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1 INTRODUCTION

This chapter gives a state-of-the-art review of the repro-
ducing kernel particle method (RKPM), one of the popu-
larly used meshfree methods for solving partial differen-
tial equations (PDEs), and examples of its applications to

Encyclopedia of Computational Mechanics Second Edition,
Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
© 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/9781119176817.ecm2104

mechanics problems are also presented. The earliest and
simplest approximation method introduced in a meshfree
framework is the kernel estimate (KE) employed in Lucy
(1977) and Gingold and Monaghan (1977) in smoothed
particle hydrodynamics (SPH); see Randles and Libersky
(2000) for an overview. In the KE, if the kernel function is
normalized, it assures zeroth-order completeness. The use
of the symmetric kernel function further meets first-order
consistency. However, the discretization of the KE assures
neither zeroth- nor first-order consistency in a finite domain,
unless the lumped mass (or lumped volume) is carefully
selected, which is difficult to accomplish with irregular
boundary shapes and in arbitrary particle distributions.

The reproducing kernel (RK) approximation was first
proposed by Liu et al. (1995a,b) to improve the accuracy of
the SPH method for finite domain problems. The employ-
ment of the RK approximation for the numerical solution
of PDEs using the Galerkin method is called the RKPM
(Liu et al., 1995a,b). In this method, the kernel function
is modified by introducing a correction function to meet
polynomial reproducing conditions. The resulting modified
kernel function exactly reproduces polynomials to a specific
order and thereby fulfills completeness. The shape func-
tions constructed from this method can be made equiva-
lent to the moving least-squares kernel interpolants if poly-
nomial basis functions are employed. In general, the RK
approximation can be constructed using scattered points
without mesh connectivity. For comparison, as shown in
Figure 1, the approximation function for point I in the finite
element method (FEM) is constructed at the element-level
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Figure 1. (a) The patching of finite element shape functions from local element domains and (b) meshfree approximation function
constructed directly at the nodes in the global coordinates. (Reproduced with permission from Chen and Belytschko (2015). © Springer,
2015.)

natural coordinates and then transformed to global Cartesian
coordinates, whereas the RK approximation functions are
constructed using only nodal coordinate data in the global
Cartesian coordinates directly. These compactly supported
RK approximation functions form a partition of unity subor-
dinate to the open covering of the domain, with controllable
orders of continuity and completeness. Under this construc-
tion, it becomes possible to relax the strong tie between the
quality of the discretization and the quality of approxima-
tion in the FEM, and it significantly simplifies the procedures
in h-adaptivity. Special basis functions can be embedded in
the RK approximation to capture essential characteristics of
the physical problems to be solved, for example, crack-tip
asymptotic functions for fracture problems. RKPM has also
been shown to be particularly effective for solving large
deformation problems without the burden of dealing with
mesh distortion or entanglement in the conventional FEM.
An overview of the RK approximation and its mathematical
properties for solving PDEs is given in Section 2.

Section 3 unifies Peridynamics with other meshfree
methods by demonstrating that the former is a particular
case of the RK approximation. Additional considerations
and implications are given in that section. Section 4 discusses
the application of meshfree methods to solving fractional
PDEs. A one-dimensional fractional advection–diffusion
equation (FADE) using the RK approximation in the
Petrov–Galerkin form is studied to show its performance
as well as the effectiveness of the selection of appropriate
viscosity coefficient.

One of the unique properties of the RK approximation
is its similarity to wavelets, which leads to the ability to

employ multiresolution analysis by wavelet-RK methods
and multiple-scale RKPM (Liu and Oberste-Brandenburg,
1993; Liu and Chen, 1995; Liu et al., 1997b). As is well
known, the interpolation functions serve as low-pass filters.
A sequence of low-pass filters can be obtained by changing
the value of the dilation parameter, usually by a factor of
two. Through the projection of the sequence of low-pass
filters, a hierarchical representation of a given response
can be derived. A high-pass filter can be designed as the
complementary projector to fill the resolution gap between
two consecutive low-pass filters. This new set of high-pass
filters is the backbone of the multiresolution analysis in
the convolution formulation, and provides a non-redundant
representation of the given function (Liu et al., 1996b).
After Liu and Oberste-Brandenburg (1993) first proposed
the concept of the multiple-scale RKPM, Liu and coworkers
(Liu and Chen, 1995; Liu et al., 1996a,b, 1997a,b) have
extensively studied multiresolution analysis by wavelet and
RK methods, including edge detection, aliasing control,
adaptive refinement, frequency and wave number shifting
techniques – which can be utilized to perform multiple-scale
analysis of various problems with large deformation, high
gradients, and high modal density, such as structural acous-
tics (Liu et al., 1996a,b, 1997a), structural dynamics (Liu
et al., 1996a,b; Lu et al., 2005), elastic–plastic defor-
mation (Liu et al., 1996a, 1997a), computational fluid
dynamics (Liu et al., 1996a,b, 2007b), hyperelasticity
(Liu et al., 1996a,b), and shock waves (Roth et al., 2016).
Section 5 provides the basic equations of multiresolution
analysis, the multiple-scale wavelet particle method, and the
multiple-scale RK approximation, as well as a discussion of
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the application of hp-like adaptivity in RKPM. It should be
noted that the hp-like adaptive refinement can be performed
trivially without prior knowledge of the exact solution since
it is easy to construct a local error indicator similar to local
aliasing estimations, which is a detrimental consequence of
undersampling on particle distribution.

RKPM is a meshfree method for solving PDEs based
on the Galerkin framework. A crucial consideration for
Galerkin-based meshfree methods using RK or moving
least-squares (MLS) approximations is the choice of the
quadrature employed for domain integration. Although
RK and MLS approximation functions are capable of
reproducing monomials of arbitrary order in arbitrary
discretizations, this completeness property does not guar-
antee optimal rates of convergence in the Galerkin solution
of PDEs if the domain integration is not sufficiently accurate.
Unfortunately, RK and MLS approximation functions are
rational, and the compact supports form overlapping support
structures that are difficult to integrate accurately (Dolbow
and Belytschko, 1999). The result of these two difficulties
is that the accuracy and convergence of numerical solutions
are sensitive to the choice of domain integration. Gaussian
quadrature was commonly used in the early development
of meshfree methods (cf. Liu et al., 1995a; Belytschko
et al., 1994, 1996; Chen et al., 1996). However, if Gaus-
sian integration (GI) is employed, high-order quadrature
is necessary to obtain optimal convergence (Dolbow and
Belytschko, 1999; Chen et al., 2001; Babuška et al., 2008;
Chen et al., 2013). A general framework that offers a
paradigm for formulating quadrature rules and test functions
to achieve optimal convergence for a given PDE at hand
has been established (Chen et al., 2001, 2013; Krongauz
and Belytschko, 1997; Bonet and Kulasegaram, 2000).
These conditions have been referred to as the integration
constraints (Chen et al., 2001) for first-order Galerkin
exactness, and the variational consistency conditions (Chen
et al., 2013) in their recent generalization to higher order
Galerkin exactness. Satisfaction of these conditions has also
been shown to restore Galerkin orthogonality for solutions
of order n (Rüter et al., 2013), and methods that satisfy
these conditions are grounded in variational principles (Sze
et al., 2004). These variational consistency conditions can
also be utilized to restore convergence rates associated with
the completeness of the approximation space while using
low-order quadrature (Chen et al., 2001, 2013; Hillman and
Chen, 2016). Mathematical analysis of meshfree methods
with quadrature has been carried out (Babuška et al., 2008,
2009), and a related condition that the rows of the system
matrix sum up to zero was shown to be necessary for
well-behaved solutions with quadrature, called the zero
row-sum condition, and this can be achieved by modifying
the diagonal entries of the system matrix.

Nodal integration methods are often employed in Galerkin
meshfree methods as an alternative to GI for various
reasons – preservation of the mesh-free characteristics of the
method on the quadrature level, simplicity, and efficiency.
These methods however, generally exhibit poor solution
accuracy and convergence rates (Chen et al., 2001, 2013;
Beissel and Belytschko, 1996), and further, instability arises
in this method owing to the possibility of sampling zero
gradients at nodal points for modes with wavelength of two
times the nodal spacing (Chen et al., 2001; Beissel and
Belytschko, 1996; Belytschko et al., 2000). Many methods
are available that circumvent this issue by avoiding this
undersampling of the strain energy density. This can be
accomplished by employing residual-based methods (Bonet
and Kulasegaram, 2000; Beissel and Belytschko, 1996;
Fries and Belytschko, 2008), stress points (Randles and
Libersky, 2000; Dyka et al., 1997; Rabczuk et al., 2004),
Taylor expansions (Hillman and Chen, 2016; Liu et al.,
1985, 2007; Nagashima, 1999), or strain smoothing in
conjunction with the divergence operation of the averaged
integral (Chen et al., 2001, 2002; Wang and Chen, 2004,
2008; Chen and Wang, 2006). Two key issues with these
methods are the associated cost involved, and the presence
of any “tunable” parameters. It is worth mentioning that the
strain smoothing method avoids both, but needs additional
stabilization to ensure reliable solutions in all situations
(Puso et al., 2008). Section 6 includes an overview of the
recent developments in addressing domain integration in
meshfree methods.

Alternatively, strong form collocation methods have been
proposed for solving PDEs (Hardy, 1990), such as the
radial basis collocation method (RBCM) (Kansa, 1990a,b;
Hu and Li, 2006; Hu et al., 2007), the finite point method
(Oñate et al., 1996), and the reproducing kernel colloca-
tion method (RKCM) (Aluru, 2000; Chen et al., 2008;
Hu et al., 2009, 2011). From a convergence standpoint,
the compactly supported RK approximations with mono-
mial reproducibility render an algebraic convergence in
RKCM, while the nonlocal RBFs with certain regularity
offer exponential convergence in RBCM. Nevertheless, the
linear system of RBCM is typically more ill-conditioned
compared to those based on compactly supported approx-
imations. The work in (Chen et al., 2008) shows that one
can construct a localized RBF using a partition of unity
function, such as the RK enhanced radial basis function, to
yield a local approximation while achieving the exponential
convergence in RBCM. This localized RBF, combined
with the subdomain collocation method, has been applied
to problems with local features, such as problems with
heterogeneity or cracks that are difficult to solve using
RBCM (Chen et al., 2009; Wang et al., 2010). Strong form
collocation methods such as RKCM, however, come with
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increased computational complexity owing to taking of
higher order derivatives of the approximation functions and
the need for using a large number of collocation points
for optimal convergence. A gradient reproducing kernel
collocation method (G-RKCM) (Chi et al., 2013) has
been proposed to address the computational complexity in
RKCM while achieving optimal convergence by introducing
a gradient RK approximation. G-RKCM reduces the order
of differentiation to first order for solving second-order
PDEs with strong form collocation. Section 7 gives an
overview of the above-mentioned strong form collocation
methods.

Since RK approximation functions are constructed entirely
based on a set of discrete points, RKPM has been success-
fully applied to model extremely large deformation problems
without mesh distortion or mesh entanglement difficulties.
The Lagrangian RKPM formulation (Chen et al., 1996),
in which the kernel functions maintain the same coverage
of neighboring particles, has been introduced to model
elastomeric materials and metal forming (Chen et al., 1997,
1998; Wu et al., 2001), among other application problems.
For large deformation problems involving severe material
damage and separation, the deformation gradient is no
longer positive definite at all material points and neither the
total Lagrangian nor the updated Lagrangian formulation
is applicable. For such cases, a semi-Lagrangian RKPM
formulation (Guan et al., 2009, 2011) has been proposed,
in which the discrete points are attached to the material
points (and thus Lagrangian) while the supports of kernel
functions do not necessarily deform with the materials
(and thus semi-Lagrangian). In semi-Lagrangian RKPM
(discussed in Section 8), the neighbor points are redefined
during the deformation process to account for large flow
of material motion and formation of free surfaces, and the
approximation is constructed at the current configuration.
The stability conditions of this approach for explicit time
integration have also been studied (Guan et al., 2011). A
kernel contact (KC) algorithm (Chi et al., 2015) has been
developed under a semi-Lagrangian RKPM framework
for multibody contact, and the approach has been applied
to modeling fragment-impact and penetration processes
(Chi et al., 2015; Sherburn et al., 2015) as presented in
Section 8.

2 REPRODUCING KERNEL
APPROXIMATION

The foundation of RKPM is the RK approximation. The
RK approximation functions are constructed so that they can
represent polynomial functions exactly. In this section, we
first introduce the continuous form of the RK approximation

to illustrate how polynomial functions can be reproduced
under a convolution integral. The concept is then extended to
the construction of the discrete RK approximation and finally
the Galerkin approximation for solving PDEs using the RK
approximation.

2.1 The continuous reproducing kernel
approximation

The RK approximation can be viewed as an enhancement
of the KE in SPH (Lucy, 1977; Gingold and Monaghan,
1977; Monaghan, 1982). In one-dimension, the KE of a func-
tion u(x), denoted as uk(x), is expressed as the convolution
between the function u(x) and a kernel function in domain Ω
as:

uk(x) = ∫Ω
𝜙a(x − s)u(s)ds (1)

where𝜙a(x− s) is called the kernel function with support size
a, which plays a similar role as the weight function in the
moving least-squares approximation. For example, a cubic
B-spline kernel function as shown in Figure 2 is

𝜙a(x − s) =∶ 𝜙a(z)

=

⎧⎪⎪⎨⎪⎪⎩

2
3
− 4z2 + 4z3 for 0 ≤ z ≤ 1

2
4
3
− 4z + 4z2 − 4

3
z3 for

1
2
≤ z ≤ 1

0 for z > 1

, z = |x − s|
a

(2)

Note that uk(x) approaches u(x) if 𝜙a(x− s) approaches
𝛿(x− s) and the domain is infinite. The error in (2) is due
to the finite domain Ω and a kernel 𝜙a(x− s)≠ 𝛿(x− s).
Consider the Taylor expansion of u(s) in (1)

u(s) =
∞∑

i=0

(s − x)i

i!
u(i)(x) (3)

s – a s + a xΩs

x = s

Figure 2. Kernel function 𝜙a(x− s). (Reproduced from Chen
(2015). © Chen, 2015.)
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where u(i)(x)= diu(x)/dxi. Here we have assumed that u is
infinitely differentiable. Substituting (3) into (2), we have

uk(x) = m0(x)u(x) +
∞∑

i=1

(−1)i

i!
mi(x)u(i)(x) (4)

where mi(x) is the i-th moment of 𝜙a defined by

mi(x) = ∫Ω
(x − s)i𝜙a(x − s)ds (5)

For uk(x)= u(x), one needs m0(x)= 1 and mi(x)= 0 for
1≤ i, and the only kernel function that meets these require-
ments is 𝜙a(x− s)= 𝛿(x− s). For nth-pleteness in uk(x), the
kernel function has to satisfy the following conditions:

m0(x) = 1,

mi(x) = 0, for 1 ≤ i ≤ n (6)

The equations in (6) are called the reproducing conditions.
Not all kernel functions satisfy the above reproducing condi-
tions, but a kernel function can be modified to meet them. The
RK approximation, denoted as uR(x), introduces correction to
the KE as follows (Liu et al., 1995a,b):

uR(x) = ∫Ω
𝜙a(x; x − s)u(s)ds, (7)

where 𝜙a(x; x − s) is a modified kernel function (or the RK
function) given by

𝜙a(x; x − s) = C(x; x − s)𝜙a(x − s), (8)

where C(x; x− s) is called the correction function, expressed
as

C(x; x − s) =
n∑

i=0

(x − s)ibi(x) =∶ HT(x − s)b(x) (9)

and H(x− s) is the vector of basis functions,

HT(x − s) = [1, x − s, (x − s)2, … , (x − s)n] (10)

and bT(x)= [b0(x), b1(x), b2(x), … , bn(x)] is the coefficient
vector. By introducing a Taylor expansion on u(s) in (7), we
have

uR(x) = m0(x)u(x) +
∞∑

i=1

(−1)i

i!
mi(x)u(i)(x) (11)

where mi(x) is the i-th moment of 𝜙a and is defined as

mi(x) = ∫Ω
(x − s)i𝜙a(x; x − s)ds

= ∫Ω
(x − s)i

(
n∑

k=0

bk(x)(x − s)k
)
𝜙a(x − s)ds

=
n∑

k=0

bk(x) mi+k(x) (12)

where mi(x) is defined as in (5). The reproducing conditions
for nth-pleteness in the RK approximation in (11) are now

m0 = 1,

mi = 0, for 1 ≤ i ≤ n (13)

The equations in (13) can be expressed as the following set
of equations:

M(x)b(x) = H(0) (14)

where M(x) is called the moment matrix with respect to the
kernel 𝜙a(x), and is expressed as

M(x) =
⎡⎢⎢⎢⎣
m0(x) m1(x) · · · mn(x)
m1(x) m2(x) · · · mn+1(x)
⋮ ⋮ ⋱ ⋮

mn(x) mn+1(x) · · · m2n(x)

⎤⎥⎥⎥⎦ (15)

It can be easily shown that M(x) can be expressed by the
vector of basis functions H as

M(x) = ∫Ω
H(x − s)HT(x − s)𝜙a(x − s)ds (16)

By obtaining the coefficient vector b(x) from (14), and
substituting it back into (7), the RK approximation in one
dimension can now be expressed as

uR(x) = HT(0)M−1(x)∫Ω
H(x − s)𝜙a(x − s)u(s)ds (17)

The derivation above demonstrates the basic construction
of the RK approximation. This construction, however,
becomes tedious in multidimensions. An alternative
approach can be used to obtain the RK approximation (Chen
et al., 2000) as follows. Consider the imposition of the n-th
omial reproducing conditions to the RK approximation in
(7) as

∫Ω
C(x; x − s)𝜙a(x − s)sids = xi, i = 0, … , n (18)
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or equivalently,

∫Ω
C(x; x − s)𝜙a(x − s)(x − s)ids = 𝛿i0, i = 0, … , n

(19)
The above equation can be further written as

∫Ω
C(x; x − s)𝜙a(x − s)H(x − s)ds = H(0) (20)

Substituting the correction function C(x; x− s) in (9) into
(20) yields the same linear system as that in (14) for solving
coefficient vector b(x), and consequently the same final form
of the RK approximation in (17).

With this approach, the multidimensional RK approxima-
tion can be written as

uR(x) = ∫Ω
C(x; x − s)𝜙a(x − s)u(s)ds (21)

The correction function C(x; x− s) in multidimensions is
expressed as the linear combination of monomial bases:

C(x; x − s)

=
n∑

i+j+k=0

bijk(x)(x1 − s1)i(x2 − s2)j(x3 − s3)k, n ≥ 0

= HT (x − s)b(x) (22)

and H(x− s) is the vector of basis functions:

HT(x − s) = [1, x1 − s1, x2 − s2, … , (x3 − s3)n] (23)

The coefficient vector bT(x)= [b000(x), b100(x), b010(x), … ,
b003(x)] is solved by enforcing n monomials reproducibility:

∫Ω
C(x; x − s)𝜙a(x − s)s1

is2
js3

k ds

= x1
ix2

jx3
k, 0 ≤ i + j + k ≤ n (24)

Equation (24) can be rewritten as:

∫Ω
C(x; x − s)𝜙a(x − s)(x1 − s1)i(x2 − s2)j(x3 − s3)kds

= 𝛿i0𝛿j0𝛿k0, 0 ≤ i + j + k (25)

or,

∫Ω
C(x; x − s)𝜙a(x − s)H(x − s)ds = H(𝟎) (26)

Introducing the correction function in (22) into (26) yields
the following equation:(

∫Ω
H(x − s)HT (x − s)𝜙a(x − s)ds

)
b(x) = H(𝟎) (27)

By solving b(x) from (27), the multidimensional RK
approximation is obtained:

uR(x) = HT (𝟎)M−1(x)∫Ω
H(x − s)𝜙a(x − s)u(s)ds (28)

where

M(x) = ∫Ω
H(x − s)HT (x − s)𝜙a(x − s)ds (29)

Here, M(x) is the multidimensional moment matrix, and
𝜙a(x− s) is the multidimensional kernel function that can be
constructed by using the kernel function in one dimension by
either of the two following ways:

(1) 𝜙a(x − s) =
3∏

i=1

𝜙ai
(xi − si)

= 𝜙a1
(x1 − s1)𝜙a2

(x2 − s2)𝜙a3
(x3 − s3) (30)

(2) 𝜙a(x − s) = 𝜙a(z), z = ||x − s||
a

(31)

The kernel function defined in (30) has rectangular
cuboid support while the one defined in (31) has spherical
support, such as those shown in Figure 3 for the supports of
two-dimensional kernel functions.

Note that M(x) is the Gram matrix of the basis functions in
H(x− s) with respect to 𝜙a(x− s), and M(x) is positive defi-
nite if the basis functions in H(x− s) are linearly independent

xI

2a2

(a) (b)

a

2a1

xI

Figure 3. (a) Rectangular and (b) circular supports of
two-dimensional kernel function 𝜙a(x− s) corresponding to
(30) and (31), respectively. (Reproduced from Chen (2015). ©
Chen, 2015.)
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and 𝜙a(x− s)> 0 for ||x− s||< a. For the discrete RK
approximation, on the other hand, a sufficient number of
nodal supports have to cover the point x for M(x) to be
positive definite, which will be discussed in the next section.

To construct the approximation functions for the finite
dimensional solution of PDEs based on the RK approxima-
tion, discretization of the continuous RK function in (28)
is needed. However, discretization of the continuous RK
approximation yields violation of the reproducing condi-
tions and consequently monomials are not exactly repro-
duced (Chen et al., 1996). In the following, a discrete RK
approximation is formulated directly from a discrete form
(Chen et al., 1998).

2.2 Discrete reproducing kernel approximation

Consider the domain of interest Ω = Ω ∪ 𝜕Ω discretized
by a set of points S = {x1, x2, … , xNp|xI ∈ Ω}, and let the
approximation of a function u, denoted by uh, be constructed
using information at discrete points in the set S as follows:

uh(x) =
Np∑
I=1

ΨI(x)dI (32)

where ΨI(x) is the shape function of node I positioned at xI,
and dI is the coefficient to be sought. In the RK approxima-
tion, the construction of shape functions is based entirely
on point data. The RK shape functions are constructed as
follows (Liu et al., 1995a; Chen et al., 1996) with consider-
ation of discrete reproducing conditions (Chen et al., 1998):

ΨI(x) = C(x; x − xI)𝜙a(x − xI) (33)

where 𝜙a(x−xI) is the kernel function with compact support
measured by the support dimension a, and C(x; x−xI) is the
correction function composed of monomial bases:

C(x; x − xI)

=
n∑

i+j+k=0

bijk(x)(x1 − x1I)i(x2 − x2I)j(x3 − x3I)k, n ≥ 0

(34)

where n represents the degree of monomial bases, and bijk(x)
are coefficients obtained by the following discrete repro-
ducing conditions (Chen et al., 1998):

Np∑
I=1

ΨI(x)xi
1Ix

j
2Ix

k
3I = xi

1xj
2xk

3, i + j + k = 0, 1, … , n (35)

Obtaining bijk(x) from (35) yields the following RK shape
function:

ΨI(x) = HT(𝟎)M−1(x)H(x − xI)𝜙a(x − xI) (36)

M(x) =
Np∑
I=1

H(x − xI)HT(x − xI)𝜙a(x − xI) (37)

HT(x − xI) = [1, x1 − x1I , x2 − x2I , … , (x3 − x3I)n] (38)

In the RK approximation, the kernel function 𝜙a has a
compact support a and it determines the continuity of the
approximation; for example, the cubic B-spline function is
C2 continuous. The degree of monomial basis functions n
in the correction function C(x; x− xI) controls the order of
completeness in the approximation, which is related to the
order of consistency when introducing the RK approximation
to solve PDEs. For the moment matrix M(x) to be nonsin-
gular, the compact support of the kernel function has to
be sufficiently large to keep the reproducing conditions in
(35) linearly independent (Chen et al., 1996). A typical RK
discretization using circular supports is shown in Figure 1(b),
where the support of node I is shaded in grey. The corre-
sponding shape function over the node’s compact support is
also shown in Figure 1(b).

It should be noted that the RK approximation discussed
above in general does not possess the Kronecker delta prop-
erty and hence the approximation is not kinematically admis-
sible on the essential boundary unless techniques such as
transformation (Chen et al., 1996; Zhu and Atluri, 1998;
Günther and Liu, 1998; Atluri et al., 1999; Wagner and Liu,
2000; Chen and Wang, 2000), coupling with finite elements
near the essential boundary (Krongauz and Belytschko,
1996; Fernández-Méndez and Huerta, 2004), or modifica-
tions to the RK approximation near the essential boundary
(Chen and Wang, 2000; Gosz and Liu, 1996; Kaljevic and
Saigal, 1997; Chen et al., 2003) are introduced. With stan-
dard RK approximations that are not kinematically admis-
sible, the essential boundary conditions have to be imposed
by methods such as the penalty method (Zhu and Atluri,
1998; Atluri and Zhu, 1998), Nitsche’s method (Nitsche,
1971; Griebel and Schweitzer, 2003; Babuška et al., 2003),
the modified variational principle (Lu et al., 1994), or the
Lagrange multiplier method (Belytschko et al., 1994).

The RKPM (Liu et al., 1995a; Chen et al., 1996) intro-
duces the RK approximation for solving PDEs under the
Galerkin framework. For demonstration, consider here
Poisson’s equation with Dirichlet boundary conditions:

∇2u + Q = 0 in Ω

u = g on 𝜕Ω (39)
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For easy demonstration, here we consider RK approxima-
tion to be kinematically admissible, which can be achieved
using the methods mentioned previously. The Galerkin
approximation that corresponds to (39) is to find uh ∈ H1

0 ,
∀vh ∈ H1

g ,

∫Ω
𝛁 vh ⋅ 𝛁 uhdΩ = ∫Ω

vhQdΩ (40)

where uh and vh are approximations of u and v, respectively.
A more comprehensive discussion on imposition of essential
boundary conditions for RK approximations that are not
kinematically admissible is given in Section 6.

The convergence of RKPM with the RK approximation of
degree n has been shown (Liu et al., 1997b; Chen et al., 2003;
Han and Meng, 2001) to be‖‖‖u − uh‖‖‖𝓁,Ω ≤ Can+1−𝓁|u|n+1,Ω, 𝓁 ≥ 0 (41)

where a is the maximal support dimension of RK shape
functions and C is independent of a and n. This algebraic
convergence behavior is very similar to that of the finite
element approximation considering the proportionality of the
support dimension a and the nodal distance h.

2.3 Implicit gradients

The implicit gradient was introduced as a regularization in
strain localization problems without taking direct derivatives
(Chen et al., 2004), where the idea came directly from the
synchronized RK approximation (Li and Liu, 1998, 1999a,b)
as a way to approximate derivatives:

Dijku(x) ≃
Np∑
I=1

Ψ
ijk

I (x)uI (42)

where Dijk(⋅) = 𝜕i+j+k∕𝜕xi
1𝜕x

j
2𝜕x

k
3
. Derivative approxima-

tions are constructed directly by employing the same form
as the RK shape function (33):

Ψ
ijk

I ((x)) = C
ijk
(x; x − xI)𝜙a(x − xI) (43)

The correction function C
ijk
(x; x − xI) is expressed as a

linear combination of monomials as in (34), the coefficients
of which are obtained from the following gradient repro-
ducing conditions, analogous to (35) (see (Chen et al., 2004)
for details):

Np∑
I=1

Ψ
ijk

I (x)xp
1Ix

q
2Ix

r
3I = Dijk(x

p
1xq

2xr
3), 0 ≤ p + q + r ≤ n

(44)

The equation in (44) is equivalent to (Chen et al., 2004):

Np∑
I=1

Ψ
ijk

I (x)(x1 − x1I)p(x2 − x2I)q(x3 − x3I)r

= 𝛿ip𝛿jq𝛿kr(−1)p+q+rp!q!r!, 0 ≤ p + q + r ≤ n (45)

Following the procedures in the discrete RK approxima-
tion, one obtains the implicit gradient RK approximation:

Ψ
ijk

I (x) =(H
ijk
)T M(x)−1H(x − xI)𝜙a(x − xI) (46)

M(x) =
Np∑
I=1

H(x − xI)HT(x − xI)𝜙a(x − xI) (47)

where H
ijk

is the column vector of {𝛿ip𝛿jq𝛿kr(−1)p+ q+ rp !
q ! r !}0≤ p+ q+ r≤ n. Implicit gradients have been employed
for regularization in strain localization problems (Chen et al.,
2004) to avoid the need for ambiguous boundary condi-
tions associated with the standard gradient-type regulariza-
tion methods, and they have also been used to ease the
computational cost of meshfree collocation methods (Chi
et al., 2013) and stabilization of nodal integration (Hillman
and Chen, 2016; Chen et al., 2007).

The implicit gradients in (46) have the same expression
as the synchronized derivatives proposed in (Li and Liu,
1998,1999a,b), scaled by p ! q ! r !, with the difference in
sign emanating from the convention in shifting the bases. In
this form, the reproduction of derivative terms can be seen
by employing vanishing moment conditions alternative to
(13). Using this idea, in (Li and Liu, 1998) it was shown
that employing certain linear combinations of synchronized
derivatives and the RK approximation, synchronized conver-
gence can be obtained in the L2 norm and Hs norms up to the
some order s with the proper selection of coefficients 𝛽 ijk in
the following:

Ψ̂I(x) = ΨI(x) +
n∑

i+j+k=0

𝛽 ijkΨ
ijk

I (x) (48)

Since the additional terms in the above satisfy partition of
nullity, the resulting approximation (48) is termed the hier-
archical partition of unity (Li and Liu, 1999a). Synchronized
derivatives have been developed for improving accuracy in
the Helmholtz equation, obtaining high resolution in local-
ization problems and avoiding the need to evaluate expensive
derivatives in the stabilized meshfree approach for computa-
tional fluid dynamics (Li and Liu, 1999b).
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3 A UNIFICATION WITH THE
PERIDYNAMIC THEORY

Silling et al. (2007) developed the current peridynamic
theory (state-based peridynamics) after overcoming the
limitations introduced by the original (bond-based) peri-
dynamic theory (Silling, 2000), which restricted the types
of material responses that could be modeled, the most
evident being the restriction to the value of the Poisson
ratio. Peridynamics is presented as an alternative formula-
tion to classical continuum mechanics because it is based
on the concept that material stresses are not the result of
forces acting on infinitesimal areas; rather they are the
result of a nonlocal interaction between material points
lying within a finite region surrounding each point; see
Figure 4.

This nonlocality argument is a central concept for building
the peridynamic theory where the deformation in each point
is described with tensors associated with finite regions,
instead of infinitesimal ones. A point XI in the reference
configuration is considered to be influenced by its neigh-
boring points XJ within a distance called the horizon or the
smoothing length, which forms a local domain XI

around
each point, called the compact support of that point in the
remaining meshfree literature. For convenience, the rela-
tive position vector from material point XI to the mate-
rial point XJ in the reference configuration is written as
XI : J = XJ − XI, and is referred as reference bond XI : J. Once
the body deforms the position vectors in the deformed config-
uration are denoted as usual by lowercase bold letters, for
example, the deformed bond is then xI : J = xJ − xI.

Starting from the undeformed configuration, it is assumed
that the moment tensor of the reference bonds describes the

compact support region XI
fully:

KI = ∫
XI

𝜙a(XJ − XI)(XJ − XI)⊗ (XJ − XI)dVXI

= ∫
XI

𝜙a
I∶JXI∶J ⊗ XI∶JdVXI

(49)

where KI is called the reference shape tensor and where
𝜙a

I∶J = 𝜙a(XJ − XI) is the influence function, common to
other meshfree methods as introduced in Section 2. We note
the use of the compact notation avoiding the need to write all
the subtraction terms for convenience. The deformed shape
tensor describing the deformed compact support region xI

is then given by

𝚲I = ∫
XI

𝜙a
I∶JF⟨XI∶J⟩⊗ XI∶JdVXI

(50)

with F⟨XI∶J⟩ = xI∶J = xJ − xI being the general map that
transforms the reference bond XI : J in the current bond xI : J.
This general map is commonly referred as vector state; all
vector states are denoted by underlined bold capital letters
henceforth.

The peridynamic theory then postulates that the deforma-
tion at each point is associated to a relationship between the
undeformed and deformed shape tensors, forming a nonlocal
deformation gradient:

 I = 𝚲I ⋅ K−1
I =

(
∫
XI

𝜙a
I∶JxI∶J ⊗ XI∶JdVXI

)

⋅

(
∫
XI

𝜙a
I∶JXI∶J ⊗ XI∶JdVXI

)−1

(51)

Undeformed configuration

Deformation
HxI

HxI

HxJ

F

HxJ

Ω0
Ω

xI

xI

XI :J
XI :J

xJ

xJ

Deformed configuration

Figure 4. Peridynamics continuum before and after deformation.



10 Reproducing Kernel Particle Method

which has its local counterpart in the local deformation
gradient defined in classical continuum mechanics as a tensor
that acts on infinitesimal line segments:

dx = F ⋅ dX → F = dx
dX

(52)

Before continuing to evaluate the description of the stresses
in the peridynamic theory, let us first focus on the nonlocal
deformation gradient given by (51) and in comparing its
discretized value for a uniform grid with the discretized
calculation of the local deformation gradient via the RKPM
using synchronized derivatives for the same grid.

3.1 Comparing the deformation gradient in
peridynamics and RKPM with synchronized
derivatives

Discretizing (51) we obtain the peridynamics approximation
for the deformation gradient:

 I =

(
Np∑

J=1

𝜙a(XJ − XI)(xJ − xI)⊗ (XJ − XI)WI

)
⋅ K−1

I

(53)
where WI = ∫

XI
dΩ and the shape tensor discretized as

KI =
Np∑

J=1

𝜙a(XJ − XI)(XJ − XI)⊗ (XJ − XI)WI (54)

Now, if we consider the simplest case of having a
one-dimensional uniform grid of points separated by
the same distance ΔX (see Figure 5) we can compute the
deformation gradient given by peridynamics very easily.
Considering a number of points within the compact support
of Np, labeled from zero (central point) to M+ points to
the right of point zero and M− points to the left, the shape
tensor reduces to the simple expression:

K0 =
M∑

J=1

(2J2𝜙a
J)ΔX2W, M =

Np − 1
2

(55)

where W=W0, 𝜙a
J = 𝜙a(XJ − X0) = 𝜙a(X0 − XJ). Similarly,

the deformation gradient then becomes

 0 =
dx0

dX
=

(
M∑

J=1

𝜙a
J[(x0 − xJ+)(X0 − XJ+)

+(x0 − xJ−)(X0 − XJ−)]W
)

K−1
0 , M =

Np − 1
2

(56)

which can be simplified noting that X0 − XJ− = JΔX, X0 −
XJ+ = −JΔX, and using (54),

 0 =
dx0

dX
=

(
M∑

J=1

J𝜙a
J(xJ+ − xJ−)ΔXW

)
K−1

0

=
∑M

J=1 J𝜙a
J(xJ+ − xJ−)∑M

J=1(2J2𝜙a
J)ΔX

, M =
Np − 1

2
(57)

We are now in a position to compare this result for the
approximation to the deformation gradient using peridy-
namics with the approximation obtained via RKPM using
synchronized derivatives. As referred to in Section 2, the RK
framework represents a general approach for approximating
any function by a convolution integral. In a general form, the
corresponding discrete form may be given by

uh(X, S) = HT(X − S)b(X) (58)

where H(X) is a complete polynomial of degree n with
n+ 1 monomials, and b(X) is the vector composed by
non-constant coefficients that depend on the position where
they are being calculated:

b(X) = M(X)−1
Np∑
I=1

𝜙a(X − XI)H(X − XI)uIWI (59)

with the moment matrix given by

M(X) =
Np∑
I=1

𝜙a(X − XI)H(X − XI)HT(X − XI)WI (60)

M− 1− 0 1+

Horizon

M+

−ΔX

X

ΔX

Figure 5. One-dimensional bar discretized by uniformly spaced points.
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The discretized RK approximation is then given by

uh(X,S) =HT (X−S)M(X)−1
Np∑
I=1

𝜙a(X − XI)H(X−XI)uIWI

(61)
This approximation has the unusual characteristic of

depending on two independent variables giving the positions
of a cloud of points within the compact support: x and s.
This allows the approximation of the function uh by different
ways. We can consider that S=X, which means that we
are evaluating the polynomial approximation by having
non-constant coefficients b(X) varying within the compact
support region:

uh(X) = HT (𝟎)b(X) (62)

Or, we can consider that we want to approximate the value
of the function uh at any point s in the compact support
domain relative to a fixed point X=XJ:

uh(S) = HT (XJ − S)b(XJ) (63)

The choice of approximating any function using (62) or
using (63) has evident implications on the approximation for
the derivatives of that function of interest. In particular, if
the choice is to use (63) then computing the derivatives at
any point is given by

𝜕uh(S)
𝜕S

=
𝜕HT (XJ − S)

𝜕S
b(XJ) (64)

This approximation to the derivative is called the synchro-
nized derivative, or diffuse derivative as referred to in
Section 2.3.

Using (64) for the one-dimensional bar problem enables
obtaining the deformation gradient from RKPM with
synchronized derivatives that can then be compared with
the result for the deformation gradient obtained with peridy-
namics given by (57). Consider a general polynomial basis
of degree n with n+ 1 monomials in one dimension that
approximates any function around the point X=XJ of the
one-dimensional bar in Figure 5:

HT (XJ − S) =
[
1 (XJ − S) (XJ − S)2 · · · (XJ − S)n

]
(65)

b
T
(XJ) =

[
b0(XJ) b1(XJ) b2(XJ) · · · bn(XJ)

]
(66)

For this general polynomial basis and its respective coef-
ficients it is trivial to obtain the RK approximation for any
function; in particular, we can approximate the current posi-
tion of the deformed one-dimensional bar x, considering

uh(s)= x(s)= x in equation (213):

x(S) = b0(XJ) + (XJ − S)b1(XJ) + (XJ − S)2b2(XJ) + · · ·

+ (XJ − S)kbn(XJ) (67)

from which we can obtain the approximation for the deriva-
tive with respect to the undeformed position (deformation
gradient) as:

F = dx
dS

= −b1(XJ) − (XJ − S)b2(XJ) − · · ·

− (XJ − S)n−1bn(XJ) (68)

And in particular, if we are interested in obtaining the
derivative at the point S=XJ we get the following simple
result:

FJ =
dxJ

dS
= −b1(XJ) (69)

With this result and using (59), it is then possible to
obtain the approximation for the deformation gradient of the
one-dimensional bar at any point. We set xJ = x0 and compute
the coefficient b1(X0) to get to the same result we obtained
when using the peridynamics approximation in (57):

F0 =
dx0

dX
=
∑M

J=1 J𝜙a
J(xJ+ − xJ−)∑M

J=1(2J2𝜙a
J)ΔX

, M =
Np − 1

2
(70)

This was first discovered in Bessa et al. (2014) where
it was also shown that the result can be obtained for
two-dimensional and three-dimensional uniform grids. This
result can be in part regarded as intuitive since

• observing (60) for the discretized moment matrix M(X)
of RKPM and (54) for the discretized shape tensor K
in peridynamics we see that the latter is contained as a
submatrix of the former.

In other words, the peridynamic theory obtains directly
the deformation gradient by considering a polynomial basis
formed uniquely by the first-order terms (n= 1) and disre-
garding all the other terms (n= 0 and n> 1) for the shape
tensor and without explicitly calculating any derivatives.

3.2 Peridynamic description of divergence of
stress and another link to RKPM

The nonlocal aspect of the peridynamic theory has a
direct influence on the description of the balance of linear
momentum equation,
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𝜌ü[XI , t] = 𝛁 ⋅𝝈 [XI , t] + b[XI , t] ↔ 𝜌üI = 𝛁 ⋅𝝈I + bI

(71)
Since it replaces the divergence of stress ∇ ⋅ 𝜎I by the

following integral expression

𝛁 ⋅𝛔[XI , t] → ∫
XI

(T[XI t]⟨XI∶J⟩ − T[XJ , t]⟨XJ∶I⟩)dΩ
(72)

where T[XA, t]⟨XI∶J⟩ is the general map (vector state) that
acts on the reference bond XI : J to produce a force per
unit volume that is reciprocal to the force per unit volume
generated by the reference bond XJ : I. In particular, Silling
et al. (2007) proposed a particular map where it is possible
to establish a direct connection to the classical notion of
stress:

T[XA, t]XA∶B = 𝜙a(XB − XA)𝛔[XA, t] ⋅ K[XA]−1 ⋅ (XB − XA)
(73)

which can be replaced in (72) to give

∇ ⋅ 𝛔[XI , t] → ∫
XI

(𝜙a(XJ − XI)(𝛔[XJt]

⋅ K[XJ]−1 + 𝛔[XI , t] ⋅ K[XI]−1) ⋅ (XJ − XI)dΩ (74)

This result can be discretized as before by replacing the
integral expression by a summation over the cloud of points
within the compact support family XI

:

𝛁 ⋅𝛔[XI , t] →
Np∑

J=1

(𝜙a(XJ − XI)(𝛔[XJt] ⋅ K[XJ]−1

+ 𝛔[XI , t] ⋅ K[XI]−1) ⋅ (XJ − XI)WI (75)

At this point, it may be useful to note that there are
appreciable differences in the calculation of the divergence
of stress using peridynamics via (75) and the calculation of
deformation gradient via (53). The most obvious difference
is the fact that the divergence of stress is approximated by
a summation over two added stress values at two different
points multiplied by the inverse of the shape tensor at those
points.

At first glance, it may seem unlikely that (75) would
lead to the same approximation for the divergence of stress
as the one obtained by RKPM with synchronized deriva-
tives, but this is in fact what happens. Returning to the
one-dimensional bar with uniformly spaced points and deter-
mining the divergence of stress at point 0,

d𝜎0

dX
=

M∑
J=1

𝜙a
J+
[
(𝜎J+)K−1

J+ + (𝜎0)K−1
0

]
(XJ+ − X0)W

+
M∑

J=1

𝜙a
J−
[
(𝜎J−)K−1

J− + (𝜎0)K−1
0

]
(XJ− − X0)W (76)

with M= (Np− 1)/2, and 𝜙a
J+ = 𝜙a

J− = 𝜙a(XJ − X0).
This equation can be simplified similarly to what was

done for the deformation gradient, since XJ− − X0 = −JΔX,
XJ+ − X0 = JΔX, and noting that the shape tensor has the
same value at any point (uniform grid) as can be seen in (69),

KJ+ = KJ− = K0 =
M∑

J=1
(2J2𝜙a

J)WΔX2:

d𝜎0

dX
=

M∑
J=1

𝜙a
J

[
(𝜎J+ + 𝜎0)K−1

0 − (𝜎J− + 𝜎0)K−1
0

]
JWΔX

=
M∑

J=1

[
J𝜙a

J(𝜎J+ − 𝜎J−)WΔX
]

K−1
0 (77)

And using (69) we can finally obtain

d𝜎0

dX
=
∑M

J=1 J𝜙a
J(𝜎J+ − 𝜎J−)∑M

J=1(2J2𝜙a
J)ΔX

, M =
Np − 1

2
(78)

which surprisingly is the same expression obtained for the
deformation gradient in (57), replacing stress by current
position, and therefore the same approximation is obtained
via RKPM with synchronized derivatives. This result is
surprising because the starting expression for the calculation
of the divergence of stress using peridynamics uses two terms
and includes the stress value at the point where the diver-
gence is being calculated, in our example 𝜎0. However, this
stress value ends up being canceled through the algebraic
procedure and the resulting expression is only a function
of the stress values in the remaining points. Once again,
this result can be easily generalized to multiple dimensions,
using uniform grids, as done in Bessa et al. (2014). The
one-dimensional example is sufficiently illustrative of what
happens with the peridynamic discretization and why there
is an argument for including this method in the large family
of meshfree methods using polynomial basis functions.

The equivalence between peridynamics and RKPM with
synchronized derivatives for uniform grids clarifies that
peridynamics can be seen as a subset of the RKPM approx-
imation where several algebraic operations are reduced
since the shape tensor is a submatrix of the moment tensor
and there are no derivatives involved in the peridynamic
procedure. Particularly relevant is the understanding of the
consequences of finding this equivalence between these
two meshfree methods: peridynamics can leverage upon
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the significant progress achieved in the remaining meshfree
methods, namely, in imposing boundary conditions and
using nonuniform grids.

3.3 Additional considerations

There is not a complete equivalence between the discretiza-
tions of peridynamics and RKPM with synchronized deriva-
tives for general cases. In fact, this equivalence breaks down
for nonuniform grids and at the boundaries of the domain.
In these situations, the RKPM approximation leads to more
than one nonzero coefficient in the polynomial approxima-
tion (see, e.g., (67)), and the peridynamic approximation
does not include those corrections.

In addition, since peridynamics can arguably be viewed
as a subset of RKPM, it is evident that it also lacks the
Kronecker Delta property, that is, the approximation to the
function does not lead to the exact values of that function
in the discretization points. This has well-known implica-
tions in the imposition of essential boundary conditions, as
discussed in Section 6.

Important questions arise for nonuniform grids and the
approximation obtained for the divergence of stress using
peridynamics: it is evident that the equivalence does not
hold for this case; so what is the meaning of the obtained
approximation? More importantly, what are the different
properties of these approximations? In particular, how fast
is convergence and how does it compare with the other
meshfree methods? There are also issues with stability of
peridynamics, particularly in the strong form (as it is mostly
used to date) that are shared with the remaining meshfree
methods.

4 SOLVING THE FRACTIONAL
ADVECTION–DIFFUSION EQUATION
(FADE) BY THE REPRODUCING
KERNEL PARTICLE METHOD

The idea of fractional derivative, a non-local operator, was
conceived of in the discussion between L’Hôspital and Leib-
nitz in 1695 regarding the meaning of the half derivative
of the function f(x)= x (Loverro, 2004). After more than
three centuries of development by mathematicians, frac-
tional calculus gradually became an excellent instrument for
the description of memory- and space-correlation properties
of various materials and processes (Podlubny, 1998), such
as polymers and anomalous diffusion. Consequently, PDEs
including one or several fractional derivative-based terms are
emerging as a powerful tool to model phenomena that are
neglected by classical integer derivative-based PDEs since

integer derivatives are local operators in the mathematical
sense.

In the last few decades, a variety of temporal and/or spatial
fractional PDEs (West, 2014; Rossikhin and Shitikova,
2010; Craiem and Magin, 2010) have been employed
for modeling non-local processes, which are common
to problems involving strong heterogeneity, fracticality,
or statistical correlations, for example, turbulent flow
and contaminant/solute transport in highly heterogeneous
aquifers or porous media. Among this class of problems,
the FADE is employed to describe the anomalous diffusion
process, which is studied here using RKPM.

4.1 One-dimensional spatial fractional
advection–diffusion equation (FADE)

Here, we focus on the following one-dimensional spatial
FADE:

𝜕𝜃(x, t)
𝜕t

+ 𝜒 𝜕𝜃(x, t)
𝜕x

− 𝜅 𝜕
𝜕x
𝜃(𝛼)(x, t) = f (x, t) (79)

where 𝜃 represents the solute concentration, t stands for time,
f(x, t) is a source term, 𝜒 is the advective velocity, 𝜅 is a
coefficient of the fractional diffusion term, and 𝛼 ∈ (0, 1]
stands for the fractional derivative order associated with a
left-sided Caputo fractional derivative. The left-sided Caputo
fractional derivative is defined for a general function u(x) as

u(𝛼)(x) = 1
Γ(1 − 𝛼) ∫

x

0
(x − y)−𝛼 d

dy
u(y)dy (80)

where Γ(1 − 𝛼) = ∫ ∞
0 z−𝛼e−zdz is the Gamma function.

4.2 Fractional derivative of shape function of
RKPM

For simplicity and demonstration purposes, let us assume
a uniformly spaced grid where Np nodes are evenly
spaced by Δx. The position of node I is then xI = IΔx
for I= 0, … , n− 1. By choosing a first-omial basis, support
size a= 2Δx, and quartic spline kernel functions, the global
internal node I has an RK shape function given by

ΨI(x) =
5
8

{
1 − 6r2 + 8r2 − 3r4 0 < r < 1

0 r ≥ 1
(81)

where r= |x− xI|/a. From (80), the fractional derivative for
the above shape function becomes:

Ψ(𝛼)
I (x) = 1

Γ(1 − 𝛼) ∫
x

0
(x − y)−𝛼 d

dy
ΨI(y)dy (82)
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Substituting (81) into (82) yields

Ψ(𝛼)
I (x) = E(𝛼)

⎧⎪⎪⎨⎪⎪⎩

0 x ∈ [x0xI−2]
H(x − xI−2; x − xI) x ∈ [xI−2, xI]

Hm(x) + G(x − xI ; x − xI) x ∈ [xI , xI+2]
−G(0; x − xI)

Hm(x) − Gm(x) x ∈ [xI+2, xNp−1]
(83)

where

E(𝛼) = 15
2a2Γ(2 − 𝛼)

(84)

Hm(x) = H(x − xI−2; x − xI) − H(x − xI ; x − xI) (85)

Gm(x) = G(x − xI−2; x − xI) − G(x − xI ; x − xI) (86)

with

H(𝜂; 𝜉) = 𝜉𝜂1−𝛼 + 1 − 𝛼
2 − 𝛼

𝜂2−𝛼

− 1
a2

[
𝜉2𝜂1−𝛼 + 2𝜉(1 − 𝛼)

2 − 𝛼
𝜂2−𝛼 + 1 − 𝛼

3 − 𝛼
𝜂3−𝛼
]

+ 1
a2

[
𝜉3𝜂1−𝛼 + 3𝜉2(1 − 𝛼)

2 − 𝛼
𝜂2−𝛼 + 3𝜉(1 − 𝛼)

3 − 𝛼
𝜂3−𝛼

+1 − 𝛼
4 − 𝛼

𝜂4−𝛼
]

(87)

and

G(𝜂; 𝜉) = 𝜉𝜂1−𝛼 + 1 − 𝛼
2 − 𝛼

𝜂2−𝛼

+ 1
a2

[
𝜉2𝜂1−𝛼 + 2𝜉(1 − 𝛼)

2 − 𝛼
𝜂2−𝛼 + 1 − 𝛼

3 − 𝛼
𝜂3−𝛼
]

+ 1
a2

[
𝜉3𝜂1−𝛼 + 3𝜉2(1 − 𝛼)

2 − 𝛼
𝜂2−𝛼 + 3𝜉(1 − 𝛼)

3 − 𝛼
𝜂3−𝛼

+1 − 𝛼
4 − 𝛼

𝜂4−𝛼
]

(88)

Figure 6 depicts the fractional derivative of the RK shape
function Ψ(𝛼)

I (x) for selected values of 𝛼 ∈ (0, 1] within a
material domain x∈ [0, 1] with node spacing Δx= 1.

The approximation of (82) requires numerical integration.
However, the presence of the kernel (x− y)− 𝛼 inside the inte-
gration of (82) can lead to numerical issues when using Gauss
quadrature as 𝛼→ 1. In order to avoid this, we recommend
using an alternative formula of the Caputo definition, which
can be derived by applying integration by parts to increase
the order of the kernel by 1 as follows.

u(𝛼)(x) = 1
Γ(2 − 𝛼)

[
d
dx

u(x)
||||x=0

x𝛼−∫
x

0
(x−y)1−𝛼 d2

dy2
u(y)dy

]
(89)

0.6

0.4

0.2

0

2 4 6 8 10 12 14

−0.2

−0.4

α = 0.1

α = 0.5

α = 0.9

α = 1.0

Ψ
I(α

)  
( 

 )

Figure 6. Non-locality of Ψ(𝛼)
I (x) with 𝛼 = 0.1, 0.5, and 0.9, where

the support domain is extended to the right side of the domain, and
can shrink back to compact domain for 𝛼 = 1, that is, the support
domain is equal to that of the shape function.

4.3 Petrov–Galerkin-based RKPM for FADE

With the given essential boundary conditions, following stan-
dard procedures, a weak form of the spatial FADE reads

∫Ω
ṽ𝜃,t(x, t)dx + ∫Ω

𝜒 ṽ𝜃,x(x, t)dx + ∫Ω
𝜅v,x𝜃

(𝛼)(x, t)dx

− ∫Ω
𝜔𝜅v,x𝜃

(1+𝛼)(x, t)dΩ = ∫Ω
ṽf (x, t)dx (90)

where ṽ= v+𝜔v,x is the test function, comma denotes an
integer derivative, and 𝜔 is the viscosity coefficient. If 𝜔 is
set as zero, then the Petrov–Galerkin-based RKPM reduces
to the Galerkin-based RKPM. For notational simplicity, let
𝜃(1+ 𝛼)(x, t)= 𝜕𝜃(𝛼)(x)/𝜕x, and while the Lagrange multiplier
method is used to impose essential boundary conditions, the
associated terms are not included in the above equation. The
corresponding discretization equation to (90) yields

M𝚯̇+
[
𝜒(𝜔K∗(1)−K∗(0))+𝜅K∗(𝛼)−𝜔𝜅K∗(1 + 𝛼)

]
𝚯 = F

(91)

where MIJ = ∫ Ω(ΨI +𝜔ΨI,x)ΨJdx, 𝚯 =
[
𝜃0 · · · 𝜃J · · ·

]T
is

the nodal value vector, FI = ∫ Ω[ΨI +𝜔ΨI,x]f(x, t)dx, and

K∗
IJ(𝛼) = ∫Ω

[
ΨI,xΨ

(𝛼)
J

]
f (x, t)dx (92)

From the above, one should note that there are two basic
issues associated with the fractional diffusion term. One is
that the induced stiffness matrix is no longer compact, but
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Figure 7. Numerical results for time-dependent advection–diffusion equation at time of (a) t= 1, and (b) t= 2.

dense, owing to the non-local fractional differential operator,
which causes efficiency issues.

The other issue is how to determine the viscosity coeffi-
cient, since the formula based on FEM for integer deriva-
tive advection–diffusion equations is not the optimal one
here as 0<𝛼 < 1. As is well known (Hughes et al., 1982),
for an integer derivative order case, the viscosity param-
eter 𝜔 is determined by element size and Peclet number,
Pe= 2𝜒Δx/𝜅. However, for the fractional derivative order
case, Pe is no longer a dimensionless number because
the dimension of 𝜅 takes the form Υ1+ 𝛼/T, where Υ and
T are the length and time dimensions, respectively (Lian
et al., 2016.). Furthermore, the fractional diffusion term
from FADE possesses not only a diffusion effect but also
an advection effect, which is not taken into account by
the traditional viscosity parameter formula (Lian et al.,
2016.). A suitable stabilization parameter formula, which
can take into account both advection and fractional diffu-
sion terms for Petrov–Galerkin-based FEM, is proposed
in Lian et al. (2016.) as follows and is applied herein to
Petrov–Galerkin-based RKPM:

𝜔 = (23−𝛼 − 8)Θ + 2 − 2P̂e[
(2 − 𝛼)(21−𝛼 − 4) + 4P̂e

]
Θ + 2 − 𝛼 − 2P̂e

Δx
2

where P̂e = Γ(3 − 𝛼)𝜒(Δx)𝛼∕2𝜅 is fractional element
Peclet number, Γ(z) is Gamma function, Θ = (E𝛼,1(2P̂e∕Γ
(3 − 𝛼)) − 1)∕(E𝛼,1(21+𝛼P̂e∕Γ(3 − 𝛼)) − 1), and E𝛼,1(z) is
two-index Mittag–Leffler function.

4.4 An illustrative example

Within a domain of x∈ [0, 100], (79) is solved by the
Petrov–Galerkin-based RKPM with essential boundary

conditions
𝜃(0, t) = 0, 𝜃(100, t) = 1 (93)

the initial conditions

𝜃(x, 0) =
{

e−0.05(x−32.5)2 x ∈ [30, 35]
0 otherwise

(94)

and source term f(x, t)= 0.
The case of 𝛼 = 0.5, 𝜒 = 12, 𝜅 = 1, Δx= 1, and a= 3Δx

is studied, which results in P̂e = 7.976. Since P̂e is much
larger than 1, we expect the Galerkin-based RKPM solu-
tion to contain spurious oscillations. A forward time integra-
tion method and lumped mass matrix scheme are employed.
Numerical solutions from Petrov–Galerkin and Galerkin
RKPM are shown in Figure 7(a) and (b) for times of t= 1
and t = 2, respectively. From the figure, it can be seen
that the oscillations are not present in the results from the
Petrov–Galerkin based RKPM.

5 MULTIPLE-SCALE REPRODUCING
KERNEL APPROXIMATION

Multiple-scale RK approximation permits the response
of a system to be separated into different scales (Liu and
Chen, 1995; Liu et al., 1996a,b, 1997a,b). These scales
can be either the frequencies corresponding to temporal
variables or the wave numbers corresponding to spatial vari-
ables, and each scale response can be examined separately.
This complete characterization of the unknown response
is performed through the integral window transform, and
a space-scale and time-frequency localization process is
obtained by dilating the flexible multiple-scale window
function. This flexible space-scale window function can be
constructed to resemble the hp-adaptive FEMs.
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5.1 Brief review of multiresolution analysis

The multiple-scale RK approximation followed the concept
of multiple scale wavelet particle method, which is based on
multiresolution analysis (Liu and Chen, 1995). The frame-
work of multiresolution analysis consists of a sequence of
nested closed subspaces:

{0} = V∞ ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ V−∞ = L2(R)
(95)

These subspaces are generated by a series of scaling func-
tions denoted by 𝜙kl(x), where k is the dilation parameter
similar to the support dimension a, and l is the translation
parameter. The scaling functions are generated from a single
function 𝜙(x), which is referred to as the mother function.
Then these scaling functions are given by

𝜙kl(x) = 2−k∕2𝜙
( x

2k
− l
)

k, l ∈ ℑ = [… ,−1, 0, 1, …]
(96)

or in normalized form by

𝜙kl

( x
Δx

)
= 2−k∕2𝜙

( x
2kΔx

− l
)

(97)

An illustration of the translation and dilation parameters
for a given mother function, in this case, the window func-
tion, is presented in Figure 8. The two parameters in the
scaling function based on the mother function provide the
ability to translate and dilate the window function. Trans-
lation is required to move the window function around
the domain, since the window functions themselves have a
compact support. The ability to translate replaces the need
to define element. The dilation parameter is used to provide
refinement. Therefore, the dilation parameter also controls

the convergence rate of the multiple-scale RKPM. As shown
in numerical examples in Liu et al. (1995b), the conver-
gence rate of the L2-norm (and H1-norm) of a smooth Lapla-
cian solution can vary from 2 to 16 (and from 1 to 15)
for a Gaussian window function by simply changing the
dilation parameter of the window function. This combina-
tion of translation and dilation produces a meshfree p-like
adaptive variable node multiple-scale RKPM. Note that,
the larger the dilation parameter, the smaller the frequency
band in the solution and the larger the critical time step
becomes in dynamic problems if an explicit time integration
is adopted.

This idea can also be applied to the FEM. The shape
function of the parent element acts as a kind of mother
function, and then these scaling functions are given by the
different element sizes, namely k, and the different nodes, l.
Different resolution of solutions can be obtained by using
different element sizes and correspondingly different total
node numbers, which means the larger the dilation parameter,
the coarser the mesh used in the simulation and hence smaller
the frequency band in the solution and the larger the critical
time step.

In order to show the decomposition of level k resolu-
tion clearly, we introduce the concept of complementary
subspace, indicated by Wk. The complementary subspace is
defined as the difference between Vk and its adjacent resolu-
tion, namely,

Wk = Vk−1 − Vk (98)

The complementary subspace Wk can be seen as an error
measure between two adjacent resolutions from the corre-
sponding subspaces.

Generally, a wavelet 𝜓 is used to generate Wk in the same
manner of the mother function 𝜙(x) to the subspace Vk. Then
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Figure 8. Examples of (a) translation and (b) dilation. (Reproduced with permission from Liu and Chen (1995). © John Wiley & Sons,
1995.)
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the complementary subspace is given by

Wk = {𝜓kl, l ∈ ℑ} (99)

where this family of functions, denoted by 𝜓kl(x), is defined
by

𝜓kl(x) = 2−k∕2𝜓
( x

2kΔx
− l
)

k, l ∈ ℑ (100)

or in normalized form by

𝜓kl

( x
Δx

)
= 2−k∕2𝜓

( x
2kΔx

− l
)

k, l ∈ ℑ (101)

From (95) and (98), this family of subspaces of L2(R) gives
a direct sum decomposition of L2(R), namely,

L2(R) = · · · + (V−2 − V−1) + (V−1 − V0) + (V0 − V1) + · · ·

= · · · + W−1 + W0 + W1 + · · · (102)

A wavelet 𝜓 in L2(R) is called an orthogonal wavelet if {𝜓kl}
satisfies

{𝜓kl, 𝜓ij} = 𝛿ki𝛿lj (103)

Based on the orthogonal scaling wavelet functions, (102)
can become an orthogonal sum:

L2(R) = · · ·⊕W−1 ⊕W0 ⊕W1 + · · · (104)

Therefore, for any given function u∈L2(R), there exists a
unique decomposition

u = · · · + w−1 + w0 + w1 + · · · (105)

Then, the level k resolution can be given by

u ≈ uk = wk+1 + (wk+2 + wk+3 + · · ·) = wk+1 + uk+1 (106)

where uk+ 1 ∈Vk+ 1 and wk+ 1 ∈Wk+ 1. By repeating this
process, we get the decomposition algorithm from the finest
scale to the arbitrary coarser scale as shown in Figure 9.

Based on the orthogonal scaling functions and wavelets,
the reconstruction formula is given by Liu and Chen (1995)

u =
∑

k,l∈ℑ
⟨u, 𝜓kl⟩𝜓kl(x) (107)

wk+1

uk+1uk

wk+2

uk+2

wk+3

uk+3

Figure 9. Multiresolution decomposition algorithm. (Reproduced
with permission from Liu and Chen (1995). © John Wiley & Sons,
1995.)

For the level k* resolution of the given function u∈L2(R),
the reconstruction formula is

uk∗ =
∑
l∈ℑ
⟨u, 𝜙k∗l⟩𝜙k∗l(x) =

∞∑
k=k∗

∑
l∈ℑ
⟨u, 𝜓kl⟩𝜓kl(x) (108)

5.2 Multiple scale wavelet particle method

Multiple-scale wavelet particle method is developed by
taking the particle forms of wavelet analysis, namely, by
breaking down the inner product terms of (107) into subin-
terval integration, say Bk(l), and assuming that the response
of u(x) is constant in each of the subinterval, that is,

⟨u, 𝜙kl⟩ = xi∈Bk(l)∑
I

(
∫Bk(l)

𝜙kl(x)dx

)
uI (109)

⟨u, 𝜓kl⟩ = xi∈Bk(l)∑
I

(
∫Bk(l)

𝜓kl(x)dx

)
uI (110)

Furthermore, using a numerical quadrature integration
scheme, one can obtain

⟨u, 𝜙kl⟩ = xi∈Bk(l)∑
I

𝜙kl(xI)ŴIuI (111)

⟨u, 𝜓kl⟩ = xi∈Bk(l)∑
I

𝜓kl(xI)ŴIuI (112)

where Bk(l) is the support of the k-th scale window function
at translation position l, and ŴI is the I-th nodal weight
evaluated at xI.

Substituting (109) and (110) into (107) and (108), and
applying the decomposition algorithm given in Section 5.1,
we have the following discrete multiresolution of u(x) as

u ≈ uk = wk+1 + wk+2 + wk+3 + · · · (113)

where

uk(x) =
Np∑
I=1

Nk
I (x)uI (114)

wk(x) =
Np∑
I=1

N
k

I (x)uI (115)

with

Nk
I (x) =

l2∑
l=l1

[𝜙kl(xI)ŴI]𝜙kl(x) (116)
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N
k

I (x) =
l2∑

l=l1

[𝜓kl(xI)ŴI]𝜓kl(x) (117)

Np is the total number of points used in the particle method,
and l1 and l2 are the left and right limits of wavelet translation
numbers, respectively.

For most cases, choosing k= 0 in (97) and (101) can offer
the best results (Liu and Chen, 1995). All the other coarser
results can be derived automatically by the decomposition
algorithm after getting the finest scale solutions.

5.3 Multiple-scale reproducing kernel
approximation

It is straightforward to develop multiple-scale RK approx-
imation following Section 5.2. The discrete form of RK
approximation is given by

uh(x) =
Np∑
I=1

[
C(x; x − xI ; a)𝜙

(x − xI

a

)
ŴI

]
u(xI) (118)

Based on the study of Fourier transform (Liu et al., 1996b),
the kernel function can be viewed as a low-pass filter in the
reconstruction procedure. Based on the analysis of the above
section, the multiple-scale RK approximation can be defined
by a family of kernel function 𝜙k(x), which is given by

𝜙k(x) = 𝜙
( x

2ka

)
(119)

Their Fourier transform relationship with 𝜙0(x)=𝜙(x/a) is
obtained as

𝜙k(𝜉) = 𝜙0(2k𝜉) (120)

The wavelets and its Fourier transform relationship corre-
sponding to these kernel functions are given by

𝜓k+1(x) = 𝜙k(x) − 𝜙k+1(x) (121)

𝜓̂k+1(𝜉) = 𝜙k(𝜉) − 𝜙k+1(𝜉) (122)

An example using a Gaussian function as the kernel func-
tion is shown in Figure 10.

Considering the multiple-scale wavelet particle method,
the multiple-scale RKPM follows a similar method to get a
series of different scale solutions from the finest scale to the
arbitrary level of response by the decomposition algorithm:

uh(x) = u0(x) (finest scale)
= u1(x) + w1(x) (two-level decompositon)
= u2(x) + w2(x) + w1(x) (three-level decompositon)
= · · · (up to arbitrary levels)

(123)
where

uk(x) =∫Ω
C(x; x − y; 2ka)𝜙k(x − y)u(y)dy (124)
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Figure 10. Kernel function and the corresponding wavelet function. (Reproduced with permission from Liu and Chen (1995). © John
Wiley & Sons, 1995.)
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wk(x) =∫Ω
𝜓k(x − y)u(y)dy (125)

𝜓k(x − y) =C(x; x − y; 2k−1a)𝜙k−1(x − y)

− C(x; y; 2ka)𝜙k(x − y) (126)

5.4 hp-like adaptivity

5.4.1 The optimal dilation parameter

A large window (large a) will filter out the finest scale and get
an oscillation in the solution, caused by sampling aliasing.
In contrast, a small window (small a) will cover wider scales
but introduce aliasing. Then an energy error ratio parameter
is introduced to determine the optimal dilation parameters.
For more detailed information, readers may consult refer-
ence (Liu and Chen, 1995). For a given window function,
the number of nodes covered under the support can be deter-
mined with the choice of optimal dilation parameters to yield
the optimal rate of convergence as well as absolute accuracy.

5.4.2 hp-like adaptivity

Since the choice of an optimal dilation parameter of a given
window function is analogous to choosing the optimal order
of the polynomial (Liu et al., 1995b), the multiple-scale
RKPM has similar features of the adaptive p-finite element
methods. Note that the advantage of multiple-scale RKPM
is that there is no need to consider the compatibility issue as
shown in the hp-finite element mesh. As for the h-like adap-
tivity, multiple-scale RKPM can achieve this by inserting
nodes in the high gradient region and at the same time
narrowing the size of the window function to pick up the
fine-scale structure of the response.

Based on the multiple-scale decomposition, a convergence
parameter or an error estimation indicator, say 𝜀, can be
defined as

𝜀 = ∫Ω

|||uhighscale
|||2||utotalscale
||2 dΩ (127)

where uhighscale is the highest band solution from the
multiple-scale decomposition algorithm and utotalscale is the
total solution. This indicator can be employed to locate the
adaptivity regions.

It is further emphasized that the hp-finite element method
requires the creation of an hp-mesh, and fabrication of low
and higher order element shape functions so that the different
order elements along element boundaries are compatible,
whereas in the multiple-scale RKPM the hp-equivalent adap-
tive refinement is a built-in condition. The adaptive refine-
ment is accomplished by a single p-order flexible space-scale

window function that translates and dilates covering all the
nodes in the computational domain. Furthermore, using the
local error indicator, local refinement or hp-like adaptive
refinement based on RKPM can be carried out without the
exact solution.

6 SOLVING PDEs BY THE GALERKIN
METHOD

6.1 Issues in domain integration: convergence
and stability

An array of considerations come with the employment the
Galerkin-based RK method, and in particular, domain inte-
gration needs careful attention. Meshfree shape functions
are in general rational, and their overlapping supports may
form complicated structures; the choice of quadrature affects
the stability and convergence of the numerical solution
because of these two issues (Chen et al., 2001,2013; Beissel
and Belytschko, 1996; Belytschko et al., 2000). High-order
quadrature can offer stability and optimal convergence, but
it is prohibitively expensive for practical use. On the other
hand, low-order quadrature consumes less CPU, but can
yield non-convergent solutions, which can also be unstable in
the case when integration is performed directly at the nodes
(Chen et al., 2001; Beissel and Belytschko, 1996; Belytschko
et al., 2000). Thus, alternative approaches must be taken in
order to avoid these two issues.

Consider Poisson’s equation as a model problem for the
RKPM:

∇2u + Q = 0 in Ω

𝛁 u ⋅ n = h on 𝜕Ωh

u = g on 𝜕Ωg (128)

where Q is a source term, g is the prescribed value of u on
the essential boundary 𝜕Ωg, and h is the prescribed value on
the natural boundary 𝜕Ωh.

Before moving on to the weak form, one must consider the
fact that RK shape functions do not enjoy the Kronecker delta
property, that is, dI ≠ uh(xI), and special techniques need to be
introduced to enforce essential boundary conditions. These
include methods that recover the Kronecker delta property
such as the transformation methods (Chen et al., 1996; Zhu
and Atluri, 1998; Günther and Liu, 1998; Atluri et al., 1999;
Wagner and Liu, 2000; Chen and Wang, 2000), coupling with
finite elements near the essential boundary (Krongauz and
Belytschko, 1996; Fernández-Méndez and Huerta, 2004),
and introducing modifications to the RK approximation near
the essential boundary (Chen and Wang, 2000; Gosz and
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Liu, 1996; Kaljevic and Saigal, 1997; Chen et al., 2003).
With the introduction of these methods, boundary conditions
can be enforced in a manner analogous to FEMs. Alterna-
tively, the penalty method (Zhu and Atluri, 1998; Atluri and
Zhu, 1998), Nitsche’s method (Nitsche, 1971; Griebel and
Schweitzer, 2003; Babuška et al., 2003), the modified varia-
tional principle (Lu et al., 1994), or the Lagrange multiplier
method (Belytschko et al., 1994), can also be employed to
enforce boundary conditions. Lagrange multipliers will be
considered here for purposes of presentation.

The weak form of (128) requires finding (u, 𝜆)∈U×Λ
such that for all (v, 𝛾)∈V×Γ, with U=V= [H1(Ω)]d and
Λ=Γ= [L2(𝜕Ωg)]d, the following equation holds:

a(v, u)Ω = (v,Q)Ω + (v, h)𝜕Ωh
+ (v, 𝜆)𝜕Ωg

+ (𝛾, u − g)𝜕Ωg

(129)
where a(v, u)Ω = ∫ Ω∇v ⋅∇udΩ, (⋅,⋅)Ω denotes the L2 inner
product of its two arguments in Ω, and (⋅, ⋅)𝜕Ωg

and (⋅, ⋅)𝜕Ωh

denote L2 inner products of the two arguments on the essen-
tial and natural boundaries of Ω, respectively.

For finite-dimensional subspaces Uh ⊂U, Vh ⊂V, Λh ⊂Λ,
and Γh ⊂Γ, the Galerkin statement of the problem
(129) requires finding (uh, 𝜆h)∈Uh ×Λh such that for
all (vh, 𝛾h)∈Vh ×Γh the following holds:

a(vh, uh)Ω = (vh,Q)Ω + (vh, h)𝜕Ωh
+ (vh, 𝜆h)𝜕Ωg

+ (𝛾h, uh − g)𝜕Ωg
(130)

where the test and trial functions are defined as

uh =
Np∑
I=1

Ψ̂IuI , vh =
Np∑
I=1

ΨIvI ,

𝜆h =
Nc∑
I=1

𝜙I𝜆I , 𝛾h =
Nc∑
I=1

𝜙I𝛾I (131)

Here, ΨI is the RK shape function (36), Ψ̂I is a suitable
test function approximation, 𝜙I and 𝜙I are suitable shape
functions for the approximation of the Lagrange multiplier
and its test function counterpart, respectively, and Nc is
the number of functions employed for the enforcement of
essential boundary conditions.

In practice, quadrature must be employed for the
domain integration necessary to solve (130). The Galerkin
equation (130) using numerical integration is

a
⟨

vh, uh
⟩
Ω =
⟨

vh,Q
⟩
Ω +
⟨

vh, h
⟩
𝜕Ωh

+
⟨

vh, 𝜆h
⟩
𝜕Ωg

+
⟨
𝛾h, uh − g

⟩
𝜕Ωg

(132)

where a⟨⋅, ⋅ ⟩Ω is the quadrature version of a(⋅,⋅)Ω, and ⟨⋅, ⋅ ⟩Ω,⟨⋅, ⋅⟩𝜕Ωh
, and ⟨⋅, ⋅⟩𝜕Ωg

are the quadrature versions of (⋅,⋅)Ω,
(⋅, ⋅)𝜕Ωh , and (⋅, ⋅)𝜕Ωg

, respectively.
The approach taken to perform domain integration during

the early development of Galerkin meshfree methods was
to use GI using a background mesh (Liu et al., 1995a;
Belytschko et al., 1994; Belytschko et al., 1996; Chen et al.,
1996), as shown in Figure 11(a). There are a few disad-
vantages to this technique. First, since RK shape func-
tions are rational, no matter how high the quadrature order,
GI can only approximately satisfy the patch test (Dolbow
and Belytschko, 1999). The order of quadrature required
to guarantee optimal convergence is also high (Dolbow
and Belytschko, 1999; Chen et al., 2001, 2013), and it
is prohibitively expensive in practical problems. Second,
although RK approximations can be constructed by using a
set of points without a mesh, domain integration using Gaus-
sian quadrature still requires a mesh to construct the cells. It
is, however, important to note that such a mesh can be gener-
ated independently of the nodal distribution.

The primary drawback of GI is the prohibitively expensive
high-order quadrature required for solution accuracy. For
example, for non-uniform node distributions, it has been
shown that up to 5th-order GI in each cell is necessary to
obtain optimal convergence rates (Chen et al., 2013).

To illustrate, consider the following Poisson’s equation on
Ω : (−1,1)× (−1,1):

∇2u = − sin(πx) sin(πy) in Ω,
u = 0 on 𝜕Ω (133)

The solution to this problem is u= sin(𝜋x)sin(𝜋y)/2𝜋2. The
problem is solved using RKPM with linear basis and cubic
B-spline kernel functions with normalized supports of 1.75.
Here, the domain is first discretized with uniform nodal
spacing h with integration cells of the same spacing, and then
nodes are perturbed away from their original position, similar
to the discretization in Figure 11(a). Refinement is then
performed uniformly as shown in Figure 11(b), with integra-
tion cells also refined at the same rate. The convergence of
the RKPM solution with GI and varying orders of quadrature
q in each background cell is shown in Figure 11(c), where it
is seen that convergence rates in the H1 semi-norm are lower
than the optimal rate of one, and even diverging solutions
are observed for the case of 1× 1 Gaussian quadrature. It can
also be seen that 5× 5 GI is necessary to obtain reasonable
convergence rates with GI. It is possible, however, to achieve
accuracy and optimal convergence with lower order quadra-
ture under the framework of variational consistency (Chen
et al., 2013) as discussed in the following subsections.

Using the nodes themselves as integration points, as shown
in Figure 12(a), is an attractive way to perform numerical
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Figure 11. (a) Domain integration for RKPM using Gaussian integration; (b) refinements used in convergence study; (c) convergence of
RKPM using q-order Gaussian integration “q× q GI”, and direct nodal integration “DNI”. (Reproduced with permission from Chen et al.,
2013. © John Wiley & Sons, 2013.)

integration due to its simplicity and efficiency, and it also
avoids altogether using a background mesh and thus provides
a truly meshfree method at the discrete level with quadrature.
This method has been termed direct nodal integration (DNI)
in the literature. This method, however, also fails to satisfy
the patch test owing to the rational nature of the RK shape
functions. In addition, this method constitutes low-order
quadrature and does not attain optimal convergence rates
in most situations (Chen et al., 2001, 2013; Beissel and
Belytschko, 1996). As seen in Figure 11(b), direct nodal
integration can yield solutions that do not converge with
refinement of the discretization. Again, the framework of
variational consistency can be applied to nodal integration
to rectify this situation, as discussed in the following subsec-
tions.

Apart from convergence, direct nodal integration also
suffers from stability issues. Oscillating modes with wave-
length twice the nodal spacing are admitted in the solution

with little or no energy owing to the fact that the bilinear
form is only sampled at the nodes, where this mode has zero
gradient in the interior of the domain (Chen et al., 2001;
Beissel and Belytschko, 1996; Belytschko et al., 2000). The
node-to-node oscillations are clearly seen in Figure 12(b) for
the solution of the problem (133) using direct nodal integra-
tion. Several techniques are available to alleviate the insta-
bility as discussed in Section 6.4.

To summarize, the following are the major issues associ-
ated with Gaussian and nodal integration:

1. Gaussian integration
• Requires a background mesh
• Does not pass the linear patch test even with linear

completeness in the approximation
• Higher order quadrature rules are needed for optimal

convergence
2. Direct nodal integration
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Figure 12. (a) Domain integration for RKPM using direct nodal integration; (b) instability in a solution obtained by direct nodal integration.

• Does not pass the linear patch test even with linear
completeness in the approximation

• Derivatives of certain modes can vanish at nodes,
which results in severe oscillations in the numerical
solution

• Does not converge optimally

Over the past two decades, several techniques have been
proposed to alleviate these problems. A summary of tech-
niques is given in Table 1, which shows the order of approx-
imation that can yield optimal convergence by using a
given method, and the costs and considerations involved in
achieving stability and convergence. Thus, one can observe
in Table 1 why the stabilized conforming nodal integration
(SCNI) method (Chen et al., 2001) has been successful, as
it yields optimal convergence without additional cost (over
DNI), and yields stable solutions in most situations. The
VCI method in conjunction with stabilized nodal integra-
tion (Hillman and Chen, 2016; Puso et al., 2008; Hillman
et al., 2014) is a recent development, which also offers
a promising technique where stable and convergent solu-
tions are obtained using nodal integration, offering effective-
ness and computational efficiency. The SCNI and stabilized
nodal VCI methods are discussed in the following subsec-
tions.

6.2 Stabilized conforming nodal integration:
first-order Galerkin exactness

It is possible to achieve optimal convergence with much
lower order quadrature by achieving Galerkin exactness for

a certain order solution. One particularly robust type of
numerical integration that satisfies Galerkin exactness for
linear solutions is the SCNI technique introduced in Chen
et al. (2001), which does so by introducing a smoothed
gradient framework with a built-in divergence operator.

Consider the problem (128) with a linear solution
u= ū≡ a0 + a1x+ a2y. The associated source term and
boundary conditions for a problem with this solution are
Q = Q ≡ 𝛁2u = 0, h = h ≡ 𝛁 u ⋅ n= a1n1 + a2n2, and g= ū.
The corresponding Galerkin equation with quadrature (132)
for this problem is

a
⟨

vh, uh
⟩
Ω =
⟨

vh, h
⟩
𝜕Ωh

+
⟨

vh, 𝜆h
⟩
𝜕Ωg

+
⟨
𝛾h, uh − u

⟩
𝜕Ωg

(134)
Linear exactness requires that the above equation be satis-

fied with uh = ū, and 𝜆h = 𝜆 ≡ 𝛁 u ⋅ n. In the context of
solid mechanics, this requirement translates to equilibrium
being satisfied with linear solutions on the discrete level with
quadrature and that exact displacements are obtained, as well
as exact tractions on the essential boundary.

In order for the approximation space to be able to repre-
sent the exact solution and the exact flux on the essential
boundary, partition of nullity in the approximation of the
Lagrange multiplier and linear completeness in the approxi-
mation of and their gradients must first be satisfied.

Taking uI = ū(xI) and 𝜆I =∇ū(xI) ⋅ n(xI), and employing
completeness of 𝜆h and uh, one obtains uh = ū, and 𝜆h =
𝜆 ≡ 𝛁 u ⋅ n. Using these values in (134), the condition for
Galerkin linear exactness can be reduced to the following



Reproducing Kernel Particle Method 23

Table 1. Comparison of integration techniques.

Method Quadrature
rule

Order of
approximation
with optimally
convergent
solutions

Stability Associated
cost

Low-order Gaussian quadrature Gaussian quadrature – Possibly unstable Negligible
High-order Gaussian quadrature Gaussian quadrature n≥ 1 Stable Many evaluation points
Direct nodal integration Nodal – Unstable Negligible
Stress point (Dyka and Ingel,

1995)
Stress points – Stable in uniform node

distributions
Additional evaluation

points
Residual-based (Beissel and

Belytschko, 1996)
Stabilized nodal – Stable in uniform node

distributions
Higher order derivatives

Bounding-box (Dolbow and
Belytschko, 1999)

Gauss n= 1 Stable Bounding box algorithm

Taylor expansion-based
(Nagashima, 1999)

Stabilized nodal – Stable Higher order derivatives

First-order exact with residual
stabilization (Bonet and
Kulasegaram, 2000)

Stabilized nodal n= 1 Stable Global-size iteration,
high order derivatives

SCNI (Chen et al., 2001) Stabilized nodal n= 1 Stable with low to
moderate
volume/surface ratio

Negligible

Particle PU method (Griebel
and Schweitzer, 2002)

Sparse grid quadrature n≥ 1 Stable Cell-generating algorithm

M-SCNI (Puso et al., 2008) Stabilized nodal n= 1 Stable Additional evaluation
points

Corrected quadrature (Babuška
et al., 2009)

Corrected weights n= 1 Inherited from method
corrected

Boundary integration

QC3 (Duan et al., 2012) Triangle mesh n= 2 Stable Additional evaluation
points

VCI (Chen et al., 2013) Arbitrary n≥ 1 Inherited from method
corrected

Boundary integration

VC-MSCNI/VC-MSNNI
(Hillman et al., 2014)

Stabilized nodal n= 1 Stable Boundary integration,
additional evaluation
points

VC-NSNI (Hillman and Chen,
2016)

Stabilized nodal n= 1 Stable Boundary integration

Displacement smoothing (Wu
et al., 2015)

Stabilized nodal n= 1 Stable High order derivatives

divergence equality with quadrature (Chen et al., 2001):

∫
̂

Ω
𝛁 Ψ̂IdΩ = ∫

̂

𝜕Ω
Ψ̂IndΓ (135)

where “^” over the integral sign denotes numerical inte-
gration. The above equation has been termed the integra-
tion constraint in the literature (Chen et al., 2001). When
the chosen numerical integration and approximation func-
tions employed satisfy the integration constraint (135) and
the completeness requirement, the exact linear solution is
obtained using the Galerkin method for second-order PDEs.

In order to satisfy (135), stabilized conforming nodal inte-
gration with smoothed gradients of Ψ̂I (with Ψ̂I = ΨI) over
conforming nodal representative domains ΩL (as shown in

Figure 13(a)) is introduced as follows:

𝛁̃ΨI(xL) =
1

WL ∫ΩL

𝛁ΨIdΩ = 1
WL ∫𝜕ΩL

ΨIndΓ

≃ 1
WL ∫

̂

𝜕ΩL

ΨIndΓ (136)

where WL = ∫ΩL
dΩ. When the boundary integration for

smoothing (136) and boundary integrals in (132) use the
same quadrature rule, nodal integration with smoothed gradi-
ents 𝛁̃ meets the condition (135) if the smoothing domains
{ΩL}NP

L=1 are conforming (Chen et al., 2001). It is suffi-
cient to take one-point GI for the boundary faces in the
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Figure 13. (a) Smoothing cells in stabilized conforming nodal integration; (b) solution to Poisson’s equation with SCNI; (c) convergence of
RKPM using q-order Gaussian integration “q× q GI”, direct nodal integration “DNI”, and stabilized conforming nodal integration “SCNI”.
((c) Reproduced with permission from Chen et al., 2013. © John Wiley & Sons, 2013.)

smoothing operation (136) to satisfy first-order consistency
of the smoothed gradient (Chen et al., 2013).

Because of the fact that first-order derivatives are not
directly evaluated at the nodes, the instability due to
zero energy modes in direct nodal integration is also
precluded. Another key aspect of this method is that
it results in an efficient quadrature scheme since nodal
integration is employed and derivative computation of
the RK shape functions is avoided. Hence, accuracy,
stability, and efficiency are attained simultaneously using
this method.

Consider again the problem (133) with linear RKPM and
SCNI employed. As seen in Figure 13(b), the severe oscilla-
tions in solutions by direct nodal integration are also absent
in the solution. Figure 13(c) shows the convergence of SCNI
in (133), demonstrating that the optimal convergence rate of
one in the H1 semi-norm is achieved under the SCNI frame-
work, performing far better than direct nodal integration, also
using far fewer integration points than would be required
with GI.

6.3 Variationally consistent integration: a
generalization of SCNI for higher order
Galerkin exactness

It is possible to generalize the integration constraint for linear
exactness in second-order PDEs (135) to arbitrary order
solutions and for general PDEs (Chen et al., 2013). When
these requirements are met, it is possible to achieve arbitrary
order exactness and proper convergence rates associated with
the approximations space using much lower order quadrature
than would otherwise be required.

Consider the following boundary value problem:

Lu + Q = 0 in Ω,

u = g on 𝜕Ωg,

Bu = h on 𝜕Ωh (137)

In the above, L is a differential operator acting in the
domain, Q is a source term, g is the prescribed values of u
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on the essential boundary 𝜕Ωg, and B is a boundary operator
acting on the natural boundary 𝜕Ωh.

Consider the boundary value problem (137) where
the solution is complete monomials with degree n:
u =
∑

0≤i+j+k≤ncijkxi
1xj

2xk
3 ≡ un. When the boundary condi-

tions and source term are prescribed as Q=−Lun in Ω,
g= un on 𝜕Ωg, and h=Bun on 𝜕Ωh, the solution to the
problem (137) is un. With quadrature, the Galerkin approxi-
mation of this problem seeks (uh, 𝜆h)∈Uh ×Λh such that for
all (vh, 𝛾h)∈Vh ×Γh the following equation holds:

a
⟨

vh, uh
⟩
Ω = −

⟨
vh,Lun

⟩
Ω +
⟨

vh,Bun
⟩
𝜕Ωh

+
⟨

vh, 𝜆h
⟩
𝜕Ωg

+
⟨
𝛾h, uh − un

⟩
𝜕Ωg

(138)

In order to obtain the exact solution un to this problem, it
has been shown in Chen et al. (2013) that the trial functions
ΨI and𝜙I for u and 𝜆, respectively, must satisfy the following
completeness conditions:

Np∑
I=1

ΨIu
n
I = un

Nc∑
I=1

𝜙I𝜆
n
I = 𝜆n (139)

where un
I =
∑

0≤i+j+k≤ncijkxi
1Ix

j
2Ix

k
3I , 𝜆n

I =
∑

0≤i+j+k≤n

cijk(Bxi
1xj

2xk
3)I , and 𝜆n =

∑
0≤i+j+k≤ncijkBxi

1xj
2xk

3. Setting
uI = un

I and 𝜆I = 𝜆n
I in (138) and employing completeness,

it can be shown that the test functions must satisfy the
following conditions:

a
⟨
Ψ̂I , x

i
1xj

2xk
3

⟩
Ω
= −
⟨
Ψ̂I , Lxi

1xj
2xk

3

⟩
Ω
+
⟨
Ψ̂I ,Bxi

1xj
2xk

3

⟩
𝜕Ω

∀I,

0 ≤ i + j + k ≤ n (140)

where ⟨⋅, ⋅ ⟩𝜕Ω is the quadrature version of the L2 inner
product on the boundary (⋅,⋅)𝜕Ω.The equations in (140) are
a generalization of the linear integration constraints (135)
to arbitrary order, which have been termed the variational
consistency conditions, and methods with domain integra-
tion and test spaces that are compatible in the form of (140)
have been termed variationally consistent integration (VCI)
(Chen et al., 2013).

Remark 1.

1. To arrive at the n integration constraints in (140), nth
pleteness in the trial functions has been used. The inte-
gration constraint states that the numerical integration of

the domain and boundary integrals for Galerkin approx-
imation of a PDE with differential operator L has to be
consistent with the test functions Ψ̂I in the form of (140)
for an nth plete numerical method to achieve the n exact-
ness in the Galerkin approximation (passing the n patch
test).

2. For n = 1, (140) is the integration constraint for linear
solutions (135), which reduces to a divergence condi-
tion for a second order differential operator L such as
in elasticity or Poisson’s equation. Further, stabilized
conforming nodal integration introduced in Chen et al.
(2001) meets the constraint for n = 1.

3. In general, the constraint for constant exactness is auto-
matically satisfied when the trial functions possess the
partition of unity property.

4. The integration constraints in (140) act on the test func-
tions Ψ̂I . It is therefore possible, for a given set of
nth plete trial functions, to construct test functions,
different from the trial functions, to meet the integration
constraints.

For Poisson’s equation, the integration constraints are
obtained as

a
⟨
Ψ̂I , x

i
1xj

2xk
3

⟩
Ω
= −
⟨
Ψ̂I ,∇2xi

1xj
2xk

3

⟩
Ω

+
⟨
Ψ̂I ,𝛁 xi

1xj
2xk

3 ⋅ n
⟩
𝜕Ω

∀I,

0≤ i+ j+k ≤ n (141)

When i+ j+ k= 1, the linear constraints (135) are recov-
ered. The additional integration constraints are obtained by
examining the cases of i+ j+ k> 1.

For elasticity, the integration constraints can be obtained
as:

∫
̂

Ω
𝛁 Ψ̂I ⋅ 𝛁sxi

1xj
2xk

3dΩ = −∫
̂

Ω
Ψ̂I 𝛁 ⋅𝛁sxi

1xj
2xk

3dΩ

+ ∫
̂

𝜕Ω
Ψ̂I𝛁sxi

1xj
2xk

3 ⋅ ndΓ ∀I, 0 ≤ i + j + k ≤ n

(142)

Letting i+ j+ k= 1, the linear constraints (135) are again
recovered, while the higher order constraints can be obtained
by setting i+ j+ k> 1.

In order to satisfy n exactness, completeness of the trial
functions must be satisfied, and the integration constraints
(140) must be satisfied for the test functions. Completeness
of the trial space can be met using the RK shape functions
given in (36). Here the procedure introduced in Chen et al.
(2013) to select a set of test functions to meet the integration
constraints is presented.
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Let the approximations of trial and test functions be
expressed as:

uh =
Np∑
I=1

ΨIuI

vh =
Np∑
I=1

Ψ̂IvI (143)

where ΨI is the trial function approximation with nth plete-
ness, and the test functions are constructed as (Chen et al.,
2013):

Ψ̂I = ΨI +
∑

0≤|𝛼|≤n

𝜉𝛼IΨ̂𝛼I (144)

where {ΨI , Ψ̂𝛼I }0≤|𝛼|≤n are linearly independent, 𝛼 ≡ (p, q, r),
and |𝛼|≡ p+ q+ r. Inserting the test functions into the inte-
gration constraint (140) yields a system of equations

n∑
0≤|𝛼|≤n

Aijk𝛼𝜉𝛼I = rijkI, 0 ≤ i + j + k ≤ n (145)

where

Aijk𝛼=a
⟨
Ψ̂𝛼I , x

i
1xj

2xk
3

⟩
Ω
+
⟨
Ψ̂𝛼I , Lxi

1xj
2xk

3

⟩
Ω
−
⟨
Ψ̂𝛼I ,Bxi

1xj
2xk

3

⟩
𝜕Ω

rijkI=−
(
a
⟨
ΨI , x

i
1xj

2xk
3

⟩
Ω
+
⟨
ΨI , Lxi

1xj
2xk

3

⟩
Ω
−
⟨
ΨI ,Bxi

1xj
2xk

3

⟩
𝜕Ω

)
(146)

The unknown coefficients 𝜉𝛼I are straightforwardly
obtained from (145).

Remark 2.

1. The method resulting from the chosen integration
method with the test function formed using (144)–(146)
is variationally consistent.

2. The type of numerical integration is unspecified, and the
framework allows construction of test functions consis-
tent with any of the types of numerical integration.

3. The correction is driven by the residual of the
constraints; for a method such as stabilized conforming
nodal integration that is first order variationally consis-
tent, no correction is needed for the first-order scheme.

4. In Chen et al. (2013) it was shown that using VCI, much
lower order quadrature could be used to obtain optimal
convergence than would otherwise be required.

To achieve computational efficiency, assumed strains can
be introduced in order to satisfy (140). The test and trial func-
tions are approximated by the shape functions with desired

order of completeness, while direct and assumed gradients
are then introduced for the trial and test functions, respec-
tively, as follows:

uh
,i =

Np∑
I=1

ΨI,iuI

vh
,i =

Np∑
I=1

(
ΨI,i +

∑
0≤|𝛼|≤n

𝜉𝛼IiΨ̂𝛼Ii

)
vI (147)

where (⋅),i ≡ 𝜕(⋅)/𝜕xi. The coefficients 𝜉𝛼Ii are again obtained
by substitution of the approximation functions into the inte-
gration constraints.

Consider RKPM with linear basis for solving the problem
(133), using several methods with and without VCI correc-
tions (with corrected methods denoted with the prefix
“VC-”): GI with varying orders of quadrature, DNI, SCNI,
and also the variationally inconsistent, non-conforming
version of SCNI, stabilized non-conforming nodal inte-
gration (SNNI) (Guan et al., 2009, 2011). It can be seen
in Figure 14 that optimal convergence can be achieved
with 2× 2 VC-GI, while in contrast 5× 5 is necessary for
variationally inconsistent GI. It can also be seen that varia-
tionally inconsistent nodal integration DNI and SNNI can be
corrected to achieve near optimal and optimal convergence,
respectively. The lack of optimal convergence in DNI is
likely due to the numerical instability in the method, which
can be remedied by procedures given in the next subsection.

6.4 Stabilization of nodal integration

The instability in direct nodal integration is due to the fact
that for discretizations with spacing h, oscillating modes
of wavelength 2h are admitted in the solution with little
or no energy due to gradients being sampled only at the
nodes (Chen et al., 2001; Beissel and Belytschko, 1996;
Belytschko et al., 2000). Least-squares stabilization (Bonet
and Kulasegaram, 2000; Beissel and Belytschko, 1996) and
Taylor series expansions (Nagashima, 1999; Liu et al., 2007)
alleviate the instability by including second-order derivatives
that are non-zero at nodes, and stress points (Randles and
Libersky, 2000; Dyka et al., 1997) provide sampling points
at locations other than the nodes themselves.

Stabilized conforming nodal integration, where deriva-
tives are not directly evaluated at nodes, circumvents the
zero-energy instability (rank instability) without the use
of any derivatives or additional sampling points. However,
low-energy oscillatory modes exist in SCNI when the
surface area to volume ratio is sufficiently small, or when
the discretization is sufficiently fine (Puso et al., 2008).
Short-wavelength modes associated with only a small
amount of energy from the boundary may become excited.
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Figure 14. Convergence of various domain integration methods with and without VCI. (Reproduced with permission from Chen et al.,
2013. © John Wiley & Sons, 2013.)

With limited boundary influence of the discretization at
hand, that is, when the surface to volume ratio is small, or
for sufficiently fine discretizations, the instability in several
nodal integration methods can be examined in a unified
manner as follows.

Consider the calculation of a gradient in a one-dimensional
Poisson equation by nodal integration. For an interior node
(with no influence from the boundary), consider m nodes
covering the nodal location xL on each side of the node,
giving a total of 2m+ 1 nodes covering the location. A
gradient is computed at this node as

uh
,x(xL) =ΨL−m,x(xL)uL−m + · · · + ΨL,x(xL)uL + · · ·

+ ΨL+m,x(xL)uL+m (148)

When sufficiently smooth (at least C1) symmetric kernels
are employed, the term ΨL,x(xL) can be shown to be zero
when computed directly, and also when using averaging
and smoothing operations when computing gradients. The
remaining terms, using the uniformity and symmetry of the
discretization, are

uh
,x(xL) =2ΨL−m,x(xL)(uL−m − uL+m)

+ 2ΨL−m+1,x(xL)(uL−m+1 − uL+m−1) + · · ·

+ 2ΨL−1,x(xL)(uL−1 − uL+1) (149)

For modes of alternating displacement of unity at each
node uL− p = uL+ p for any integer p, the gradient is identically
zero, which is the essential difficulty of under-sampling
using only nodes.

Consider the discretization shown in Figure 15(a) with
SCNI employed for numerical integration. Eigenvalue anal-
ysis of the stiffness matrix for 2D elasticity reveals that the

lowest non-zero energy modes are oscillatory, as seen in
Figure 15(b).

The stabilization of these low-energy modes in SCNI can
be accomplished by including gradient averaging with subdi-
visions of the smoothing cells (Puso et al., 2008). Gradients
evaluated directly at the centroid of (or smoothed over) NS
subcells are employed in the stabilization in Puso et al. (2007,
2008); Chen et al. (2007), in order to provide additional coer-
civity and avoid under-sampling of the saw-tooth modes. Let
SL denote the set of stabilization points associated with point
xL. The form of stabilization proposed in (Puso et al., 2008)
is based on maintaining satisfaction of the linear patch test in
SCNI:

a
⟨

vh, uh
⟩
=

Np∑
L=1

{
∇̃vh(xL) ⋅ ∇̃uh(xL)WL

NP∑
L=1

∑
K∈SL

c
[(
∇̃vh(xL) − ∇vh(xK

L )
)

⋅ (∇̃uh(xL) − ∇uh(xK
L ))W

K
L

]}
(150)

where ∇̃uh(xL) is the smoothed gradient at node L, ∇vh(xK
L )

is the direct (or alternatively, smoothed) gradient evaluated at
the centroid xK

L of the Kth subcell, c is a stabilization param-
eter ranging from zero to unity, and WK

L is the cell weight
associated to the Kth point in the set SL. The first term in
(150) is stabilized conforming nodal integration, while the
second term stabilizes the solution. The distribution of stabi-
lization points in relation to node L is depicted in Figure 16.
SCNI with the additional stabilization in (150) has been
termed modified stabilized conforming nodal integration
(MSCNI).
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(a) (b) 0.739 0.739

Figure 15. (a) Discretization, (b) lowest energy modes and eigenvalues of SCNI (two modes) (Hillman et al., 2014). (Reproduced from M.
Hillman, J.-S. Chen, S.-W. Chi, Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems, Comp.
Part. Mech. 1 (2014) 245–256. With permission of Springer.)
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Figure 16. Scheme for the additional stabilization in MSCNI.

An eigenvalue analysis is performed on the stiffness
matrices associated with the discretization in Figure 15(a)
using the additional stabilization (150) with c = 0.1. The
lowest energy mode is now a stable mode of deformation,
which matches fully integrated linear FEM, as seen in
Figure 17(a,b). The associated eigenvalues also match the
one obtained by FEM. Figure 17(c) demonstrates that the
additional stabilization does not degrade the convergence
rate of SCNI as it maintains optimal convergence when
solving Poisson’s equation (133).

As an alternative to additional sampling points,
which could become expensive in certain situations, a
Taylor-series-type stabilization for RKPM with nodal inte-
gration can be obtained by following the procedures for
unified stabilization in finite elements (Liu et al., 1985) in
Cartesian coordinates:

a⟨vh, uh⟩ = NP∑
L=1

{𝛁vh(xL) ⋅ 𝛁uh(xL)WL + 𝛁vh
,x(xL)

⋅ 𝛁uh
,x(xL)MLx + 𝛁vh

,y(xL) ⋅ 𝛁uh
,y(xL)MLy} (151)

where

MLx = ∫ΩL

(x − xL)2dΩ,

MLy = ∫ΩL

(y − yL)2dΩ (152)

To avoid the expense of evaluating high-order derivatives,
derivative approximations can be directly constructed by
employing implicit gradients (Chi et al., 2013; Chen et al.,
2004):

𝛁uh
,x(xL) ≃ 𝛁uh

x(xL) =
NP∑
I=1

𝛁Ψ
10

I (xL)uI

𝛁uh
,y(xL) ≃ 𝛁uh

y(xL) =
NP∑
I=1

𝛁Ψ
01

I (xL)uI (153)

where Ψ
10

I and Ψ
01

I are two-dimensional versions of the
implicit gradients in (46). The resulting stabilization (151)
with (153) is

a⟨vh, uh⟩ = NP∑
L=1

{𝛁vh(xL) ⋅ 𝛁uh(xL)WL + 𝛁vh
x(xL)

⋅ 𝛁uh
x(xL)MLx + 𝛁vh

y(xL) ⋅ 𝛁uh
y(xL)MLy} (154)
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Figure 17. Lowest energy modes and eigenvalues of (a) modified SCNI (M-SCNI) and (b) fully integrated FEM (Hillman et al., 2014);
(c) convergence of M-SCNI in the Poisson’s equation (133). ((a,b) Reproduced from M. Hillman, J.-S. Chen, S.-W. Chi, Stabilized and
variationally consistent nodal integration for meshfree modeling of impact problems, Comp. Part. Mech. 1 (2014) 245–256. With permission
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Figure 18. (a) Lowest energy mode of naturally stabilized nodal integration with associated eigenvalue (Hillman and Chen, 2016).
(Reproduced with permission from Hillman and Chen (2016). © John Wiley & Sons, 2016.) (b) convergence of naturally stabilized nodal
integration in convergence in Poisson’s equation (133).

The additional two terms of the stabilization are positive
for non-zero gradients and thus provide coercivity (Hillman
and Chen, 2016). The constants associated with the addi-
tional terms occur naturally, and no tuning of any param-
eters is required. Stabilization with (154) is termed natu-
rally stabilized nodal integration (NSNI) (Hillman and Chen,
2016).

One can observe that the construction of Ψ
ij

I by (46),
necessary for (154), has the same complexity as the original
RK approximation (36), and the resulting computational cost
of the stabilization is similar to direct nodal integration,
offering a stabilization with significant efficiency.

NSNI by itself is not variationally consistent and does
not attain optimal convergence (Hillman and Chen, 2016).
However, the method is well suited for the VCI technique
and can be formulated to attain optimal convergence, with
the resulting method termed VC-NSNI; see (Hillman and
Chen, 2016) for details. Figure 18(a) shows the fourth eigen-
value mode of the previously employed RK discretization for

eigenvalue analysis using VC-NSNI, which shows very good
agreement with the mode shape of FEM in Figure 17(b),
with the corresponding eigenvalue also in agreement with the
value of 1.30 for fully integrated FEM. Figure 18(b) demon-
strates that the method can attain optimal convergence under
the VCI framework.

7 SOLVING PDES BY THE
COLLOCATION METHOD

7.1 Introduction of collocation method

An alternative approach to circumvent domain integration
issues in meshfree methods is by collocation of strong forms,
such as the finite point method (Oñate et al., 1996), the
RBCMs (Kansa, 1990a,b), and the RKCM (Aluru, 2000;
Hu et al., 2011). Consider the application of strong form
collocation to a boundary value problem as follows.



30 Reproducing Kernel Particle Method

Let the approximation of u be expressed a s

uh(x) =
NS∑
I=1

gI(x)uI (155)

where NS is the number of source points of set
Z = [x1, x2, · · · xNS

|xI ∈ Ω] in the terminology of collo-
cation methods, gI is the shape function associated with
xI, and uI is the corresponding coefficient. Introducing the
approximation uh(x) and enforcing the residuals to be zero
at NC collocation points {𝛏J}

NC

J=1 ∈ Ω ≡ Ω ∪ 𝜕Ω, we have

Luh(𝛏J) = f(𝛏J) ∀𝛏J ∈ Ω,

Bhuh(𝛏J) = h(𝛏J) ∀𝛏J ∈ 𝜕Ωh,

Bguh(𝛏J) = g(𝛏J) ∀𝛏J ∈ 𝜕Ωg, (156)

where L, Bh, and Bg are the differential operators associ-
ated with the domain equations, Neumann boundary, and
Dirichlet boundary, respectively. The operators for two
model problems, Poisson’s equation and elasticity, are given
in Table 2 in two dimensions.

If Nc = Ns, the approach is termed as the direct collocation
method (Hu et al., 2007). When Nc > Ns, (158) leads to an
overdetermined system and its solution can be obtained using
a least-squares method. The solution from an overdetermined
system usually offers better accuracy and is less sensitive to
the nodal distribution; however, to achieve optimal accuracy,
the least-squares system needs to be properly weighted for
domain and boundary equations, which is referred to as the
weighted collocation method. The details are discussed in
Section 7.2.

The collocation in equation (156) is equivalent to the
weighted residual of the boundary value problem as seeking
uh ∈H2 such that ∀w, wh, wg ∈ L2:

∫Ω
w(x) ⋅ (Luh(x) − f(x))dΩ,

+ ∫𝜕Ωh

wh(x) ⋅ (Bguh(x) − h(x))dΓ

+ ∫𝜕Ωg

wg(x) ⋅ (Bguh(x) − g(x))dΓ = 0 (157)

The weighted residual (157) leads to (156) when w = wh =
wg =

∑NC

J=1 𝛿(x − 𝛏J)wJ where 𝛿(⋅) is the multidimensional
Dirac Delta function and wJ is the corresponding arbitrary
coefficient. Note that in this approach the admissible approx-
imation uh is required to be in H2, which is difficult for the
conventional FEM approximation to achieve. However, for
the RK approximations discussed in Section 2, the regularity
requirement can be readily met.

In matrix form, (156) can be rewritten as:∑
I∈Z

LgI(𝛏J)uI = f(𝛏J) ∀𝛏J ∈ Ω,∑
I∈Z

BhgI(𝛏J)uI = h(𝛏J) ∀𝛏J ∈ 𝜕Ωh,∑
I∈Z

BggI(𝛏J)uI = g(𝛏J) ∀𝛏J ∈ 𝜕Ωg (158)

Although the employment of a C1 continuous kernel, such
as the quadratic B-spline kernel, in the RK approximation
satisfies the regularity requirements of strong form colloca-
tion, higher order continuous kernels offer better numerical
stability, especially when the point density is high. A quintic
B-spline is often adopted in RKCM:

𝜙a(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

11
20

− 9
2

z2 + 81
4

z4 − 81
4

z5

for 0 ≤ z ≤ 1
3

17
40

+ 15
8

z − 63
4

z2 + 135
4

z3 − 243
8

z4 + 81
8

z5

for
1
3
≤ z ≤ 2

3
81
40

− 81
8

z + 81
4

z2 − 81
4

z4 + 81
8

z4 − 81
40

z5

for
2
3
≤ z ≤ 1

0 for z > 1
(159)

7.2 Weighted collocation method

The collocation equations can be recast in a matrix form as:

Kd = f (160)

When NC > NS, the above equations lead to an overde-
termined system, and a least-squares method can be
applied for seeking the solution, equivalent to mini-
mizing a weighted residual. The residual is defined as
e(d)= 1/2(Kd− f)TW(Kd− f), where W is a symmetric
weighting matrix. Minimizing e(d) yields

KTWKd = KTWf (161)

It has been shown in Hu et al. (2007) that solving strong
form collocation equations by a least-squares method is
equivalent to minimizing a least-squares functional with
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Table 2. Differential operators for Poisson’s equation and elasticity in two dimensions.

Operator Poisson’s Equation Elasticity Problem

L
𝜕

𝜕x2
+ 𝜕

𝜕y2

⎡⎢⎢⎢⎣
(𝜆 + 2𝜇) 𝜕

2

𝜕x2
+ 𝜇 𝜕

2

𝜕y2
(𝜆 + 𝜇) 𝜕

𝜕x𝜕y

(𝜆 + 𝜇) 𝜕
𝜕x𝜕y

𝜇
𝜕2

𝜕x2
+ (𝜆 + 2𝜇) 𝜕

2

𝜕y2

⎤⎥⎥⎥⎦
Bh nx

𝜕
𝜕x

+ ny
𝜕
𝜕y

⎡⎢⎢⎢⎣
(𝜆 + 2𝜇)nx

𝜕
𝜕x

+ 𝜇ny
𝜕
𝜕y

𝜇ny
𝜕
𝜕x

+ 𝜆nx
𝜕
𝜕y

𝜆ny
𝜕
𝜕x

+ 𝜇nx
𝜕
𝜕y

𝜇nx
𝜕
𝜕x

+ (𝜆 + 2𝜇)ny
𝜕
𝜕y

⎤⎥⎥⎥⎦
Bg 1

[
1 0
0 1

]

quadrature. It states to find uh such that

E(uh) = inf E
v∈V

(v) (162)

where V is an admissible finite dimensional space spanned
by meshfree shape functions, and

E(v) =1
2 ∫

̂

Ω
(Lv − f)2dΩ

+ 1
2 ∫

̂

𝜕Ωh

(Bhv − h)2dΓ + 1
2 ∫

̂

𝜕Ωg

(Bgv − g)2dΓ

(163)

Recall that ∫̂ denotes integration with quadrature. It has
been shown in Hu et al. (2007) that the errors from the
domain and boundary integrals in (163) are unbalanced.
Therefore, a weighted least-squares functional can be intro-
duced:

E(v) =1
2 ∫

̂

Ω
(Lv − f)2dΩ +

𝛼h

2 ∫
̂

𝜕Ωh

(Bhv − h)2dΓ

+
𝛼g

2 ∫
̂

𝜕Ωg

(Bgv − g)2dΓ (164)

Here, the weights 𝛼h and 𝛼g are determined by considering
error balancing of the weighted least-squares functional asso-
ciated with the domain and boundary equations in Hu et al.
(2007): √

𝛼h ≈ O(1),
√
𝛼g ≈ O(𝜅NS) (165)

For Poisson’s equation, 𝜅 = 1; for elasticity, 𝜅 =max(𝜆,𝜇),
or more generally, the maximum coefficient involved in
the differential operator and boundary operator for the

problem at hand. For strong form collocation with mixed
interpolations in nearly incompressible problems, the
weights for collocation equations have been estimated (Chi
et al., 2014).

Minimizing (164) is equivalent to solving the following
weighted collocation equations by a least squares method:∑

I∈Z

LgI(𝛏J)uI = −b(𝛏J) ∀𝛏J ∈ Ω,

√
𝛼h

∑
I∈Z

BhgI(𝛏J)uI =
√
𝛼hh(𝛏J) ∀𝛏J ∈ 𝜕Ωh,√

𝛼g

∑
I∈Z

BggI(𝛏J)uI =
√
𝛼gg(𝛏J) ∀𝛏J ∈ 𝜕Ωg (166)

For a smooth function u(x), when solving a PDE by collo-
cation (166) with the RK approximation uh(x), there exists
an algebraic convergence rate as shown by Hu et al. (2009):

‖‖‖u − uh‖‖‖E
≤ C𝜒ap−1|u|p+1,Ω (166)

where C is a generic constant,𝜒 is the overlapping parameter,
a is the support measure, p is the order of complete mono-
mials in RK shape functions, and

‖v‖E ≡
(‖v‖2

1,Ω + ‖Lv‖2
0,Ω + ‖‖Bhv‖‖2

0,𝜕Ωh
+ ‖‖‖Bgv‖‖‖2

0,𝜕Ωg

) 1
2

(166)

Remark 3.

1. The collocation points in the strong form collocation
method play a similar role as the quadrature points
in the least-squares method. The strong form collo-
cation method requires second-order differentiation
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of the approximation functions for the solution of a
second-order PDE. Higher order differentiation in the
approximation function, typically, requires higher order
quadrature rules for sufficient accuracy in the solution
process. Therefore, the use of more collocation points
Nc is necessary for solution accuracy (Hu et al., 2007,
2009, 2011).

2. As shown in (166), the solution using RKCM does not
converge when p = 1 is used for solving a second-order
PDE. p ≥ 2 is mandatory for convergence.

7.3 Localized radial basis collocation method
(L-RBCM)

RBFs have been popularly used for solving PDEs with
collocation methods since Kansa’s seminal work (Kansa,
1990a,b). RBFs are functions dependent only on the
Euclidean distance from the source point of a RBF; there-
fore, they are very easy to construct. Hardy (1971) first
investigated RBFs for interpolation problems, and Franke
and Schaback (1998) showed good performance in scattered
data interpolation using multiquatric and thin-plate spline
radial basis functions. Since then, the advances in applying
RBFs to various problems have progressed constantly. A
few commonly used RBFs are given in Table 3, where
rI = ||x− xI|| with || ⋅ || the Euclidean norm, xI is the source
point of the RBF, and the constant c is called the shape
parameter of the RBF.

The works of Madych (1992), Wu and Schaback (1993),
and Yoon (2001) show that there exists an exponential
convergence rate in RBFs. However, the RBF-based method
suffers from large condition numbers owing to its “non-
local” approximation. The RK functions, on the other
hand, provide polynomial reproducibility and locality,

Table 3. Commonly used radial basis functions.

Multiquadrics (MQ) gI(x) = (r2
I + c2)n−

3
2

Gaussian gI(x) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
−

r2
I

c2

)

(r2
I + c2)n−

3
2 exp

(
−

r2
I

a2

)

Thin plate splines gI(x) =

{
r2n

I ln rI

r2n−1
I

Logarithmic gI(x) = rn
I ln rI

and the corresponding discrete systems are relatively well
conditioned (Hu et al., 2011). An approach has been
proposed to combine the advantages of RBFs and RK func-
tions to yield a local approximation that is better conditioned
than the RBFs, while at the same time offers a higher rate of
convergence than that of RK in (36):

uh(x) =
N∑

I=1

[
ΨI(x)

(
aI +

M∑
J=1

gJ
I (x)d

J
I

)]
(167)

where ΨI(x) is the RK function (36) with compact support,
and gI is the RBF. Application of the approximation in
(167) to the weighted strong form collocation as described
in Section 7.2 is termed the localized radial basis collocation
method (L-RBCM).

The above approximation utilizes the compactly supported
partition of unity to “patch” the global RBFs together.
Error analysis shows that if the error of the RK approx-
imation is sufficiently small, the proposed method main-
tains the exponential convergence of RBFs, while signifi-
cantly improving the condition of the discrete system, and
yields a banded matrix (Chen et al., 2008) as discussed
below.

1. Using the partition of unity properties of the RK
localizing function, there exists the following error
bound (Chen et al., 2008):

||u − uh
I ||0,Ω ≤ 𝛽C𝜂c∕𝛿

0 ||u||t (168)

where 𝛽 is the maximum cover number for the RK
localizing function, 0<𝜂0 < 1, 𝛿 is the maximum nodal
distance, and || ⋅ ||t is induced from Fourier transforms of
RBFs.

2. The enhanced stability in the L-RBCM can be demon-
strated by a perturbation analysis of the strong form
collocation equations in (158) or in the matrix form
(160).

The work in Chen et al. (2008) obtained the
following estimation of the condition number of
L-RBCM:

Cond(K) ≈ O(a−3d∕2) (169)

where d is the spatial dimension. In two-dimensional
elasticity, we have the following comparison of condi-
tion numbers using RBCM with pure RBFs, RKPM with
pure RK in (36), and L-RBCM with localized RBFs in
(167):
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RBCM ∶ Cond(K) ≈ O(h−8) ,

RKPM ∶ Cond(K) ≈ O(h−2) ,

L-RBCM ∶ Cond(K) ≈ O(h−3) (170)

The L-RBCM approach offers a significant improvement
on stability over RBCM. Although the discrete system of
L-RBCM is slightly less well conditioned than that of
RKPM, it offers a higher convergence rate similar to that
in RBCM.

7.4 Implicit gradient reproducing kernel
collocation method

The development of strong form collocation methods
circumvents the domain integration issue in the Galerkin
type formulation. Nevertheless, increased computational
complexity due to the need for higher order derivatives of
the RK approximation functions compromises the effec-
tiveness of the RKCM. The implicit G-RKCM (Chi et al.,
2013) is intended for addressing such issue in RKCM while
achieving optimal convergence by introducing a gradient
RK approximation (Chen et al., 2004).

To illustrate, consider a general boundary value problem in
two dimensions with split differential operations as follows:

L1uh
x + L2uh

y = f in Ω

B1
huh

x + B2
huh

y = h on 𝜕Ωh

Bguh = g on 𝜕Ωg (171)

The explicit forms of the operators and vectors for
Poisson’s equation and elasticity in two dimension are given
in Table 4.

The approximations of u, u,x, and u,y are given as

u,x ≈ wx =
NS∑
I=1

Ψ
10

I (x)dI ,

u,y ≈ wy =
NS∑
I=1

Ψ
01

I (x)dI (172)

where Ψ
10

I and Ψ
01

I are the (two-dimensional) implicit
gradient RK shape functions in (46).

Consequently, the second-order derivatives of u are
obtained by taking direct derivatives of wx and wy, that is,

Table 4. Explicit forms of operators for Poisson’s equation and
elasticity in two dimensions.

Operator Poisson’s equation Elasticity problem

L1 𝜕
𝜕x

⎡⎢⎢⎢⎣
(𝜆 + 2𝜇) 𝜕

𝜕x
𝜇
𝜕
𝜕y

𝜆
𝜕
𝜕y

𝜇
𝜕
𝜕x

⎤⎥⎥⎥⎦
L2 𝜕

𝜕y

⎡⎢⎢⎢⎣
𝜇
𝜕
𝜕y

𝜆
𝜕
𝜕x

𝜇
𝜕
𝜕x

(𝜆 + 2𝜇) 𝜕
𝜕y

⎤⎥⎥⎥⎦
B1

h nx

[
(𝜆 + 2𝜇)nx 𝜇ny

𝜆ny 𝜇nx

]

B2
h ny

[
𝜇ny 𝜆nx

𝜇nx (𝜆 + 2𝜇)ny

]

Bg 1

[
1 0

0 1

]
𝜆 and 𝜇 are Lamé constants; nx and ny are the components of the unit
outward normal.

u,xx ≈ wx,x =
Ns∑

I=1

Ψ
10

I,x(x)dI ,

u,yy ≈ wy,y =
Ns∑

I=1

Ψ
01

I,y(x)dI (173)

The weighted collocation equations with gradient approx-
imations given in (172) and (173) are

⎛⎜⎜⎜⎝
A1 + A2√
𝛼h(A3 + A4)√
𝛼gA5

⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

d =
⎛⎜⎜⎜⎝

b1√
𝛼hb2√
𝛼gb3

⎞⎟⎟⎟⎠
⏟⏞⏟⏞⏟

b

(174)

The submatrices in matrix A for Poisson’s equation and
elasticity are summarized in Table 5. For a balance of errors
between the domain and boundary equations, the following
weights for optimal solutions have been estimated (Chi et al.,
2013): √

𝛼h ≈ O(1),
√
𝛼g ≈ O(𝜅aq−p−1) (175)

where for Poisson’s equation, 𝜅 = 1; for elasticity,
𝜅 =max(𝜆,𝜇).



34 Reproducing Kernel Particle Method

Table 5. Submatrices in discrete equations for Poisson’s
equation and elasticity.

Submatrix Poisson’s
equation

Elasticity
problem

A1
IJ [Ψ

10

J,x(pI)]
⎡⎢⎢⎣
(𝜆 + 2𝜇)Ψ

10

J,x(pI) 𝜇Ψ
10

J,y(pI)

𝜆Ψ
10

J,y(pI) 𝜇Ψ
10

J,x(pI)

⎤⎥⎥⎦
A2

IJ [Ψ
01

J,y(pI)]
⎡⎢⎢⎣
𝜇Ψ

01

J,y(pI) 𝜆Ψ
01

J,x(pI)

𝜇Ψ
01

J,x(pI) (𝜆 + 2𝜇)Ψ
01

J,y(pI)

⎤⎥⎥⎦
A3

IJ [Ψ
10

J (qI)nx]
⎡⎢⎢⎣
(𝜆 + 2𝜇)Ψ

10

J (qI)n1 𝜇Ψ
10

J (qI)n2

𝜆Ψ
10

J (qI)n2 𝜇Ψ
10

J (qI)n1

⎤⎥⎥⎦
A4

IJ [Ψ
01

J (qI)ny]
⎡⎢⎢⎣
𝜇Ψ

01

J (qI)n2 𝜆Ψ
01

J (qI)n1

𝜇Ψ
01

J (qI)n1 (𝜆 + 2𝜇)Ψ
01

J (qI)n2

⎤⎥⎥⎦
A5

IJ [ΨJ(rI)]

[
ΨJ(rI) 0

0 ΨJ(rI)

]
pI, qI, and rI are the vectors of collocation points in Ω, on 𝜕Ωh, and on 𝜕Ωg
respectively.

The error estimate of G-RKCM is given (Chi et al., 2013):

‖‖‖u − uh, u,x − uh
,x, u,y − uh

,y
‖‖‖E

≤ aq−1(C11|u|q+1,Ω + C12|u|p+1,Ω) (176)

where‖‖‖v,wx,wy
‖‖‖E

=
{‖‖‖wx,x + wy,y

‖‖‖2

0,Ω
+ 𝛼h

‖‖wn
‖‖2

0,𝜕Ωh
+ 𝛼g ‖v‖2

0,𝜕Ωg

}1∕2

(177)

Here a is a support measure, and p and q are the polynomial
degrees in the approximation of u and the approximation of
u,x and u,y, respectively.

Remark 4.

1. The results in (176) indicate that the convergence of this
method is only dependent on the polynomial degree q
in the approximation of u,x and u,y, and is independent
of the polynomial degree p in the approximation of u.
Further, q≥ 2 is needed for convergence.

2. In comparison to RKCM, the order of differentiation
for G-RKCM is reduced owing to the introduction of
implicit gradient approximations. As such, G-RKCM
allows the use of NC = NS for sufficient accuracy; see
(Chi et al., 2013) for details.

8 REPRODUCING KERNEL PARTICLE
METHOD FOR LARGE DEFORMATION
PROBLEMS

8.1 Lagrangian reproducing kernel
approximation and discretization

The RK approximation is constructed on the basis of a set
of points without mesh and hence releases the strong depen-
dence of the approximation accuracy on mesh quality. It is,
therefore, well suited for application on extreme deforma-
tion problems. To illustrate, let X be the material coordi-
nates for a body initially occupying the domain ΩX with
the boundary ΓX and let x=𝝋(X, t) with 𝝋 a mapping func-
tion be the position of the material point X in the deformed
configuration Ωx with the boundary Γx at time t. Under this
Lagrangian formulation, it is assumed that the Jacobian of
deformation gradient, det(Fij), is neither zero nor infinite,
where Fij = dxi/dXj.

The variational equation of motion with reference to the
current configuration is

∫Ωx

𝛿ui𝜌üidΩ + ∫Ωx

𝛿ui,j𝜎ijdΩ = ∫Ωx

𝛿uibidΩ + ∫Γh
x

𝛿uihidΓ

(178)
where ui is the displacement, 𝜌 is the density of the material,
𝜎ij is the Cauchy stress, bi is the body force, and hi is
the prescribed traction on the natural boundary Γh

x . In the
Lagrangian formulation (Chen et al., 1996, 1997, 1998; Wu
et al., 2001), the Lagrangian RK shape functions ΨX

I (X) are
constructed with similar RK procedures in (33)–(38) using
the material coordinates in the reference configuration to
yield

ΨX
I (x) = HT (𝟎)M−1(X)H(X − XI)𝜙a(X − XI) (179)

where

M(X) =
NP∑
I=1

H(X − XI)HT (X − XI)𝜙a(X − XI) (180)

The discrete reproducing conditions are imposed in the
reference configuration

NP∑
I=1

ΨX
I (X)X𝛼I = X𝛼, |𝛼| ≤ n (181)
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(a) (b)

Deformation direction

(c)

Deformation direction

Figure 19. Comparison of Lagrangian and semi-Lagrangian RK shape functions: (a) undeformed configuration, (b) Lagrangian RK in the
deformed configuration, and (c) semi-Lagrangian RK in the deformed configuration.

The Lagrangian RK function has a deformation-dependent
support size when mapped to the current configuration, as
shown in Figure 19.

For path-dependent materials, the discretization of (178)
by the Lagrangian RK approximation requires the spatial
derivatives of ΨX

I (X) as follows (Chen et al., 1996, 1997,
1998; Wu et al., 2001):

𝜕ΨX
I (X)
𝜕xi

=
𝜕ΨX

I (X)
𝜕Xj

F−1
ji (182)

The deformation gradient F is first computed by taking the
material spatial derivatives of ΨX

I (X), and F− 1 is obtained
directly by the inversion of F. The Lagrangian formulation
breaks down when the inverse of F is not available. This
may occur, for example, when extreme deformation leads to
a non-positive definite F or when material separation takes
place. Thus, a semi-Lagrangian RK formulation has been
introduced (Guan et al., 2009, 2011). It is discussed in the
following section to address this issue in modeling extreme
deformation problems.

8.2 Semi-Lagrangian reproducing kernel
approximation and discretization

In the semi-Lagrangian RK formulation (Guan et al., 2009,
2011), the nodal point xI associated with the RK shape
functions ΨI(x) follows the motion of material point, that
is, xI =𝝋(XI, t), whereas the support radius in the kernel
function is defined independent of the material deformation
as shown in Figure 19.

The semi-Lagrangian RK shape function ΨSL
I (x) is then

formulated in the current configuration as

ΨSL
I (x) = C(x; x − 𝝋(XI , t))𝜙a(x − 𝝋(XI t)) (183)

The correction function C(x; x−𝝋(XI, t))=H(x−
𝝋(XI, t))b(x) (cf. (34)) is computed based on the mate-
rial point in the current configuration, x(X, t). Similar to the

discussion in Section 2, the coefficient vector b(x) can be
determined by imposing the following discrete reproducing
condition

NP∑
I=1

ΨSL
I (x)x𝛼I = x𝛼, |𝛼| ≤ n (184)

Substituting the coefficient vector b(x) into (183) yields the
semi-Lagrangian reproducing kernel (semi-Lagrangian RK)
shape function:

ΨSL
I (x) = HT (𝟎)M−1(x)H(x − 𝝋(XI t))𝜙a(x − 𝝋(XI t))

(185)
where

M(x) =
NP∑
I=1

H(x − 𝝋(XI , t))HT (x − 𝝋(XI t))𝜙a(x − 𝝋(XI , t))

(186)
Note that the x coordinate in ΨI and M is also a function

of time. Let the velocity vi be the primary variable in (178)
and be approximated by the semi-Lagrangian RK shape
functions:

vh
i (x, t) =

NP∑
I=1

ΨSL
I (x)vIi(t) (187)

The corresponding semi-Lagrangian approximation of
acceleration is given by

üh
i (x, t) = v̇h

i (x, t) =
NP∑
I=1

(ΨSL
I (x)v̇Ii(t) +

⌣

Ψ
SL

I (x)vIi(t)) (188)

Here
⌣

Ψ
SL

I is the correction due to the time-dependent
change of the semi-Lagrangian kernel 𝜙̇a(x − xI)

⌣

Ψ
SL

I (x) = C(x; x − 𝝋(XI , t))𝜙̇a(x − 𝝋(XI , t)) (189)
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where (⋅) denotes the material time derivative and

𝜙̇a(x − 𝝋(XI , t)) = 𝜙̇a

(‖x − 𝝋(XI , t)‖
a

)
= 𝜙′a

q ⋅ (v − vI)
a

(190)
where

q = (x − 𝝋(XI , t))∕‖x − 𝝋(XI , t)‖ (191)

and || ⋅ || designates the length of a vector. Note that the
correction function in (188) is used to ensure the reproducing
condition of the time derivative of the semi-Lagrangian
kernel 𝜙̇a(x − 𝝋(XI t)) and thus the time rate change of C is
not considered.

Substituting (188) into (178) yields the following
semi-discrete equation:

Mv̇ + Nv = fext − fint (192)

where

MIJ =∫Ωx

𝜌ΨSL
I (x)ΨSL

J (x)IdΩ (193)

NIJ =∫Ωx

𝜌ΨSL
I (x)

⌣

Ψ
SL

J (x)IdΩ (194)

fext
I =∫Ωx

ΨSL
I bdΩ + ∫Γx

ΨSL
I hdΓ (195)

fint
I =∫Ωx

BT
I 𝚺dΩ (196)

Here, I denotes the identity matrix, BI is the gradient matrix
of u(i,j) associated with node I, and Σ is the stress vector
associated with the Cauchy stress 𝜎ij. The temporal stability
condition for the semi-Lagrangian RK formulation can be
found in Guan et al. (2009, 2011).

Remark 5. If a nodal integration scheme, such as direct
nodal integration, stabilized conforming nodal integra-
tion, and stabilized non-conforming nodal integration,
as discussed in Section 6, is employed in Equations
(192)–(196), the diagonal terms of N vanish and the
off-diagonal terms of N have relatively negligible influence
over (192). As such, the convective effect, Nv in (192), can
be omitted in the semi-discrete equations of motion.

8.3 Smooth contact algorithm

One of the most unique properties of the RK approxima-
tion is its ease to construct smooth approximation. More
specifically, the order of continuity is entirely independent
of the order of monomial bases in the RK approximation.

This unique property makes the RK approximation ideal for
discretization of the continuum-based contact formulation
that requires C2 continuity in the approximation of geom-
etry and displacement field. The RKPM smoothed contact
formulation (Wang et al., 2014) is particularly effective in
the Newton iteration of sliding contact.

Curves represented by RK approximations with a cubic
B-spline kernel function and various kernel support sizes
are shown in Figure 20. As illustrated in this figure, the
RK approximation can be constructed similarly to the
piecewise linear approximation when needed, by using a
support size close to the distance to the adjacent particle. As
shown in Figure 20, increasing the normalized support size
provides smoothing at kinks. An approximation using the
Gaussian function with linear basis is shown in Figure 21.
Figure 22 shows that the contact curve is well approximated
by RK shape functions constructed using a cubic B-spline
kernel function with quadratic basis and with sufficiently
large normalized support (a/h≥ 2.0). Note that very coarse
discretization is used in this curve representation.

In contact problems, linearization of the penalized varia-
tional equation that accounts for impenetration and stick–slip
conditions requires up to third-order derivatives of the
contact surface function. To ensure a continuous contact
force vector and to obtain accurate contact stiffness matrices,
a C2 contact surface representation and the displacement
approximation are required. This can be achieved by the
RK shape functions with at least C2 continuity in kernel
function, such as the cubic B-spline function. The RKPM
discretization for the continuum-based contact formulation
has been proposed in Wang et al. (2014). A deep drawing of
a sheet metal modeled by RKPM continuum-based contact
formulation is shown in Figure 23. This problem involves
a large sliding contact, and the modeling with C0 contact
surface representation fails to converge as reported (Wang
et al., 2014).

8.4 Kernel contact algorithm

In extreme deformation problems with material separation,
contact surfaces are unknown and are part of the solu-
tion. In consequence, the conventional contact algorithms,
in which all possible contact surfaces are defined a priori,
are ineffective in modeling such problems. A KC algorithm
to approximate the contact condition without relying on the
predefined contact surfaces at the pre-processing stage has
been proposed (Chi et al., 2015) to address this difficult
issue. The idea of KC emanates from the inherent prop-
erty of the semi-Lagrangian RK shape functions, where the
overlap between the kernel supports associated with parti-
cles from different bodies naturally serves as the impenetra-
tion condition; see Figure 24. By requiring the partition of
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Figure 20. RK approximation: Cubic B-spline with linear basis: (a) The approximated curves with a = 1.0, (b) the slope of the curves with
a = 1.0, (c) the approximated curves with a = 1.4, (d) the slope of the curves with a = 1.4. (Reproduced with permission from Wang et al.,
2014. © Springer, 2014.)

unity condition at all particle locations of different contacting
bodies, the overlap between the semi-Lagrangian RK shape
functions induces internal forces between particles, ensuring
the impenetrability between different bodies. A layer of the
friction-like elastoplastic material, as shown in Figure 24c,
has been introduced in the “contact processing zone” to
mimic the friction law (Chi et al., 2015).

8.4.1 A friction-like plasticity model

In the KC, a friction-like material is introduced between
contacting bodies, Ωc as shown in Figure 24(c), to mimic the
frictional contact conditions. Based on the analogy between
the Coulomb’s friction law and elastoplasticity flow rule,
the variational contact equation leads to the constitutive

equation governing the stress–strain relationship of the
friction-like material such that the Coulomb’s friction is
recovered (Chi et al., 2015):

𝛔c ⋅ n = tNn + tT (197)

where 𝜎c are the Cauchy stress in Ωc, n is the unit outward
normal of the contact surface Γc, tN is the normal compo-
nent of the contact traction, and tT is the tangential contact
traction. Equation (197) indicates that the stresses in the
friction-like material are in balance with tN and tT on Γc.

Therefore, an elasto-perfectly-plastic material, in which
the stress 𝜎c in Ωc obeys (197), can be introduced in the
contact processing zone to mimic the Coulomb’s friction law.
To obtain 𝜎c, consider the following yield function and the
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Figure 21. RK approximation: Gaussian function with linear basis: (a) The approximated curves with a = 1.0, (b) the slope of the curves
with a = 1.0. (Reproduced with permission from Wang et al., 2014. © Springer, 2014.)
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with a = 1.0. (Reproduced with permission from Wang et al., 2014. © Springer, 2014.)

Figure 23. Progressive deformation of deep drawing.
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Figure 24. Natural kernel contact algorithm by kernel interaction between contacting bodies.

associated Karush–Kuhn–Tucker conditions based on local
coordinates where 1-direction is aligned with the contact
surface normal n.

f (𝛕) = ‖𝛕‖ + 𝜇𝜎11 ≤ 0 (198)

ė = 𝛾
𝜕f

𝜕𝛕
(199)

𝛾 ≥ 0 (200)

𝛾f = 0 (201)

where 𝛕 =
[
𝜎12 𝜎13

]
, 𝜎11 ≤ 0 is the normal contact stress, ė is

the tangential strain rate, and 𝛔̂ = L𝛔LT is the Cauchy stress
tensor rotated onto the local coordinates, 2- and 3-directions
are aligned with two mutually orthogonal unit vectors, p and
q, and L= [n, p, q]T. It is also assumed that the normal
contact stress 𝜎11 is known in (198). The yield stress 𝜇|𝜎11|
mimics the friction stress induced by the normal stress 𝜎11,
and the slip condition is represented by the yield condition
in the plasticity model:

f < 0, stick condition (elastic)

f = 0, ‖𝛕‖ = −𝜇𝜎11 slip condition (plastic) (202)

This approach can be implemented by a
predictor–corrector algorithm, in which the stresses calcu-
lated based on the overlapping supports of the contacting
bodies are obtained in the predictor step, and in the corrector
step the tangential stresses are corrected according to
Equations (198)–(201) with 𝜎11 fixed. To enhance the iter-
ation convergence of the two-step approach, we introduce
the radial return algorithm where the trial is non-slip (elastic
trial) and the violation of yield function (interpenetration)
is corrected by the return mapping algorithm. Following the
radial return mapping, the corrected contact stresses 𝛔̂c in the
local coordinate induced by the friction-like elastoplasticity
model can be obtained as

𝛔̂c = 𝛔̂trial + 𝜆
⎡⎢⎢⎢⎣

0 𝜎trial
12 𝜎trial

13

𝜎trial
12 0 0

𝜎trial
13 0 0

⎤⎥⎥⎥⎦ ≡ 𝛔̂trial + 𝜆𝛏̂ (203)

where 𝛔̂trial is the Cauchy stress in the local coordinate calcu-
lated by standard stress calculation through particle interac-
tion without considering the artificial friction-like elastoplas-
ticity material and 𝜆= 0 if f(𝛕trial)< 0 and

𝜆 =
𝜇
|||𝜎trial

11
||| − ‖‖𝛕trial‖‖‖‖𝛕trial‖‖ if f (𝛕trial) ≥ 0 (204)

Finally, the corrected contact stresses in the global coordi-
nates can then be obtained by the inverse transformation:

𝛔c = LT 𝛔̂cL ≡ 𝛔trial + 𝜆𝛏 (205)

where

𝛏 = (n⊗ 𝛔trial ⋅ n + n ⋅ 𝛔trial ⊗ n) − 2tNn⊗ n (206)

Here, the orthogonality of L is applied to derive the above
relationship. Equation (205) can then be directly used in the
calculation of the contact forces described in the next section.

8.4.2 Semi-Lagrangian RK discretization and
natural kernel contact algorithms

This section describes the semi-Lagrangian-RK discretiza-
tion and the contact force calculation in the proposed
KC algorithms. Consider continuum bodies ΩA and
ΩB (Figure 24) discretized by a group of points
GA = {xI|xI ∈ΩA} and GB = {xI|xI ∈ΩB}, respectively,
with each point at xI associated with a nodal volume VI

and a kernel function 𝜙aI
(x − xI) with the support of radius

a independent of material deformation. When the two
contacting bodies ΩA and ΩB approach each other and the
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semi-Lagrangian-RK shape functions form a partition of
unity (Chi et al., 2015), the interaction between the RK
points from different bodies (Figure 24) induces stresses:

𝛔(x) =
∑

I∈NA∪NB

D(x)BI(x)dI (207)

where NA = {I|xI ∈GA}, NB = {I|xI ∈GB}, D is the material
response tensor of contacting bodies, and BI is the smoothed
gradient matrix of the shape functions constructed by SNNI
(equation (136) with non-conforming nodal domains). The

contact stresses between contacting bodies are obtained by
(207) when n ⋅𝛔 ⋅ n≤ 0 in Ωc. With the nodal integration
schemes described in Section 6, the internal force acting on
a point I can then be obtained by

fI =
∑

J∈NC
I

B
T

I (xJ)𝛔(xJ)VJ (208)

where NC
I = {J|J ∈ NA ∪ NB, 𝜙aI

(xJ − xI) ≠ 0, rIJ ⋅ 𝛔(xJ) ⋅
rIJ < 0, rIJ = (xI − xJ)∕||xI − xJ||} is the set that contains
the neighbor points under the support of point I, while
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Figure 25. Elastic ring impact: (a) Incident and reflection angles, (b) linear momentum history, and (c) energy history. (Reproduced with
permission from Chi et al., 2015. © John Wiley & Sons, 2015.)
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(Reproduced from Recent ERDC Developments in Computationally Modeling Concrete Under High Rate Events, ERDC report, 2010.)
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the contact stress between those points and point I is in
compression. The pairwise interactions due to overlap-
ping kernel functions naturally prevent the interpenetration
between different bodies. An artificial layer of material
with the friction-like dissipating mechanism in the form of
plasticity in the previous section is introduced. With the
consideration of the frictional contact effect, the summation
of the interactive forces associated with point I is corrected
as

fI =
∑

J∈NC
I

B
T

I (xJ)𝛔c(xJ)VJ =
∑

J∈NC
I

(fIJ + gIJ) (209)

where fIJ = B
T

I (xJ)𝛔trial(xJ)VJ , and gIJ = B
T

I (xJ)𝜆𝛏(xJ)VJ .
One remaining issue to implement the KC algorithm in

the semi-Lagrangian formulation is to determine the contact
surface and surface normal from a purely point-based
discretization. A level set based method, where the level set
function was chosen as the interpolant of material ID using
semi-Lagrangian RK, was introduced to obtain the contact
surface and surface normal under the KC contact framework
(refer to Chi et al. (2015) for details).

A dynamic impact of an elastic ring on a rigid surface
is modeled by the KC algorithm with frictionless condition
(Chi et al., 2015). The comparison of the incident and reflec-
tion angles, the linear momentum, and total energy histories
shown in Figure 25 demonstrate the accuracy and effective-
ness of the RKPM KC algorithm.

KC is particularly effective for impact problems involving
material separation where evolutionary contact surfaces are
part of the solution. Semi-Lagrangian RKPM is also well
suited for this class of problems since damage and fragmenta-
tion are naturally captured without treatments such as erosion
that are necessary in the finite element method. Consider
the penetration of a nominally 2-inch. thick CorTuf concrete
(Williams et al., 2009) panel by a 4340 steel fragment simu-
lating projectile modeled using the semi-Lagrangian formu-
lation with KC (Chi et al., 2015) and the nodal integration
NSNI (Hillman and Chen, 2016) described in Section 6.
Further details of the experiment can be found in Daniel
and Danielson (2010). The simulation results are shown in
Figure 23, where it is seen that agreement is achieved with
the experimental hole and crater dimensions as well as the
experimental exit velocity (Figure 26).

9 RELATED CHAPTERS

(See also Adaptive Wavelet Techniques in Numerical
Simulation, Meshfree Methods, Particle Methods in
Computational Fluid Dynamics)
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