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Abstract For a truly meshfree technique, Galerkin meshfree methods rely chiefly
on nodal integration of the weak form. In the case of Strong Form Collocation
meshfree methods, direct collocation at the nodes can be employed. In this paper,
performance of these node-based Galerkin and collocation meshfree methods is
compared in terms of accuracy, efficiency, and stability. Considering both accuracy
and efficiency, the overall effectiveness in terms of CPU time versus error is also
assessed. Based on the numerical experiments, nodally integrated Galerkin mesh-
free methods with smoothed gradients and variationally consistent integration yield
the most effective solution technique, while direct collocation of the strong form at
nodal locations has comparable effectiveness.

1 Introduction

There are several attractive features of both Galerkin- and Strong Form
Collocation-based meshfree methods, each with their own drawbacks as well. In
Galerkin-based methods, their implementation is similar to the finite element
method (FEM). They have been shown to be effective for solving problems which
are difficult for traditional FEMs [1–5], provide straight-forward h-adaptivity [6, 7],
arbitrary order of smoothness, among many other unique properties that can be
leveraged in solving PDEs [8]. On the other hand, special techniques are required to
obtain optimal convergence without the employment of high-order quadrature [9].
If nodal integration is used, stabilization must also be employed [10]. Essential
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boundary conditions also need special treatment as well since meshfree methods do
not in general possess the Kronecker delta property [11].

Nodal integration has been employed for quadrature in Galerkin meshfree
methods for several reasons. Foremost, it maintains the meshfree characteristic of the
method as opposed to using background meshes for integration. It also offers sim-
plicity, efficiency, and ease of implementation. As such, the properties of solutions
obtained by the Galerkin method with nodal integration have been thoroughly
examined, and it is now well known that poor convergence and solution instability
can be encountered when left untreated [9, 12–14]. The poor convergence is
attributed to the inaccuracy in integrating the weak form [15], while the instability is
due to the choice of quadrature locations which yield zero strain energy associated
with sawtooth modes [10]. Several nodal integration methods have been developed
to circumvent either of these problems, or both [12–14, 16–19]. Many methods are
available which circumvent the stability issue such as residual-based methods
[12, 13], stress points [10, 20, 21], Taylor expansion of strains [19, 22, 23],
gradient-based approaches [24], or strain smoothing with divergence operation of
the averaged integral [14]. The strain smoothing method can achieve both optimal
convergence and solution stability. This technique was based on satisfaction of the
so-called integration constraint [14], which was later generalized to the variational
consistency conditions [9]. A method has been developed to satisfy these conditions
by employing a Petrov-Galerkin formulation [9]. Recently, a two-level smoothing
technique was developed to satisfy the quadratic constraints [25]. Several strategies
exist to address other issues with domain integration, but are beyond the scope of
discussion in this chapter.

The strong-form based collocation meshfree methods [26–28] are generally very
simple to implement. They do not suffer from quadrature issues, nor do they require
special techniques for enforcement of essential boundary conditions other than
applying weights for optimal accuracy in the solution [29]. They also offer several
of the attractive features of their Galerkin counterpart such as straightforward
adaptive refinement. To the authors’ knowledge, they do not suffer from spatial
instability when nodal locations are employed as collocation points.

In the linearization of second order PDEs however, the implementation of col-
location methods is not as straightforward as the Galerkin technique, since it
requires third order derivatives of the approximation functions, which also increases
computational cost. While collocation circumvents quadrature issues, a sufficient
number of collocation points is still required for optimal convergence [28, 30]. The
solution of second order PDEs in general requires second order derivatives which is
not a negligible cost in local meshfree approximations such as the reproducing
kernel [28], and quadratic accuracy is also required for convergence [28]. It should
be noted that the former issue can be overcome by the employment of implicit
gradient approximations [31].

Considering the benefits of each method along with their associated costs, a
tradeoff exists and warrants examination. In this work, focus is on the class of
nodally collocated strong form and nodally integrated weak form based meshfree
methods. These two methods are of interest in that they both offer truly meshfree
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solutions to PDEs. The Galerkin version requires quadrature treatment, so varia-
tionally consistent integration is employed. The tradeoff between efficiency and
accuracy is examined, as well as the stability of the numerical solution. To present a
unified analysis, we focus on the reproducing kernel approximation as a basis for
these two methods.

This chapter is organized as follows. Section 2 gives an overview of the con-
struction of the reproducing kernel approximation. A model problem and discussion
of the solution by Strong Form Collocation and the Galerkin method are presented
in Sect. 3, and techniques employed to obtain stable and convergent solutions in
nodal integration of the Galerkin method are also given. Section 4 presents several
numerical examples, and compares the convergence rates, effectiveness (CPU time
versus error), and stability of the two methods. The several conclusions that can be
drawn from the study are given in Sect. 5.

2 Reproducing Kernel Approximation

Let a domain Ω=Ω∪ ∂Ω be discretized by a set of NP nodes N =
x1, ⋯, xNP jxI ∈Ω

� �
with corresponding node numbers Z = fIjxI ∈Ng. The

nth order reproducing kernel (RK) approximation uhðxÞ of a function uðxÞ is [1, 32]:

uh(x) = ∑
I ∈Z

Ψ ½n�
I (x)uI ð1Þ

where fΨ ½n�
I (xÞgI ∈Z is the set of RK shape functions, and fuIgI ∈Z are the asso-

ciated coefficients. The shape functions Ψ ½n�
I (x) are constructed by the product of a

kernel function Φa(x− xI) and a correction function C½n�(x; x− xI):

Ψ ½n�
I (x) =Φa(x− xI)C½n�(x; x− xI) ð2Þ

where

C½n�ðx; x− xIÞ= fH½n�ðx− xIÞgTb½n�ðxÞ. ð3Þ

In the above, b½n�(x) and H½n�(x− xI) are column vectors of coefficients and nth
order complete monomials, respectively. For example, for quadratic basis (n=2) in
two dimensions we have

b½n�(x) = b00ðxÞ b10ðxÞ b01ðxÞ b20 ðxÞb11ðxÞ b02ðxÞ½ �T,
H½n�(x− xI) = 1 x y x2 xy y2

� �T. ð4Þ
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The kernel function Φa(x− xI) has compact support with measure a, and the
smoothness of the kernel is inherited by the approximation. For example, a kernel
with C2 continuity gives C2 continuity of the approximation.

The coefficients b½n�(x) are determined by enforcing the following reproducing
conditions [3]:

∑
I ∈Z

H½n�(xI )Ψ
½n�
I (x) =H½n�(x). ð5Þ

With b½n�(x) obtained from (5), the RK shape functions are constructed as

Ψ ½n�
I (x) =H½n�(0)TfM½n�(x)g− 1H½n�(x− xI)Φa(x− xI ), ð6Þ

M½n�(x) = ∑
I ∈Z

H½n�(x− xIÞfH½n�gT(x− xI )Φa(x− xI), ð7Þ

where M½n�(x) is termed the moment matrix. The reproducing conditions (5) are met
provided the moment matrix is invertible, which requires a sufficient number of
nodes with non-zero cover over x that are not co-linear (in 2D), or co-planar (in
3-D) [33].

3 Solution to Boundary Value Problems by Galerkin
and Strong Form Collocation Methods

3.1 Model Problem

Poisson’s equation is considered for evaluating the relative performance of mesh-
free Galerkin and Strong Form Collocation methods for the approximate solution of
boundary value problems:

∇2u+ s=0 in Ω
∇u ⋅ n= h on ∂Ωh

u= g on ∂Ωg

ð8Þ

where s, h and g are given values on the domain Ω, the natural boundary ∂Ωh, and
essential boundary ∂Ωg, respectively, with ∂Ωh ∩ ∂Ωg =∅ and ∂Ωh ∪ ∂Ωg = ∂Ω.
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3.2 Solutions Using the Strong Form Collocation Method

The basic approach of the Strong Form Collocation method is to approximate the
solution of a boundary value problem by a finite dimensional space and strongly
enforce zero residual of the PDE and boundary conditions at a number of points
(called collocation points) in the domain and on the boundary of the domain.

Let the set of nodes N be decomposed into the sets N d = fxI jxI ∈Ω,
N h = fxI jxI ∈ ∂Ωhg, and N g = fxI jxI ∈ ∂Ωgg, with point numbers
Zh = fIjxI ∈N hg, Zg = fIjxI ∈N gg, and Zd = fIjxI ∈N dg, respectively. The
enforcement of (8) at the set of nodes N using (1) as an approximation of u yields:

∑
I ∈Z

∇2Ψ IðxLÞuI = − sðxLÞ, L∈Zd,

∑
I ∈Z

∇Ψ IðxLÞuI ∙ nðxLÞ= hðxLÞ, L∈Zh,

∑
I ∈Z

Ψ IðxLÞuI = gðxLÞ, L∈Zg.

ð9Þ

Figure 1 shows an example of the three sets of collocation points for the con-
ditions in (9).

For implementation, a matrix version of (9) can be written as

Au = b

A = Ad, Ah, Ag
� �T

b = bd, bh, bg
� �T

ð10Þ

Fig. 1 Sets of collocation points for nodal collocation
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where

Ad½ �IJ =∇2Ψ JðxIÞ, bd½ �I = sðxIÞ, I⊂Zd,
Ah½ �IJ =∇Ψ JðxIÞ ∙ nðxIÞ, bh½ �I = hðxIÞ, I⊂Zh,
Ag
� �

IJ =Ψ JðxIÞ, bg
� �

I = gðxIÞ, I⊂Zg.
ð11Þ

The nodes used in the approximation of uhðxLÞ are termed source points.
Typically, more collocation points are chosen than source points, and least-square
methods are employed to solve the over-determined system. However, when the
solution is collocated at the nodes themselves such as in (9), the number of col-
location points and source points are equal and the system can be solved directly.

3.3 Solutions Using the Galerkin Method with Nodal
Integration

The Galerkin method is based on solving the weak form of (8), which asks to find
u∈U such that for all v∈V the following holds:

a(v, u) =L(v) ð12Þ

where U = fuju∈H1(Ω), u= g on ∂Ωgg, V = fvjv∈H1(Ω), v=0 on ∂Ωgg, and the
bilinear and linear forms in (12) are

a(v, u)≡
Z
Ω

∇v(x) ∙ ∇u(xÞdΩ

LðvÞ= (v, s)Ω + (v, h)∂Ωh
≡

Z
Ω

v(x)s(xÞdΓ+
Z
∂Ωh

v(x)h(xÞdΓ.
ð13Þ

The Galerkin method introduces finite dimensional approximations Uh⊂U,
and Vh⊂V , and seeks uh ∈Uh for all vh ∈Vh such that

aðvh, uhÞ=LðvhÞ. ð14Þ

Utilizing the RK approximation (1) for uh and vh:

uh(x) = ∑
I ∈Z

Ψ ½n�
I (x)uI ,

vh(x) = ∑
I ∈Z

Ψ ½n�
I (x)vI ,

ð15Þ
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and the arbitrariness of fvIgI ∈Z , the matrix form of (14) is

Ku= f ð16Þ

where u is the column vector of coefficients fuIgI ∈Z , and K and f are the stiffness
matrix and force column vector defined as

K =
Z
Ω

BT(x)B(x)dΩ

f = fs + fh ≡
Z
Ω

NT(x)s(xÞdΓ +
Z
∂Ωh

NT(x)h(xÞdΓ
ð17Þ

where

B(x) =

Ψ 1, 1(x) Ψ 2, 1(x) . . . ΨNP, 1(x)
⋮

Ψ 1, d(x) Ψ 2, d(x) . . . ΨNP, d(x)

264
375,

N(x) = ½Ψ 1ðxÞ Ψ 2ðxÞ . . . ΨNP
(x) �,

ð18Þ

and ð ⋅ Þ, i ≡ ∂ð ⋅ Þ ̸∂xi.
Domain integration performed using the nodes as integration points is shown in

Fig. 2a, where integration points coincide with the nodes has been termed direct
nodal integration (DNI) in the literature. The nodal integration of the Galerkin
equation (16) yields a stiffness matrix and force vector evaluated as

K= ∑
L∈Z

BTðxLÞBðxLÞWL

f = ∑
L∈Z

NTðxLÞsðxLÞWL + ∑
L∈Q

NTðxLÞhðxLÞSL
ð19Þ

where fWLgL∈Z are nodal quadrature weights, Q is the set of indices of quadrature
points on the natural boundary, and fSLgL∈Q is the set of associated quadrature
weights.

Fig. 2 Integration methods for (a) direct nodal integration, (b) SCNI integration, and (c) SNNI
integration
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This method does not attain optimal convergence rates in most situations due to
the inherent low-order quadrature of this scheme. In addition, the choice of nodes as
integration points severely underestimates the strain energy of low energy modes
and the solution is subject to rank instability. Because of this, stabilized and cor-
rected methods are usually employed with nodal integration.

To improve the accuracy of nodal integration, the work in [14] derived the
following requirement on the approximation space and numerical integration at
hand to attain linear exactness (passing the linear patch test) in the Galerkin solution
of second order PDEs:

Z∧
ΩL

∇Ψ IðxÞdΩ=
Z∧
∂ΩL

Ψ IðxÞnðxÞdΓ ∀I ð20Þ

where “^” denotes numerical integration and fΨ I(xÞgI ∈Z are shape functions with
linear completeness. A stabilized conforming nodal integration (SCNI) has been
proposed [14] which employs a smoothed gradient ∇̃ of the RK approximation (1),
calculated in each nodal representative domain ΩL by

∇̃uhðxLÞ=
1
WL

Z
ΩL

∇uhðxÞdΩ=
1
WL

Z
∂ΩL

uhðxÞnðxÞdΓ ð21Þ

where WL = jΩLj. The nodal domains partition the total domain in a conforming
fashion, as shown in Fig. 2b, which yields a method that satisfies (20). Because of
the fact first order derivatives are not directly evaluated at the nodes, the zero
energy modes in direct nodal integration do not appear in the solution by SCNI,
thus addressing both issues with direct nodal integration. When linear bases are
employed in (21), the method attains the optimal convergence rate consistent with
the linear completeness in the approximation.

Employing the smoothed gradients in (21), the SCNI method can be phrased as

eKu= f ð22Þ

where

eK= ∑
L∈Z

B̃TðxLÞB̃ðxLÞWL,

B̃(xL) =
b1̃1(xL) b2̃1(xL) . . . bÑPx(xL)

⋮
b1̃d(xL) b2̃d(xL) . . . bÑPd(xL)

264
375, bĨi(xL) =

1
WL

Z
∂ΩL

Ψ IðxÞniðxÞdΓ.

ð23Þ
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A stabilized non-conforming nodal integration (SNNI) has also been proposed
[24] where the smoothing domains do not conform:

∇̃uhðxLÞ= 1
WL

Z
ΩL

∇uhðxÞdΩ=
1
WL

Z
∂ΩL

uhðxÞnðxÞdΓ ð24Þ

where ΩL is a non-conforming smoothing domain, and WL = jΩLj. The set of nodal
domains can be constructed by using boxes for example, as shown in Fig. 2c. This
method fails to pass the patch test because of the simplification, but can be cor-
rected with the methods discussed below.

Recently, the conditions in (20) were extended to nth order constraints, with the
general framework termed variational consistency [9]. Assuming nth order com-
pleteness of the trial functions, the divergence criteria in (20) can be cast in a more
general fashion that reduces to the integration constraints for linear solutions:

Z∧
Ω

bΨ ½n�
I, i(xÞfH½n− 1�gT(xÞdΩ=

Z∧
∂Ω

bΨ ½n�
I (x)H½n− 1�(x)ni(xÞdΓ−

Z∧
Ω

bΨ ½n�
I (x)H½n− 1�

, i (xÞdΩ ∀I

ð25Þ

where fbΨ ½n�
I (xÞgI ∈Z are shape functions associated with the test function space. The

reduction in the order of complete monomials to n− 1 that appear in the above
equation is a result of solving the weak form of a second order PDE with integration
by parts.

Leveraging the fact that nth order completeness by the trial space and satis-
faction of the nth order integration constraints (25) by the test space are needed to
satisfy nth order variational consistency, a Petrov-Galerkin method can be
employed where test and trial functions are constructed to play different roles in the
Galerkin solution of PDEs. In [9], an assumed test function gradient was introduced
in order to satisfy the variational consistency conditions:

uh, i(x) = ∑
NP

I =1
Ψ ½n�

I, i(x)uI ,

vh, i(x) = ∑
NP

I =1

bΨ ½n�
I, iðxÞvI .

ð26Þ

The test function gradient can be constructed using the trial shape functions with
an additional set of bases H½n− 1�ðxÞ with constant coefficients ξIi [9]:

bΨ ½n�
I, iðxÞ=Ψ ½n�

I, iðxÞ+H½n− 1�ðxÞξIiΘIðxÞ ð27Þ
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where

ΘIðxÞ= 1 if x ∈ suppðΨ ½n�
I ðxÞÞ

0 if x∉ suppðΨ ½n�
I ðxÞÞ

(
. ð28Þ

Inserting the test functions (27) into (25) yields the linear systems of equations

AIξ1I = rI1
⋮
AIξId = rId

ð29Þ

where

AI =
Z∧
Ω

H½n− 1�ðxÞfH½n− 1�gTðxÞΘI x− xIð ÞdΩ,

rIi =
Z∧
∂Ω

Ψ ½n�
I ðxÞH½n− 1�ðxÞniðxÞdΓ−

Z∧
Ω

Ψ ½n�
I ðxÞH½n− 1�

, i ðxÞdΩ

−
Z∧
Ω

Ψ ½n�
I, iðxÞfH½n− 1�gTðxÞdΩ.

ð30Þ

The type of numerical integration is unspecified, and the framework allows
construction of test functions variationally consistent with, for example, direct
nodal integration, SCNI (for higher order exactness) and SNNI.

The nodal integration of the weak form with variationally consistent integration
can be written as:

bKu= f ð31Þ

where

bK= ∑
L∈Z

bBTðxLÞBðxLÞWL,

bB(xL) = bΨ ½n�
1, 1(xL) bΨ ½n�

2, 1(xL) . . . bΨ ½n�
NP, 1(xL)

⋮ ⋮bΨ ½n�
1, d(xL) bΨ ½n�

2, d(xL) . . . bΨ ½n�
NP, d(xL)

264
375. ð32Þ
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4 Numerical Examples

In this section the relative performance of the meshfree Galerkin and Strong Form
Collocation methods discussed in Sect. 3 is examined numerically. The minimum
order of approximation required for convergence is employed for each method: for
Galerkin methods the minimum is linear, while for Strong Form Collocation the
order is quadratic [28]. The studies show that due to the reduced performance of
Strong Form Collocation under collocation at nodes (versus using more collocation
points), and the superconvergence observed in the gradient smoothing Galerkin
methods, both are competitive in terms of rates of convergence and accuracy and
yield a “fare” comparison. In Galerkin methods, the uniformity of the domain
influences the solution accuracy and rate of convergence, so both cases of uniform
and non-uniform discretizations are tested. The nodal integration methods in
Sect. 3.3 are employed for the Galerkin method, while direct collocation at the nodes
is employed for collocation of the strong form as described in Sect. 3.2. Table 1
summarizes the nomenclature and abbreviations used in the numerical examples.

4.1 Performance of Galerkin and Collocation Methods:
Uniform Discretization

Consider the Poisson equation (8) with Ω: ð− 1, 1Þ× ð− 1, 1Þ, ∂Ωg = ∂Ω and the
prescribed conditions s= sinðπxÞ sinðπyÞ and g=0. The exact solution of this
problem is

u= −
1
2π2

sinðπxÞ sinðπyÞ. ð33Þ

The problem is solved using linear RK approximations in the Galerkin method
and quadratic RK approximations in the Strong Form Collocation method, with
cubic B-spline kernels employed with normalized dilations of 1.75 and 2.75,

Table 1 Method nomenclature used in numerical examples

Formulation Method Abbreviation
Standard Variationally

consistent

Galerkin weak
form

Direct nodal integration DNI VC-DNI
Stabilized conforming nodal
integration

SCNI SCNI (no correction
needed)

Stabilized non-conforming nodal
integration

SNNI VC-SNNI

Strong Form
Collocation

Direct collocation DC DC (passes patch
test)
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respectively. The domain is discretized uniformly by 36, 121, 441, and 1681 nodes
for a convergence study.

The methods discussed in Sect. 3 are employed for the solution of the problem.
However, in uniform discretizations the VC methods perform just as well as the
non-corrected counterparts in most situations [9], so only the latter are considered in
this example. Figure 3 shows the error plotted against the nodal spacing h for each
of the methods. It can be seen that all Galerkin methods yield optimal convergence
rates of 2.0 in the L2 norm and 1.0 in the H1 semi-norm, with the gradient
smoothing methods SCNI and SNNI achieving superconvergent rates in deriva-
tives. The direct collocation (DC) in the Strong Form Collocation method exhibits
rates in the L2 norm lower than optimal of 3.0 for the quadratic basis employed.
This can be attributed to the low accuracy of using very few collocation points
which can be explained by the equivalent least-squares residual of the Strong Form
Collocation method [29]. Because of these two observed trends, the rates of con-
vergence in nodal integration of the Galerkin method with linear basis and collo-
cation of the strong form at nodes with quadratic basis seem comparable.

Now comparing the Galerkin methods and the Strong Form Collocation methods
in terms of effectiveness (CPU time versus error), it can be seen in Fig. 4 that the
Galerkin methods are the most effective in the L2 norm, although for the solution
derivatives, DC and SNNI perform similarly while others are less effective, with
DNI the least effective. Overall, considering both norms, the Galerkin method with
SCNI and SNNI are the most effective methods in uniform discretizations, with
collation using DC a close competitor.
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Fig. 3 Convergence of nodal Galerkin method with linear bases (SCNI, SNNI, DNI) and Strong
Form Collocation with quadratic bases with direct collocation (DC) under a uniform discretization
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4.2 Performance of Galerkin and Collocation Methods:
Non-uniform Discretization

The solutions by meshfree Galerkin methods are particularly sensitive to the uni-
formity of the discretization. Thus, to truly evaluate the performance of the methods
discussed, non-uniform discretizations must also be considered in a convergence
study. The boundary value problem and discretization described in the previous
example are again employed, except the non-uniform node distributions shown in
Fig. 5 are used in place of the uniform discretizations.

As expected, the convergence rates of the VC methods are far superior to their
un-corrected counterparts, yielding optimal rates as shown in Fig. 6. Comparing
Figs. 3 and 6, it can be seen that the solution by direct collocation at nodes for
Strong Form is not severely affected by the uniformity of the discretization, with
only slightly lower rates obtained in both norms. As a result of the lower rate of
convergence in DC for Strong Form Collocation with quadratic bases and super-
convergence in VC Galerkin Methods with linear bases occurring in this example
as well, the rates are again comparable as in the case of uniform discretizations.

When comparing the effectiveness of the methods in terms of error and CPU
time, it can be seen in Fig. 7 that the Galerkin VC methods and the Strong
Form DC method have similar effectiveness in the L2 norm. However, due to the
lower accuracy in derivatives in VC-DNI, only SCNI, VC-SNNI and DC have
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Fig. 4 Relative performances of nodal Galerkin and collocation methods under uniform
discretizations

Fig. 5 Refinements for convergence test in non-uniform discretizations
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comparable effectiveness in the H1 semi-norm. The similarity in the performance of
these three methods is notable considering the vastly different approaches,
including (expensive) higher order derivatives, higher order bases and thus also
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Fig. 6 Convergence of nodal Galerkin method with linear bases (SCNI, SNNI, DNI) and Strong
Form Collocation with quadratic bases with direct collocation (DC) under non-uniform
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Fig. 8 Derivatives of exact solution
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Fig. 9 Solution derivatives obtained by node-based Galerkin and collocation methods
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Fig. 9 (continued)
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larger dilations employed for Strong Form Collocation. Finally, comparing Figs. 4
and 7, it can be seen that SCNI and VC-SNNI perform the best across both norms
of error and both types of discretization, with DC a close competitor.

4.3 Stability of Node-Based Galerkin and Collocation
Methods

To assess the stability of the methods, we examine the solution derivatives for the
last refinement in the previous example. For reference, the derivatives of the exact
solution (33) are shown in Fig. 8.

The solution derivatives are shown in Fig. 9 for all the methods considered
herein. Several conclusions can be drawn from the Figures. First, it can be seen that
the VC correction remarkably stabilizes the solution of the nodally integrated
Galerkin method, which has been observed in other contexts as well [17]. However,
it is apparent that unstable modes exist in direct nodal integration, which could
explain the poorer rates of convergence and poorer levels of error versus the other
nodally integrated Galerkin methods. It can also be seen that the VC correction is
sufficient to stabilize SNNI, which could explain its apparently good performance in
terms of convergence rates and error, yielding solutions similar to SCNI. Finally,
the only stable nodally integrated Galerkin methods tested are VC-SNNI and SCNI,
while the DC Strong Form Collocation method also gives a stable solution.

5 Conclusions

Several nodal integrations for Galerkin meshfree methods were tested against the
purely node-based Strong Form Collocation method. The variationally consistent
integration for Galerkin methods yielded optimal convergence rates associated with
the linear approximations employed as expected, correcting their counterparts’
deficiencies in convergence. However for direct nodal integration, even with the
variationally consistent correction, the error in several cases was larger than all
other methods indicating it is not a “competitive” method for nodal integration, at
least without additional treatment for the stabilization which was not investigated
here. In the case of the smoothed gradient VC methods (SCNI, VC-SNNI),
superconvergent rates above those associated with linear bases were observed in the
numerical examples. For the Strong Form Collocation method with collocation at
nodes and quadratic basis, suboptimal convergence rates were observed. As a
result, the convergence rates of the direct collocation method for Strong Form with
quadratic bases and the smoothed, variationally consistent nodally integrated
Galerkin methods with linear bases were similar in all examples. On the other hand,
the error was in general always lower for the direct collocation method in the Strong
Form method.
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In terms of effectiveness, the first conclusion that can be drawn is that VC
Galerkin methods are always more effective in the general setting when considering
the possibility of non-uniform discretizations. Direct nodal integration for the
Galerkin method in general performed more poorly than other methods even with a
correction for variational consistency, and again can be considered not “competi-
tive” with the other methods tested. Despite yielding lower error, the Strong Form
with direct collocation did not always perform as well as the Galerkin method with
SNNI and SCNI in terms of efficiency in uniform discretizations. In the case of
non-uniform discretizations, Galerkin methods with VC-SNNI and SCNI per-
formed closely to direct collocation of the strong form at nodes. Considering both
uniform and non-uniform discretizations, VC-SNNI and SCNI seem to be the most
effective methods tested. That is, for a given level of error, they yield the least CPU
time, and for a given CPU time, these methods will yield the least amount of error.

The stability of the solutions obtained by the Galerkin and Strong Form Col-
location method was also investigated. First, variationally consistent integration
corrected instabilities observed in DNI and SNNI. It could not however, completely
remove the unstable modes in DNI, which is possibly why it was not competitive
compared to other methods as the error in the derivatives was large due to the
instability. Comparison of stabilized direct nodal integration, such as naturally
stabilized nodal integration [19] was beyond the scope of this study but warrants
investigation, particularly since SCNI and SNNI also require additional treatments
to remain stable in certain special situations. As a result of the stabilizing effect of
the VC corrections, VC-SNNI yielded stable solutions, and SCNI and VC-SNNI
were the only Galerkin methods that did not exhibit instability.

Direct collocation of the strong form also did not yield an instability. It would
appear that in contrast to Galerkin methods, collocation methods do not suffer from
instability when evaluating the 2nd order derivatives at nodal locations, and do not
require special treatment in this case.

Overall, the numerical examples showed that the smoothed gradient, variation-
ally consistent nodal integration for the Galerkin method performed very similar to
direct collocation of the strong form at the nodes. Both yielded similar rates of
convergence and effectiveness, and all three methods did not show instability in the
numerical solution. However, direct collocation in some cases was not as effective,
and therefore, although all competitive, the smoothed Galerkin methods with
variational consistency yielded the most effective solution techniques.

There is also a striking similarity between the behavior of variationally consistent
smoothed gradient Galerkin methods, SCNI and VC-SNNI. However, as a
non-conforming method, VC-SNNI has the advantage of dispensing of conforming
cells which has several implications, such as using VC-SNNI for ease of imple-
mentation, or for solving extremely large deformation problems where
non-conforming smoothing is more effective. On the other hand, SCNI has the
advantage of yielding a symmetric system of equations, and this feature can also be
leveraged in the choice of solver. Future work will investigate the effectiveness of
other stabilized nodal integrations, as well as background collocation and background
integration, comparing them to the methods discussed in this work.
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