima-
tions are mandatory when using strong form collocation. They can
be obtained by direct differentiation of the MLS/RK approxima-
tions or by implicit gradients (Chen et al. 2004; Li and Liu
1999b, a), as discussed in the section “Derivative Approximations
in Meshfree Methods.”

Although the employment of the C2 continuous kernel in
Eq. (21) in MLS/RK would satisfy the regularity requirements
of strong form collocation, higher-order continuous kernels offers
better numerical stability, especially when the point density is high.
Therefore, a quintic B-spline is often adopted in RKCM

ϕaðzÞ ¼

8>>>>>>>>><
>>>>>>>>>:

11

20
−9

2
z2þ81

4
z4−81

4
z5 for 0≤ z≤ 1

3

17

40
þ15

8
z−63

4
z2þ135

4
z3−243

8
z4þ81

8
z5 for

1

3
≤ z≤ 2

3

81

40
−81

8
zþ81

4
z2−81

4
z3þ81

8
z4−81

40
z5 for

2

3
≤ z≤ 1

0 for z> 1

ð75Þ

For a smooth function uðxÞ, the approximation, denoted by
uhðxÞ, can be expressed by the linear combination of MLS/RK
shape functions. Solving the PDE by collocation Eq. (65) with
the MLS/RK approximation, there exists an algebraic convergence
rate as shown by Hu et al. (2009)

ku − uhkE ≤ Cχap−1jujpþ1;Ω ð76Þ

whereC is the generic constant; χ is the overlapping parameter; a is
the support measure; p is the order of complete monomials in the
MLS/RK shape functions; and

kvkE ≡ ðkvk21;Ω þ kLvk20;Ω þ kBhvk20;∂Ωh
þ kBgvk20;∂Ωg

Þ1=2 ð77Þ

where L, Bh, and Bg denote the differential operators associated
with the domain, Neumann boundary, and Dirichlet boundary, re-
spectively. From Eq. (76), it is important to note that the solution
does not converge when p ¼ 1. An order p of at least 2 is man-
datory for convergence.

Reproducing Kernel Enhanced Local Radial Basis
The commonly used RBF approximation function in the strong
form collocation method offers exponential convergence; however,
the method suffers from large condition numbers because of
its nonlocal approximation. Conversely, the MLS/RK functions
provide polynomial reproducibility in a local approximation, and
the corresponding discrete systems are relatively well conditioned.
Nonetheless, RKCM produces only algebraic convergence (Hu
et al. 2011). An approach has been proposed to combine the ad-
vantages of RBF and RK functions to yield a local approximation
that is better conditioned than that of the RBF, while at the same

time offers a higher rate of convergence than that of RK in
Eq. (19)

uhðxÞ ¼
X
I∈Gx

�
ΨIðxÞ

�
aI þ

XM
J¼1

gJI ðxÞdJI
��

ð78Þ

where ΨIðxÞ is an RK function with compact support; and gJI ðxÞ is
an RBF. Applying the approximation in Eq. (78) to the weighted
strong form collocation as described in the section “Weighted
Collocation Methods and Optimal Weights” is called the localized
radial basis collocation method (L-RBCM).

This approximation utilizes the compactly supported partition
of unity to patch the global RBFs together. Error analysis shows
that if the error of the RK approximation is sufficiently small,
the proposed method maintains the exponential convergence of
RBFs, while significantly improving the condition of the discrete
system, and yields a banded matrix (Chen et al. 2008) as discussed
subsequently.
1. Using the partition of unity properties of the RK localizing func-

tion, there exists the following error bound (Chen et al. 2008):

ku − uhI k0;Ω ≤ βCηc=δ0 kukt ð79Þ
where β is the maximum cover number for the RK localizing
function. Other parameters are the same as defined earlier.

2. The enhanced stability in L-RBCM can be demonstrated by a
perturbation analysis of the strong form collocation equations in
Eq. (68) expressed in the following linear system:

Kd ¼ f ð80Þ
The stability of the linear system can be measured by the con-

dition number of K. The following estimation of the condition
number of L-RBCM has been provided (Chen et al. 2008):

CondðKÞ ≈ Oða−3d=2Þ ð81Þ
where d is the spatial dimension. In two-dimensional elasticity, the
following comparison of condition numbers using RBCM with
pure RBFs, RKCM with pure RK in Eq. (19), and L-RBCM with
localized RBF in Eq. (78) can be obtained:

RBCM∶ CondðKÞ ≈ Oðh−8Þ;
RKPM∶ CondðKÞ ≈ Oðh−2Þ;
L − RBCM∶ CondðKÞ ≈ Oðh−3Þ

ð82Þ

The L-RBCM approach offers a significant improvement on
stability over RBCM. Although the discrete system of L-RBCM
is slightly less well-conditioned than that of RKPM, it offers higher
convergence rates similar to that in RBCM.

Weighted Collocation Methods and Optimal Weights
for Strong Form Collocation

When NC > NS, the collocation equations Eq. (68) recast in a ma-
trix form as Eq. (80) leads to an overdetermined system, and a least-
squares method can be applied for seeking the solution, equivalent
to minimizing a weighted residual. The residual is defined as
eðdÞ¼1=2ðKd−fÞTWðKd−fÞ, where W is a symmetric weight-
ing matrix, minimizing eðdÞ yields

KTWKd ¼ KTWf ð83Þ
It has been shown that solving strong form collocation equations

by a least-squares method is equivalent to minimizing a least-
squares functional with quadrature (Hu et al. 2007) . It states to find
uh such that
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EðuhÞ ¼ inf E
v∈VðvÞ ð84Þ

where V is the admissible finite dimensional space spanned by
meshfree shape functions; and

EðvÞ ¼ 1

2

Ẑ
Ω
ðLv þ bÞ2dΩþ 1

2

Ẑ
∂Ωh

ðBhv − hÞ2dΓ

þ 1

2

Ẑ
∂Ωg

ðBgv − gÞ2dΓ ð85Þ

Recall that ∫̂ denotes integration with quadrature. It has been
shown that the errors from the domain and boundary integrals
in Eq. (85) are unbalanced (Hu et al. 2007). Therefore, a weighted
least-squares functional can be introduced

EðvÞ ¼ 1

2

Z
^

Ω
ðLv − fÞ2dΩþ αh

2

Z
^

∂Ωh

ðBhv − hÞ2dΓ

þ αg

2

Z
^

∂Ωg

ðBgv − gÞ2dΓ ð86Þ

Here the weights αh and αg are determined by considering error
balancing of the weighted least-squares functional associated with
the domain and boundary equations (Hu et al. 2007)ffiffiffiffiffiffi

αh
p ≈ Oð1Þ; ffiffiffiffiffi

αg
p ≈ OðκNSÞ ð87Þ

where κ ¼ maxðλ;μÞ, or more generally, the maximum coefficient
involved in the differential operator and boundary operator for
the problem at hand. When dealing with nearly incompressible
problems, κ ¼ μ has been suggested (Chi et al. 2014) as λ grows
unbounded in the incompressible limit.

Minimizing Eq. (86) is equivalent to solving the following
weighted collocation equations by the least squares method:P

I∈GξJ

LgIðξJÞuI ¼ −bðξJÞ ∀ ξJ ∈ Ω;ffiffiffiffiffiffi
αh

p P
I∈GξJ

BhgIðξJÞuI ¼ ffiffiffiffiffiffi
αh

p
hðξJÞ ∀ ξJ ∈ ∂Ωh;ffiffiffiffiffiαg

p P
I∈GξJ

BggIðξJÞuI ¼ ffiffiffiffiffiαg
p gðξJÞ ∀ ξJ ∈ ∂Ωg

ð88Þ

For example, an infinitely long (plane-strain) elastic tube is
subjected to an internal pressure. The tube is made of an elastic
material with Young’s modulus E ¼ 3 × 107 Pa, and Poisson ratio
υ ¼ 0.25. The inner and outer radii of the tube are 4 and 10 m,
respectively, and the inner surface of the tube is subjected to a

pressure P ¼ 100 N=m2. Because of symmetry, only a quarter
of the model, as shown in Fig. 17(a), is discretized by the RBF
collocation method with proper symmetric boundary conditions
specified. The corresponding boundary value problem can be ex-
pressed as

∇ · σ ¼ 0 in Ω ð89Þ
with boundary conditions

hi ¼ −Pni on Γ1

h1 ¼ 0; u2 ¼ 0 on Γ2

hi ¼ 0 on Γ3

h2 ¼ 0; u1 ¼ 0 on Γ4

ð90Þ

where hi ¼ σijnj.
In this problem, both source points and collocation points are

nonuniformly distributed as shown in Fig. 17(b). Three different
discretizations, 7 × 7, 9 × 9, and 11 × 11 source points, are used,
and the shape parameters c for the three discretizations are 10.0,
7.5, and 6.0, respectively. The number of corresponding collocation
points is ð2N1 − 1Þð2N2 − 1Þ, where N1 is the number of source
points along the radial direction, and N2 is the number of source
points along the angular direction.

The direct collocation method (DCM) and weighted collocation
method (WCM) with MQ RBFs are used in the numerical test. For
WCM, weights for Dirichlet collocation equations ffiffiffiffiffiαg

p ¼ 10 and
Neumann collocation equations

ffiffiffiffiffiffi
αh

p ¼ 1 are selected based on
Eq. (87). The convergence in the L2 norm and H1 seminorm ob-
tained by DCM and WCM are compared in Fig. 18. As is shown in
the numerical results, the direct collocation method with proper
weights for Dirichlet and Neumann boundaries offers a much
improved solution over DCM.

Gradient Reproducing Kernel Collocation Method

While MLS/RK approximation functions can be arbitrarily smooth,
taking derivatives of these functions is computationally costly. In
particular, the high complexity in RKCM is caused by taking
derivatives of the moment matrix inverse in the multidimensional
MLS/RK shape functions (Hu et al. 2009). Further, for optimal
convergence in RKCM, using a number of collocation points
much larger than the number of source points is needed, and this
adds additional computational effort (Hu et al. 2009, 2011).
To enhance computational efficiency in RKCM, an implicit gra-
dient approximation (see section “Derivative Approximations in

Fig. 17. Tube problem: (a) quarter model; (b) distribution of source points and collocation points
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Meshfree Methods”) has been introduced for solving second
order PDEs with strong form collocation, which has been termed
the gradient reproducing kernel collocation method (G-RKCM)
(Chi et al. 2013).

Consider the two-dimensional version of the elastic model prob-
lem in Eqs. (44)–(46). The approximations of the derivatives u;x

and u;y are constructed by employing first order implicit gradients
fΨα

I ðxÞgjαj¼1 where Ψα
I ðxÞ is given in Eq. (35)

u;x ≈ uh
x ¼

X
I∈Gx

Ψð1;0Þ
I ðxÞuI ;

u;y ≈ uh
y ¼

X
I∈Gx

Ψð0;1Þ
I ðxÞuI ð91Þ

The approximation of second order derivatives of u is obtained
by taking direct derivatives of uh

x and uh
y , e.g.

u;xx ≈ uh
x;x ¼

X
I∈Gx

Ψð1;0Þ
I;x ðxÞuI;

u;yy ≈ uh
y;y ¼

X
I∈Gx

Ψð0;1Þ
I;y ðxÞuI ð92Þ

Introducing Eqs. (91) and (67) in the discretization in the strong
form Eqs. (44)–(46) leads to

L1
hu

h
x þL2

hu
h
y ¼ −b in Ω

B1
hu

h
x þ B2

hu
h
y ¼ h on ∂Ωh

Bguh ¼ g on ∂Ωg

ð93Þ

where

L1
h ¼

2
664
ðλþ 2μÞ ∂

∂x μ
∂
∂y

λ
∂
∂y μ

∂
∂x

3
775; L2

h ¼

2
664
μ
∂
∂y λ

∂
∂x

μ
∂
∂x ðλþ 2μÞ ∂

∂y

3
775;

B1
h ¼

� ðλþ 2μÞnx μny
λny μnx

�
; B2

h ¼
�
μny λnx
μnx ðλþ 2μÞny

�
ð94Þ

When NC > NS, the overdetermined system can be obtained by
a least-squares method with proper weights to achieve optimal
solution accuracy

P
I∈GξJ

½L1Ψð1,0Þ
I ðξJÞþL2Ψð0,1Þ

I ðξJÞ�uI¼−bðξJÞ ∀ξJ∈Ω;ffiffiffiffiffiffi
αh

p P
I∈GξJ

½B1
hΨ

ð1,0Þ
I ðξJÞþB2

hΨ
ð0,1Þ
I ðξJÞ�uI¼ ffiffiffiffiffiffi

αh
p

hðξJÞ ∀ξJ∈∂Ωh;ffiffiffiffiffiαg
p P

I∈GξJ

BgΨIðξJÞuI¼ ffiffiffiffiffiαg
p gðξJÞ ∀ξJ∈∂Ωg

ð95Þ

For balance of the errors between the domain and boundary
equations, the following weights should be selected:

ffiffiffiffiffiffi
αh

p ≈ Oð1Þ; ffiffiffiffiffi
αg

p ≈ Oðκaq−p−1Þ ð96Þ

where κ ¼ maxðλ;μÞ; a is the kernel support measure; p is
the MLS/RK order in uh; and q is the order of uh

x and uh
y .

The convergence properties of G-RKCM have been shown to be
as follows:

ku − uhk1;Ω ≈ Oðaq−1Þ;
ku;x − uh;xk1;Ω þ ku;y − uh;yk1;Ω ≈ Oðaq−1Þ ð97Þ

ku − uhk0;Ω ≈ OðaqÞ;
ku;x − uh;xk0;Ω þ ku;y − uh;yk0;Ω ≈ OðaqÞ ð98Þ

The following remarks should also be noted:
• The error estimate in Eqs. (97) and (98) indicates that the con-

vergence of G-RKCM is only dependent on the polynomial de-
gree q in the approximation of u;x and u;y, and is independent of
the polynomial degree p in the approximation of u. Further,
q > 1 is mandatory for convergence; and

• G-RKCM allows the use of NC ¼ NS for sufficient accuracy
(Chi et al. 2013).

Subdomain Collocation for Heterogeneity and
Discontinuities

Because of the overlapping supports of meshfree shape functions
(particularly RBFs) and the high smoothness required in the strong
form collocation methods, special treatments are required for
problems with heterogeneity or discontinuities. The subdomain
collocation method (Chen et al. 2009; Wang et al. 2010) has been
introduced for this purpose.
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Fig. 18. Convergence in the tube problem in (a) the L2 error norm; (b) the H1 seminorm
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Take a heterogeneous elastic domain as an example, as shown in
Fig. 19. The collocation of each subdomain is independently
expressed as follows:8<

:
Lþuhþ ¼ −bþ in Ωþ

Bþ
g uhþ ¼ gþ on ∂Ωþ ∩ ∂Ωg

Bþ
h u

hþ ¼ hþ on ∂Ωþ ∩ ∂Ωh

ð99Þ

8<
:

L−uh− ¼ −b− in Ω−

B−
g uh− ¼ g− on ∂Ω− ∩ ∂Ωg

B−
hu

h− ¼ h− on ∂Ω− ∩ ∂Ωh

ð100Þ

The approximation of u in each subdomain is performed by
separate sets of basis functions

uhðxÞ ¼
(
uhþðxÞ ¼ gþ1 ðxÞuþ

1 þ · · · þgþNþ
S
ðxÞuþ

Nþ
S
; x ∈ Ω̄þ

uh−ðxÞ ¼ g−1 ðxÞu−
1þ · · · þg−N−

S
ðxÞu−

N−
S
; x ∈ Ω̄−

ð101Þ

Here, Dirichlet and Neumann type interface conditions are
introduced on the interface as follows for optimal convergence
(Wang et al. 2010)

uhþ − uh− ¼ 0 on Γ
Bþ

h u
hþ þ B−

hu
h− ¼ 0 on Γ

ð102Þ

As before, if NC > Ns a weighted least-squared method can be
applied, and the weighted discretized collocation equations read

Au≡
2
64
Aþ

A−

Λ

3
75u ¼

2
64
bþ

b−

0

3
75≡ b ð103Þ

with submatrices defined as

A� ¼

2
6664

A�
Lffiffiffiffiffiffi

α�
g

q
A�

gffiffiffiffiffiffi
α�
h

p
A�

h

3
7775; b��

2
6664

b�
Lffiffiffiffiffiffi

α�
g

q
bþ
gffiffiffiffiffiffi

α�
h

p
bþ
h

3
7775; Λ ¼

� ffiffiffiffiffi
ᾱg

p
Λgffiffiffiffiffiffi

ᾱh
p

Λh

�

ð104Þ

whereA�
L ,A

�
g , andA�

h are matrices associated with the differential
operators L�, B�

g and B�
h , respectively; and Λg and Λh are asso-

ciated with the Dirichlet and Neumann type interface conditions,

respectively. For balanced errors from different terms associated
with domains, boundaries, and the interface, the following weights
have been derived (Chen et al. 2009):ffiffiffiffiffiffi

αþ
g

q
¼ ffiffiffiffiffiffi

α−
g

p ¼ ffiffiffiffiffi
ᾱg

p ¼ Oðk̄ · N̄sÞ;ffiffiffiffiffiffi
αþ
h

q
¼ OðsþÞ;ffiffiffiffiffiffi

α−
h

p ¼ Oðs−Þ;ffiffiffiffiffiffi
ᾱh

p ¼ Oð1Þ ð105Þ

where k� ¼ maxðλ�;μ�Þ; k̄ ¼ maxðkþ; k−Þ; N̄s ¼ maxðNþ
s ;N−

s Þ;
s� ¼ k̄=k�; λ� and μ� are Lamé constants in Ω̄�; and N�

s is the
number of source points in Ω̄�.

The L-RBCM approach, combined with the subdomain collo-
cation method, has been applied to problems with heterogeneities
(weak discontinuities) (Chen et al. 2009) and cracks (strong discon-
tinuities) (Wang et al. 2010).

Meshfree Method for Large Deformation Problems

Lagrangian Reproducing Kernel Approximation and
Discretization

The RK approximation is constructed based on a set of points
without a mesh and hence releases the strong dependence of the
approximation accuracy on mesh quality. It is therefore well-suited
for applications to extreme deformation problems. To illustrate,
let X be the material coordinates for a body initially occupying
the domain ΩX with the boundary ΓX, and x be the position of
the material point X in the deformed configuration Ωx with the
boundary Γx at time t. The position vector x is given by a one-to-
one mapping function, x ¼ φðX; tÞ, and hence the Jacobian of the
deformation gradient, detðFÞ, where Fij ¼ dxi=dXj, is positive
definite for problems without material damage and fragmentation.

The variational equation of motion with reference to the current
configuration isZ

Ωx

δuiρüidΩþ
Z
Ωx

δui;jσijdΩ ¼
Z
Ωx

δuibidΩþ
Z
Γh
x

δuihidΓ

ð106Þ
where ui is the displacement; ρ is the density of the material; σij is
the Cauchy stress; bi is the body force; and hi is the prescribed
traction on the natural boundary Γh

x. In the Lagrangian formulation,
the Lagrangian RK shape functions ΨX

I ðXÞ are constructed using
the material coordinates in the reference configuration to yield

ΨX
I ðxÞ ¼ HTð0ÞM−1ðXÞHðX −XIÞϕaðX −XIÞ ð107Þ

where

MðXÞ ¼
X
I∈GX

HðX −XIÞHTðX −XIÞϕaðX −XIÞ ð108Þ

The discrete reproducing conditions are imposed in the
reference configurationX

I∈GX

ΨX
I ðXÞXα

I ¼ Xα; jαj ≤ n ð109Þ

The Lagrangian RK function has a deformation-dependent
support size when mapped to the current configuration, as shown
in Figs. 20(a and b).

Fig. 19. Two subdomains of a problem with material heterogeneity
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For path-dependent materials, the discretization of Eq. (106) by
the Lagrangian RK approximation requires the spatial derivatives
of ΨX

I ðXÞ as follows:

∂ΨX
I ðXÞ
∂xi ¼ ∂ΨX

I ðXÞ
∂Xj

F−1
ji ð110Þ

The deformation gradient F is first computed by taking the
material spatial derivatives of ΨX

I ðXÞ, and F−1 is obtained directly
by the inversion of F. The Lagrangian formulation breaks down
when the inverse of F is not well conditioned. For example, this
may occur when extreme deformation leads to a nonpositive def-
inite F, or when material separation takes place in which F is
singular. Thus, a semi-Lagrangian RK formulation is introduced
in the following section to address this issue in modeling extreme
deformation problems.

Semi-Lagrangian Reproducing Kernel Approximation
and Discretization

In the semi-Lagrangian RK formulation, the nodal point xI asso-
ciated with the RK shape functions ΨIðxÞ follows the motion of a
material point, that is, xI ¼ φðXI; tÞ, whereas the support radius in
the kernel function is defined independent of material deformation
as shown in Figs. 20(a and c).

The semi-Lagrangian RK shape function is then formulated in
the current configuration as

ΨSL
I ðxÞ ¼ Cðx;x − xIÞϕaðx − xIÞ ð111Þ

where xI ¼ φðXI; tÞ.
The correction function Cðx;x − xIÞ for ensuring the reproduc-

ing condition is defined in the Lagrangian description while the
kernel function in defining the locality and continuity is not purely
Lagrangian. Similar to the discussion in the section “Reproducing
Kernel Approximation,” the coefficient vector bðxÞ can be deter-
mined by imposing the following discrete reproducing condition:X

I∈Gx

ΨSL
I ðxÞxα

I ¼ xα; jαj ≤ n ð112Þ

Substituting the coefficient vector bðxÞ into Eq. (111) yields the
semi-Lagrangian reproducing kernel (semi-Lagrangian RK) shape
function

ΨSL
I ðxÞ ¼ HTð0ÞM−1ðxÞHðx − xIÞϕaðx − xIÞ ð113Þ

where

MðxÞ ¼
X
I∈Gx

Hðx − xIÞHTðx − xIÞϕaðx − xIÞ ð114Þ

The x coordinate in ΨI andM is also a function of time. Let the
velocity vi be the primary variable in Eq. (106), approximated by
the semi-Lagrangian RK shape functions

vhi ðx; tÞ ¼
X
I∈Gx

ΨSL
I ðxÞvIiðtÞ ð115Þ

The corresponding semi-Lagrangian approximation of acceler-
ation is given by

ühi ðx; tÞ ¼ v̇hi ðx; tÞ ¼
X
I∈Gx

½ΨSL
I ðxÞv̇IiðtÞ þ Ψ̆SL

I ðxÞvIiðtÞ� ð116Þ

where Ψ̆SL
I is the correction due to the time-dependent change of

the semi-Lagrangian kernel ϕ̇aðx − xIÞ
Ψ̆SL

I ðxÞ ¼ Cðx;x − xIÞϕ̇aðx − xIÞ ð117Þ
where ð·Þ denotes the material time derivative and therefore

ϕ̇aðx − xIÞ ¼ ϕ̇a

�kx − xIk
a

�
¼ ϕ 0

a
q · ðv − vIÞ

a
ð118Þ

where

q ¼ ðx − xIÞ=kx − xIk ð119Þ
and k · k designates the length of a vector. Note that the correction
function C in Eq. (117) is used to ensure the reproducing condition
of the time derivative of the semi-Lagrangian kernel ϕ̇aðx − xIÞ
and thus the time rate change of C is not considered.

Substituting Eq. (116) into Eq. (106) yields the following semi-
discrete equation

Mv̇ þ Nv ¼ fext − fint ð120Þ
where

MIJ ¼
Z
Ωx

ρΨSL
I ðxÞΨSL

J ðxÞIdΩ ð121Þ

NIJ ¼
Z
Ωx

ρΨSL
I ðxÞΨ̆SL

J ðxÞIdΩ ð122Þ

fextI ¼
Z
Ωx

ΨSL
I bdΩþ

Z
Γh
x

ΨSL
I hdΓ ð123Þ

(a) (b) (c)

Fig. 20. Comparison of Lagrangian and semi-Lagrangian RK kernels: (a) undeformed configuration; (b) Lagrangian RK in the deformed config-
uration; (c) semi-Lagrangian RK in the deformed configuration
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fintI ¼
Z
Ωx

BT
I ΣdΩ ð124Þ

Here, I denotes the identity matrix, BI is the gradient matrix
of uði;jÞ associated with node I, Σ is the stress vector associated
with σij, and b and h are the body force and surface traction
vectors, respectively. The temporal stability condition for the
semi-Lagrangian RK formulation has been established (Guan et al.
2009).

The authors would like to provide the following remarks. If
a nodal integration scheme, such as direct nodal integration, stabi-
lized conforming nodal integration, and stabilized nonconforming
nodal integration, is employed, the diagonal terms of N vanish
and the off-diagonal terms of N have relatively negligible influence
over Eq. (120). Therefore, the convective effect, Nv in Eq. (120),
can be omitted in the semidiscrete equations of motion for the sake
of computational efficiency.

Kernel Contact Algorithms

In extreme deformation problems with material separation, contact
surfaces are unknown and are part of the solution. As a conse-
quence the conventional contact algorithms, in which all possible
contact surfaces are defined a priori, are ineffective in modeling
such problems. Conversely, kernel contact (KC) algorithms (Chi
et al. 2015; Guan et al. 2011) approximate the contact condition
without relying on the predefined contact surfaces at the prepro-
cessing stage. The overlap between the semi-Lagrangian RK shape
functions induces internal forces between particles, ensuring the
impenetrability between different bodies, as shown in Fig. 21,
which leads to the so-called natural kernel contact algorithm.
A layer of a friction-like elastoplastic material, as shown in Fig. 22,
can be introduced in the contact processing zone to mimic the
friction law, which leads to the contact algorithms in the sections
“Friction-Like Plasticity Model” and “Semi-Lagrangian RK Dis-
cretization and Kernel Contact Algorithms.”

Friction-Like Plasticity Model

In kernel contact, a friction-like material can be introduced between
contacting bodies, Ωc as shown in Fig. 22, to mimic the frictional
contact conditions. Based on the analogy between Coulomb’s fric-
tion law and the elastoplasticity flow rule, the variational contact
equation leads to a constitutive equation governing the stress-strain
relationship of a friction-like material such that Coulomb’s friction
is recovered (Chi et al. 2015; Guan et al. 2011)

σc · n ¼ tNnþ tT ð125Þ

where σc is the Cauchy stress in Ωc; n is the unit outward normal of
the contact surface Γc; tN is the normal component of the contact
traction; and tT is the tangential contact traction. Eq. (125) indi-
cates that the stresses in the friction-like material are in balance
with tN and tT on Γc. Therefore, an elastic-perfectly-plastic
material, in which the stress σc in Ωc obeys Eq. (125), can be in-
troduced in the contact processing zone to mimic the Coulomb’s
friction law. To obtain σc, consider the following yield function
and the associated Karush-Kuhn-Tucker conditions based on local
coordinates where the one-direction is aligned with the contact sur-
face normal n

fðτÞ ¼ kτk þ μσ̂11 ≤ 0 ð126Þ

ė ¼ γ
∂f
∂τ ð127Þ

γ ≥ 0 ð128Þ

γf ¼ 0 ð129Þ

where τ ¼ ½ σ̂12 σ̂13 �; σ̂11 ≤ 0 is the normal contact stress; ė is the
tangential strain rate; σ̂ ¼ LσLT is the rotated Cauchy stress tensor
onto the local coordinate system; the two-direction and three-
direction are aligned with two mutually orthogonal unit vectors
p and q in the tangent plane; and L ¼ ½n;p;q�T . It is also assumed
that the normal contact stress σ̂11 is known in Eq. (126). The yield
stress μjσ̂11j mimics the friction stress induced by the normal stress
σ̂11, and the slip condition is represented by the yield condition in
the plasticity model

(a) (b)

Fig. 21. Natural kernel contact algorithm by kernel interaction between contacting bodies: (a) two bodies without kernel interaction; (b) contact by
kernel interaction due to proximity

Fig. 22. Schematic of a deformable body contacting with a rigid
surface, and an artificial material introduced between two bodies in
contact, for enforcing the contact constraints
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f < 0; stick condition ðelasticÞ
f ¼ 0; kτk ¼ −μσ̂11 slip condition ðplasticÞ ð130Þ

This approach can be carried out by a predictor-corrector algo-
rithm, in which the stresses calculated based on the overlapping
supports of the contacting bodies are obtained in the predictor step,
and in the corrector step the tangential stresses are corrected ac-
cording to Eqs. (126)–(129) with σ̂11 fixed. To enhance the iteration
convergence of the two-step approach, the radial return algorithm is
introduced, where the trial is nonslip (an elastic trial), and the vio-
lation of the yield function (interpenetration) is corrected by the
return mapping algorithm. Following the radial return mapping,
the corrected contact stresses σ̂c in the local coordinate induced
by the friction-like elastoplasticity model can be obtained as

σ̂c ¼ σ̂trial þ λ

2
64

0 σ̂trial
12 σ̂trial

13

σ̂trial
12 0 0

σ̂trial
13 0 0

3
75≡ σ̂trial þ λξ̂ ð131Þ

where σ̂trial is the Cauchy stress in the local coordinate system cal-
culated by standard stress calculations through particle interaction
without considering the artificial friction-like elastoplastic material
and λ ¼ 0 if fðτtrialÞ < 0 and

λ ¼ μjσ̂trial
11 j − kτtrialk
kτtrialk if fðτtrialÞ ≥ 0 ð132Þ

Finally, the corrected contact stress in the global coordinates is
obtained by the inverse transformation

σc ¼ LT σ̂cL≡ σtrial þ λξ ð133Þ

where

ξ ¼ ðn ⊗ σtrial · nþ n · σtrial ⊗ nÞ − 2tNn ⊗ n ð134Þ

Here, the orthogonality of L is applied to derive the previous
relationship. Eq. (133) can then be directly used in the calculation
of the contact forces described in the following section.

Semi-Lagrangian RK Discretization and Kernel Contact
Algorithms

This section describes the semi-Lagrangian RK discretization and
the contact force calculation in the KC algorithms. Consider con-
tinuum bodies ΩA and ΩB discretized by groups of points GA ¼
fxI jxI ∈ ΩAg and GB ¼ fxIjxI ∈ ΩBg, respectively, with each
point at xI associated with a nodal volume VI and a kernel function
ϕaðx − xIÞ with the support of radius a independent of material
deformation. When the two bodies ΩA and ΩB approach each other
and the semi-Lagrangian-RK shape functions form a partition of
unity, the interaction between the RK points from the different
bodies (Fig. 21) induces stresses

σðxÞ ¼
X

I∈NA∪NB

DðxÞBIðxÞdI ð135Þ

where NA ¼ fIjxI ∈ GAg; NB ¼ fIjxI ∈ GBg; and D is the
material response tensor of the contacting bodies. The contact
stresses between contacting bodies are obtained by Eq. (135) when
n · σ · n ≤ 0 in Ωc. With the nodal integration schemes described
in the section “Domain Integration in Galerkin Meshfree Methods,”
the internal force acting on a point I can then be obtained by

fI ¼
X
J∈NC

I

BT
I ðxJÞσðxJÞVJ ð136Þ

where NC
I ¼ fJjJ ∈ NA ∪ NB;ϕaI ðxJ − xIÞ ≠ 0; rIJ · σðxJÞ ·

rIJ < 0; rIJ ¼ ðxJ − xIÞ=kxJ − xIkg is the set that contains the
neighbor points under the support of point I, while the contact
stress between those points and point I is in compression. In this
approach, the pairwise interactions due to overlapping kernel func-
tions naturally prevent the interpenetration between different
bodies. To model the frictional contact condition, an artificial layer
of material with the friction-Like dissipating mechanism in the
form of plasticity presented in the section “Friction-Like Plasticity
Model” is introduced. With the consideration of the frictional con-
tact effect, the summation of the interactive forces associated with
point I is corrected as

fI ¼
X
J∈NC

I

B̄T
I ðxJÞσcðxJÞVJ ¼

X
J∈NC

I

ðfIJ þ gIJÞ ð137Þ

where fIJ ¼ BT
I ðxJÞσtrialðxJÞVJ; and gIJ ¼ BT

I ðxJÞλξðxJÞVJ .
One remaining issue to implement the KC algorithm in the

semi-Lagrangian formulation is to determine the contact surface
and surface normal from a purely point-based discretization.
A level-set based method, where the level set function is chosen
as the interpolant of material IDs using semi-Lagrangian RK
shape functions has been proposed to obtain the contact surface
and surface normal under the KC contact framework (Chi et al.
2015).

As an illustrative example, the Taylor bar impact problem
(Taylor 1948) was first performed by Wilkins and Guinan
(1973), and subsequently by others. An aluminum bar with initial
height and radius of 2.346 and 0.391 cm, respectively, impacts a
rigid wall with an initial velocity of 373.0 m=s. For the aluminum
material, J2 plasticity with isotropic hardening is considered with
material properties Young’s modulusE ¼ 78.2 GPa, Poisson’s ratio
ν ¼ 0.30, and density ρ ¼ 2,700 kg=m3, and the yield function is
taken as

KðēpÞ ¼ σYð1þ 125ēpÞ0.1 ð138Þ

where σY ¼ 0.29 GPa.
The semi-Lagrangian formulation is considered with linear

basis and quartic B-spline kernel functions with a normalized sup-
port of 2.8, and 29,637 nodes discretize the bar. The wall is also
modeled and is considered frictionless, and the KC algorithms are
employed for the bar-wall interaction. The four integration methods
direct nodal integration (DNI), stabilized nonconforming nodal
integration (SNNI), variationally consistent naturally stabilized no-
dal integration (VC-NSNI), and variationally consistent modified
SNNI (VC-MSNNI) discussed in the section “Galerkin-Based
Meshfree Method” are considered for comparison of the nodal
integrations.

The deformed shape of the face of the bar is shown in Fig. 23,
with material deformation plotted for visualization purposes, in or-
der to observe any spurious oscillations in the solution, if present.
The difference in solutions is apparent; DNI and SNNI both clearly
show spurious oscillatory modes in the solution discussed in the
section “Domain Integration in Galerkin Meshfree Methods” while
the stabilized methods do not.

The deformed height and radius of the bar are shown in Table 2,
where it is shown that DNI and SNNI predict a larger radius
compared to the reference solutions, likely due to the very little
resistance to the oscillatory mode of deformation. Another explan-
ation is the numerical fractures in DNI and SNNI formed due
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to these spurious modes, as seen in Fig. 24, while VC-NSNI
and VC-MSNNI give stable solutions. For the deformed height
of the bar, all methods give reasonable heights compared to the
reference solutions except for DNI. VC-NSNI and VC-MSNNI
give the closest results to the experimental data and other methods
compared.

Applications of Meshfree Methods

Application to Large Deformation Problems

Meshfree methods are particularly well-suited for large deforma-
tion problems where finite-element methods could fail due to mesh
entanglement and other mesh related issues. The Lagrangian
meshfree method in Eqs. (106)–(110) has been applied to many
solid mechanics problems and applications, such as large deforma-
tion of hyperelastic materials and rubber (Chen andWu 1997; Chen
et al. 1997, 2000c, e), metal forming (Chen and Wang 2000a, b;
Chen et al. 1998a, c; Wang et al. 2014; Yoon and Chen 2002; Yoon
et al. 2001), and geomechanics problems (Wu et al. 2001), among
others, showing robustness over FEM. For the presence of material
separation where the Lagrangian description breaks down, the
semi-Lagrangian formulation in Eqs. (111)–(137) was proposed
(Guan et al. 2009, 2011; Kwok et al. 2015). Fig. 25 shows the
application of semi-Lagrangian RKPM to the simulation of perfo-
ration of a concrete panel by a bullet (Yreux and Chen 2016), and
Fig. 26 demonstrates a semi-Lagrangian RKPM simulation of a
landslide due to the Loma Prieta earthquake. Several other re-
searchers have developed and employed various meshfree methods
discussed in the “Introduction” to reassociate connectivity for pen-
etration and fragment-impact problems (Johnson et al. 1996; Li
et al. 2012, 2013; Libersky et al. 1997; Ma et al. 2009; Parks et al.
2008; Rabczuk and Belytschko 2007; Rabczuk and Eibl 2003;
Rabczuk et al. 2004; Randles and Libersky 1996; Ren and Li 2010;
Silling and Askari 2005; Zhang et al. 2006). On a different path,
discrete bonded particle methods have been developed and coupled
with FEM for similar applications (Beissel et al. 2006; Johnson
1994; Johnson et al. 1986, 2000, 2002, 2013) [for a review, see
(Johnson 2011)]. Recently, meshfree methods have gained traction
in solving geomechanics problems with extremely large deforma-
tions such as slope stability with postfailure analysis (Andersen
and Andersen 2010; Bui and Fukagawa 2013; Bui et al. 2008; Chen
and Qiu 2014; Fukagawa et al. 2011; Kwok et al. 2015; Wang et al.
2011). More recently, several other meshfree formulations for non-
linear mechanics have been introduced (Yreux and Chen 2016; Chi
et al. 2015; Hillman and Chen 2015; Hillman et al. 2014; Wu et al.
2016, 2016, 2014).

Adaptive Refinement

The naturally conforming properties of meshfree approximations,
such as the MLS, RK, and PU approximations, allow adaptivity
to be performed in a much more effective manner than the
conventional finite element method (Duarte and Oden 1996b, a;
Liu and Chen 1995; Liu et al. 1997a; Lu and Chen 2002;
Rabczuk and Belytschko 2005; Rabczuk and Samaniego 2008;

Fig. 24. Final deformation of the Taylor bar for various nodal integration methods

Fig. 23. Final deformation on the face of the Taylor bar for various
nodal integration methods

Table 2. Deformed Height and Radius for Various Methods and the
Experiment (Data from Hillman and Chen 2015)

Method
Radius
(cm)

Height
(cm)

SNNI 0.839 1.649
DNI 0.838 1.660
VC-MSNNI 0.801 1.649
VC-NSNI 0.775 1.651
RKPM (Gauss integration) (Chen et al. 1996) 0.827 1.645
Material point method (Sulsky et al. 1995) 0.78 1.65
Finite-element method (Taylor 1948) 0.742 1.652
Experimental (Wilkins and Guinan 1973) — 1.651
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You et al. 2003). Nodes can be inserted or removed with ease,
and error indicators have been formulated to guide adaptive
refinement. For example, the multiresolution RK-based method
(Liu and Chen 1995; Liu et al. 1996a, c, 1997a) enables the scale
decomposition of the RKPM solution by using the RK function as a

low-pass filter, and the high-scale solution has been used as the
error indicator for adaptive refinement (Liu and Jun 1998; Liu et al.
1995b, 1996a, 1997b; Uras et al. 1997). While p adaptivity is not
so straightforward in RK-based and MLS-based methods, hp
clouds allows the bases to vary throughout the domain such that

Fig. 26. Simulation of a landslide triggered by the 1989 Loma Prieta earthquake using semi-Lagrangian RKPM

(a)

(b) (c)

Fig. 25. Bullet penetrating a concrete panel: (a) deformed shape after impact; (b) crater shape; (c) velocity reduction for different sizes of
projectiles
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higher order accuracy can be obtained where needed (Duarte and
Oden 1996a).

Application to Strain Localization

Researchers have employed the flexibility of meshfree methods for
regularization in localization problems to circumvent ambiguous
boundary conditions in gradient methods (Chen et al. 2000d, 2004,
2007b). Methods have also been developed and applied success-
fully to localization problems difficult for FEM (Li et al. 2000a, b,
2001, 2002; Liu and Jun 1998). More recently, the cracking particle
method (Rabczuk and Belytschko 2004) has been developed for
shear bands (Rabczuk and Samaniego 2008).

Application to Fracture Mechanics

Fracture mechanics is another area where meshfree methods offer a
unique strength. Early on, it was recognized that meshfree formu-
lations such as EFG could offer an effective alternative to FEM in
modeling fracture by using the so-called visibility criterion (cutting
the particle influence across a crack), and further provide easy
adaptive refinement to attain accuracy near crack tips (Belytschko
and Tabbara 1996; Belytschko et al. 1994a, 1995a, b). Alterna-
tively, enrichment of the approximation functions for crack tip sin-
gularities can be considered intrinsically (Belytschko et al. 1996a;
Fleming et al. 1997) or extrinsically (Fleming et al. 1997; Melenk
and Babuška 1996; Ventura et al. 2002). The former approach
involves some complications because MLS and basis RK functions
in these methods cannot vary spatially. Approaches with extrinsic
enrichments have been developed for meshfree methods (Rabczuk
and Areias 2006; Rabczuk and Zi 2007; Rabczuk et al. 2007a, i),
including techniques for accurate closure of crack fronts in mesh-
free methods, with the resulting method termed XEFG. Tracking
the geometry of evolving cracks necessary for enrichment is a dif-
ficult task, particularly in three dimensions. To circumvent this is-
sue, a cracking particle method has been proposed, where fracture
is represented by a series of discontinuities located at the particles,
with arbitrary orientation (Rabczuk and Belytschko 2004, 2007;
Rabczuk et al. 2007a, 2010). The introduction of these discontinu-
ities can be performed by detection of material instability. Alterna-
tively, level-set methods for tracking of complicated crack geometry
have been proposed (Bordas et al. 2008; Ventura et al. 2002; Zhuang
et al. 2011).

Application to Contact Mechanics

By employing the arbitrary smoothness in meshfree approximation
functions, a smooth contact algorithm has been proposed where

the contact surface is represented by smooth (C2 or higher) RK
approximations, which allows continuum-based contact formula-
tions (Chen and Wang 2000a; Wang 2000; Wang et al. 2014). This
in turn allows improved convergence in contact iterations versus
finite-element based contact with C0 continuity, and enables robust
analysis in applications such as metal forming, as shown in Fig. 27,
where Lagrangian RKPM is used to model a metal extrusion proc-
esses with adaptive refinement, where points were inserted in the
highly deformed region and were removed in the region undergoing
elastic unloading.

Other Applications

Meshfree methods have been developed for several other applica-
tions where they have advantages over traditional approaches.
In modeling biomaterials, meshfree methods are well suited for
image-based modeling by using pixels as discretization nodes
without the tedious procedures in three-dimensional geometry
reconstruction from the images and mesh generation. Meshfree
methods can also represent the smooth transition of material prop-
erties across material interfaces in biomaterials (Chen et al. 2015;
Chi 2009). Fig. 28 shows a skeletal muscle modeled by the mesh-
free method, where image pixel points were used directly as the
discretization points, and the associated stress distribution is com-
puted using material properties and fiber orientations defined at the
pixel points.

Another good application of meshfree methods is for problems
that involve higher order differentiation in the PDE, such as thin
plate and shell problems (Chen and Wang 2006; Krysl and
Belytschko 1995, 1996; Liu and Chen 2001; Long and Atluri
2001; Wang and Chen 2008; Wang and Peng 2013) where meshfree
approximation functions with higher order continuity can be em-
ployed with virtually no additional effort. The application of the
meshfree method to quantum mechanics has been proposed by
utilizing the orbital functions as the enrichment of polynomial
bases for p-like adaptive refinement (Chen et al. 2007a). For shape
optimization, meshfree methods can avoid mesh distortion in the
iterative process (Kim et al. 2000a, g, 2001). Meshfree methods for
fluid mechanics (Fries and Matthias 2006a, b; Günther et al. 2000;
Hillman and Chen 2016; Huerta and Fernández-Méndez 2003; Li
and Liu 1999a; Liu et al. 1995b, 1997b) have been proposed using
multiresolution analysis in conjunction with adaptive refinement
(Günther et al. 2000; Liu et al. 1995b, 1997b). The smooth mesh-
free approximation functions are well suited for Petrov-Galerkin
stabilization (Huerta and Fernández-Méndez 2003), and meshfree
methods are more effective in handling moving domains and ob-
stacles (Fries and Matthias 2006a, b).

Fig. 27. RKPM modeling of metal extrusion with adaptive refinement

© ASCE 04017001-30 J. Eng. Mech.

 J. Eng. Mech., -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

02
/0

8/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Conclusions and Outlook

Meshfree methods offer an alternative to traditional mesh-based
methods, where the conforming condition is relaxed to simply PU
subordinate to an open cover. Meshfree approximations can offer
arbitrarily smooth or rough approximations at no cost. In meshfree
approximations such as MLS and RK, the order of completeness
and order of continuity in the approximations are entirely un-
coupled in contrast to many other numerical methods. Because of
these two properties h-refinement and p-refinement are simplified
considerably. In addition, the strong tie between the quality of the
discretization and the quality of the numerical solution to PDEs
is reduced, which makes these methods well-suited for large defor-
mation problems without cumbersome procedures such as remesh-
ing, moving meshes, and erosion. The burden of producing an
analysis suitable discretization via meshing is also greatly relieved.
These features have made the application of meshfree methods
widespread in the past two decades.

For the practical application of meshfree methods, efforts
have been devoted to ensure solution accuracy, stability, and effi-
ciency. To date, essential boundary condition enforcement is almost
trivial in meshfree methods. The formidable computational cost of
high-order quadrature has been greatly alleviated (or eliminated)
through novel techniques such as SCNI and VCI, which have since
been showing robustness in many applications. Significant
advances have also been made in spatial stability, where several
accurate and efficient stabilized nodal integration methods have

been developed. With the progress in nodal integration, truly mesh-
less methods are now available, and they are particularly effective
for problems with extreme loadings, such as fragment-impact
processes.

Several issues remain, some of which are common to both
mesh-based and meshfree methods. A prime example is the sim-
ulation of high-density, three-dimensional cracking, which remains
challenging, even for meshfree methods. To the authors’ knowl-
edge, the potential to alleviate time-consuming model generation
in the meshfree method has not been fully realized. The ability
to collocate partial differential equations directly (strong form
collocation) offers a promising avenue for meshfree methods;
however, the effort devoted to advancing the strong form colloca-
tion method has not been on par with the development of Galerkin
meshfree methods, especially in the area of strong form collocation
for large deformation, fracture mechanics, and contact-impact
problems. These challenges call for future research in meshfree
methods.
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Oñate, E., Idelsohn, S. R., Zienkiewicz, O. C., and Taylor, R. L. (1996a). “A
finite point method in computational mechanics: Applications to con-
vective transport and fluid flow.” Int. J. Numer. Methods Eng., 39(22),
3839–3866.
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