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Abstract
State-based peridynamics is a non-local reformulation of solid mechanics that replaces the force density of the divergence

of stress with an integral of the action of force states on bonds local to a given position, which precludes differentiation

with the aim to model strong discontinuities effortlessly. A popular implementation is a meshfree formulation where the

integral is discretized by quadrature points, which results in a series of unknowns at the points under the strong-form

collocation framework. In this work, the meshfree discretization of state-based peridynamics under the correspondence

principle is examined and compared to traditional meshfree methods based on the classical local formulation of solid

mechanics. It is first shown that the way in which the peridynamic formulation approximates differentiation can be unified

with the implicit gradient approximation, and this is termed the reproducing kernel peridynamic approximation. This

allows the construction of non-local deformation gradients with arbitrary-order accuracy, as well as non-local approxi-

mations of higher-order derivatives. A high-order accurate non-local divergence of stress is then proposed to replace the

force density in the original state-based peridynamics, in order to obtain global arbitrary-order accuracy in the numerical

solution. These two operators used in conjunction with one another is termed the reproducing kernel peridynamic method.

The strong-form collocation version of the method is tested against benchmark solutions to examine and verify the high-

order accuracy and convergence properties of the method. The method is shown to exhibit superconvergent behavior in the

nodal collocation setting.
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1 Introduction

Meshfree methods for continuum mechanics can generally

be cast under two formulations: Galerkin meshfree meth-

ods and collocation meshfree methods [1]. Among these,

the governing equations solved under these frameworks

can also be different. On one branch, there are meshfree

discretizations of the classical local model, namely the

differential equation for linear momentum. Using the

Galerkin formulation with a meshfree discretization of this

equation results in methods such as the diffuse element

method [2], the element free Galerkin method [3], the

reproducing kernel particle method [4, 5], and the many

methods that ensued thereafter [6–13]. On the other hand,

due to the global smoothness that can easily be attained

with meshfree approximations, collocation of the strong

form is straightforward, and several methods using this

technique have been proposed starting with radial basis

functions [14, 15], and later with the reproducing kernel

and moving least squares approximations [16–18], among

others.

Recently, a non-local reformulation of continuum

mechanics has been proposed [19, 20] called peridynamics,

in order to circumvent difficulties in treating discontinuities

in the local models, first under a bond-based framework

[19], and later under the so-called state-based framework
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[20]. This theory replaces the differentiation in classical

continuum mechanics, i.e., the force density of the diver-

gence of stress, with an integral of the actions of bonds to a

given position, and admits discontinuities by precluding

derivatives in the governing equations. In addition, the

action is considered over a finite distance, embedding a

length scale in the governing equations, resulting in a

formulation which is non-local in nature. While the peri-

dynamic equations can be solved under the Galerkin for-

mulation [21, 22], this approach requires evaluation of a

double (six-dimensional) integral [23], which results in

considerable computational expense. Therefore, for prac-

tical applications, the strong form version is often

employed. Due to the simplicity of its implementation and

relatively low-computational cost, the peridynamic strong

form equations are generally solved by a node-based

meshfree approach [24], which is based on nodal colloca-

tion and nodal discretization of the integral terms in the

peridynamic equations. In this meshfree approach, the

unknowns are therefore associated with the nodal points,

which are both collocation and quadrature points, similar to

smoothed particle hydrodynamics [25, 26]. In this paper,

discussions are focused on the collocation meshfree

implementation of the state-based version under the cor-

respondence principle [20], which constructs a non-local

deformation gradient to facilitate the use of classical con-

stitutive models, and is most closely related to meshfree

discretizations of local models as first shown in [27] for

uniform discretizations and infinite domains. In particular,

the main focus of this study is the accuracy and conver-

gence properties of the state-based peridynamic method,

and enhancement thereof.

Theoretical analysis of the accuracy and convergence of

local meshfree methods is well established, for instance see

[28–31] for Galerkin analysis, and [18, 32–35] for collo-

cation analysis. Sufficiently smooth problems solved with

monomial basis vectors exhibit algebraic convergence in

both strong formulations [35], and weak formulations [29],

while global approximations such as radial basis show

exponential convergence [33]. In particular, Galerkin

meshfree methods with nth monomial completeness exhibit

a rate of n ? 1 in the displacement solution. On the other

hand, meshfree collocation approaches exhibit a rate of

n ? 1 for a least-squares formulation using more colloca-

tion points than source points (approximation functions)

[18], while using an equal number of source and colloca-

tion points exhibits an odd–even phenomenon where the

rate of n is obtained for even orders, and n - 1 for odd

orders [17, 36–38], which has also been observed in iso-

geometric collocation [39, 40]. A recently developed

recursive gradient formulation [37] has been developed

that exhibits superconvergence, that is, rates of n and

n ? 1 for even and odd orders of approximations,

respectively. Notably this allows linear basis to converge in

collocation analysis, in contrast to direct gradients [18].

Finally, it should be noted that the accuracy of numerical

integration in the weak-form based versions can heavily

influence theoretical rates [41], although several approa-

ches are available to rectify this situation (the interested

reader is referred to [1] and references therein for details).

For peridynamics, the concept of convergence can be

understood in several ways; see [42, 43] for details: (1) N-

convergence, when the non-locality of the continuous

peridynamic problem is kept fixed while the discretization

is refined (convergence to the non-local continuum solu-

tion); (2) d-convergence, when the nonlocality is reduced

for a fixed discretization (convergence to the discrete local

solution); or (3) N–d convergence, when both discretization
and nonlocality approach the vanishing limit simultane-

ously (convergence to the continuum local solution). In this

work, the third type of convergence is studied. It has been

noted that this type of convergence is linked to the concept

of asymptotic compatibility, with discretizations being

asymptotically compatible if they converge to the correct

local model and solution associated with the nonlocal

model [43, 44].

The accuracy and convergence properties of state-based

peridynamics has been studied in several works. Material

models play an important role in convergence study of

peridynamics since the results using different models

converge to different solutions [45]. In [45], three different

material models were tested to attempt to reproduce the

solution of static linear elasticity. Among these, only the

deformation gradient-based model [20] gave a convergent

solution to all problems tested, with a first-order conver-

gence rate in the L2 error norm.

The effect of numerical integration in the non-local

integrals has also been a focus in studies, as it may also

have a strong effect on convergence in peridynamics

[46–50]. In the first meshfree implementation of peridy-

namics [24], the peridynamic equation of motion was

discretized by nodal integration with the full physical nodal

volume as the integration weight, resulting in the so-called

full volume (FV) integration. The FV integration shows

erratic convergence behavior, both converging and

diverging with refinement [46, 51]. Several studies suggest

this issue is due to rough approximation of the integration

weights near the edges of the integration domains in the

peridynamic equations [46–49]. So-called partial volume

(PV) integration schemes have been proposed, including

approximate PV [47, 48] and analytical PV [49], to more

accurately compute the partial volumes intersecting with

neighborhoods that serve as integration weights for parti-

cles. Partial volume schemes have been shown to improve

the accuracy and yield more consistent convergence rates

compared with the FV integration [46]. Influence functions
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that smoothly decay to zero at the boundary of the horizon

have also been investigated under the FV integration

framework, and it has been shown that this enhances the

accuracy and can also give more consistent convergence

behavior [46]. The idea behind smoothly decaying influ-

ence functions is to reduce the influence of the particles

near the neighborhood boundary, mitigating the error due

to numerical integration. These techniques exhibit first-

order convergence in displacements [46]. The limitation of

first-order convergence was attributed in [50] to the piece-

wise constant nature of the approximation employed,

where the reproducing kernel approximation was intro-

duced in the peridynamic displacement field to increase the

convergence rate. However, high-order Gauss integration

was employed to achieve the integration accuracy neces-

sary to avoid the aforementioned oscillatory convergence

behavior, resulting in an increased computational cost. A

high-order non-local deformation gradient was proposed in

[52] for stability reasons, but was limited to uniform dis-

cretizations, and meanwhile the convergence properties of

this method were not tested.

Taking another point of view, the non-local deformation

gradient and force density in state-based peridynamics

under the correspondence principle can be viewed as

mathematical operators with certain approximation prop-

erties. In [27, 53] it was shown that for uniform dis-

cretizations away from the boundary, the accuracy in the

non-local deformation gradient is second-order. This is

confirmed by other studies, where it has been further shown

that near the boundary the accuracy will be first-order

[52, 54].

The precise relationship between the meshfree peridy-

namic method and the classical meshfree methods dis-

cussed has not been made clear. So far, one effort [27] has

attempted to examine the relationship between the peri-

dynamic approximation of derivatives via the non-local

deformation gradient and the traditional meshfree approx-

imation of derivatives. There it was shown that the state-

based peridynamic formulation based on correspondence is

equivalent to employing a second-order accurate implicit

gradient reproducing kernel approximation [55], for both

the deformation gradient operation on displacement, and

force density operation on the stress, but this equivalence

was established only for uniform discretizations, away

from a boundary. However, this relationship also implies

that these operations are both second-order accurate, at

least in uniform discretizations, and away from the influ-

ence of a boundary.

In this paper, the precise relationship between meshfree

methods for local models and non-local peridynamic

meshfree discretizations under the correspondence princi-

ple is introduced, for general non-uniform discretizations,

and finite domains. A generalized approximation which

unifies these approaches is introduced termed the repro-

ducing kernel peridynamic approximation, under both

continuous (integral form) and discrete frameworks. It is

shown that this approximation can yield four distinct cases:

implicit gradients, the traditional non-local deformation

gradient, as well as an arbitrary-order accurate non-local

deformation gradient, and arbitrary-order accurate non-lo-

cal higher-order derivatives. A formulation is then pro-

posed called the reproducing kernel peridynamic (RKPD)

method, consisting of the high-order accurate non-local

deformation gradients, in conjunction with a high-order

accurate force density, which results in an arbitrary-order

accurate state-based peridynamic method. The formulation

is tested under the node-based collocation framework,

although a weak formulation is also possible. In contrast to

the original formulation, the method is shown to exhibit

convergent solutions with and without ghost boundary

nodes, under both uniform and nonuniform discretizations,

with superconvergent solutions for odd orders of accuracy.

The remainder of this paper is organized as follows. In

Sect. 2, the governing equations for classical local methods

and state-based peridynamics are briefly reviewed. The

integral forms for the reproducing kernel and implicit

gradient approximation are given in Sect. 3, and compared

with the integral forms of the state-based peridynamic

equations. In addition, the equivalence of implicit gradients

and the peridynamic differential operator [56] is estab-

lished. These formulations are then compared and con-

trasted, and the orders of accuracy are assessed. In Sect. 4,

the continuous reproducing kernel peridynamic approxi-

mation is given, which unifies the two formulations, and

provides arbitrary-order accurate non-local deformation

gradients, and arbitrary-order accurate higher-order non-

local derivative approximations. The discrete implicit

gradient and peridynamic approximations are then dis-

cussed and compared in Sect. 5, with the order of accuracy

in the discrete case assessed. Section 6 introduces the

discrete reproducing kernel peridynamic approximation.

The collocation implementation of the proposed formula-

tion, the reproducing kernel peridynamic method, is then

summarized in Sect. 7, and numerical examples are given

in Sect. 8. Conclusions, and discussions on implications

and possible future work are given in Sect. 9.

2 Governing equations

In this section, the governing equations for classical con-

tinuum mechanics and state-based peridynamics under the

correspondence principle are briefly reviewed.
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2.1 Classical continuum mechanics

The equation of motion for finite-strain continuum

mechanics problems stated in the reference configuration X
at material position X at time t is

€uðX; tÞqðXÞ ¼ r � rTðX; tÞ þ bðX; tÞ ð1Þ

where €u � Dv=Dt is the material time derivative of the

velocity v, q is the material density in the undeformed

configuration, r is the 1st Piola–Kirchhoff (PK) stress

tensor (rT is the nominal stress),r denotes the del operator

with respect to the undeformed configuration, and b is the

body force in the undeformed configuration. In this work a

Lagrangian description is adopted, as state-based peridy-

namics under correspondence relates the 1st PK stress to

the force density in the governing equations [20].

Given a strain energy density function WðFÞ, kinetic
variables such as the first 1st PK stress r can be obtained as

r ¼ oWðFÞ=oF. In state-based peridynamics, an analogous

relationship exists between the kinematic and kinetic

entities, as described in the next section.

2.2 State-based peridynamics

In order to deal with discontinuities, peridynamics [19, 20]

has been introduced which precludes the differentiation

involved in the governing equations for classical contin-

uum mechanics (1). In state-based peridynamics, the force

density of the divergence of nominal stress in (1) is

replaced by an integral of force states T [20]:

€uðX; tÞqðXÞ ¼
Z

HX

T X; t½ � X0 � Xh i � T X0; t½ � X� X0h idX0

þ bðX; tÞ
ð2Þ

where HX is the so-called neighborhood of the particle X,

which is often defined by a sphere encompassing the point

X with radius d called the horizon, as shown in Fig. 1. The

notation employed for the mathematical entity of states is

that angle brackets denote the operation on that variable,

while square brackets denote the dependence on the

variable.

A fundamental kinetic entity is the force state Th�i,
rather than for instance, the 1st PK stress in the Lagrangian

formulation of classical solid mechanics. The quantity

X0 � X is said to be a ‘‘bond’’ of the points X0 and X. Thus,

it can be seen when comparing (1) to (2) that the force

density of the divergence of stress is replaced by an integral

of the action of states T on bonds local to X.

A fundamental kinematic entity in peridynamics is the

deformation state Yh�i which maps (possibly nonlinearly

and discontinuously) a bond in the undeformed configu-

ration X0 � X, to a bond in the current configuration x0 � x,

as shown in Fig. 1:

Y X0 � Xh i ¼ x0 � x: ð3Þ

Analogous to the dependence of stress measures on strain

measures in classical mechanics, the force state T depends

on the deformation state. On the other hand, in order to

facilitate the use of constitutive models in the local theory,

a non-local deformation gradient F can be obtained

through a principle called reduction [20], which is briefly

reviewed in Sect. 3.5. The 1st PK stress can be obtained via

F , and can then be related to the force state T by means of

energy principles.

3 Continuous reproducing kernel
and peridynamic approximations

As will be demonstrated, the implicit gradient counterpart

[36, 55, 57, 58] to the reproducing kernel (RK) approxi-

mation [4, 5] is most closely related to the non-local

deformation gradient employed in peridynamics. In this

section, the continuous (integral) form of the reproducing

Fig. 1 Peridynamic continuum

in undeformed (left) and

deformed configuration (right)
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kernel and peridynamic approximations are analyzed and

compared. A brief review of both is given. The continuous

versions must be discretized in practice; the discrete ver-

sions will be analyzed and compared in Sect. 5. Remark-

ably, if the quadrature and discretizations are consistent

with one another, the main results of these analyses are the

same, with minor exceptions.

3.1 Continuous reproducing kernel
approximation

The continuous RK approximation of a function uðxÞ on a

domain X � Rd is constructed by the product of a kernel

function Ua with compact support, and a correction func-

tion composed of a linear combination of basis functions in

the following form [4, 5]:

u xð Þ ’ R½n� u xð Þf g

¼
Z

X

HT x0 � xð Þb xð ÞUa x0 � xð Þu x0ð Þdx0 ð4Þ

where HðxÞ is a column vector of complete nth order

monomials (although other bases could be employed), and

bðxÞ is a column vector of associated coefficients to be

determined. The dependence of these vectors in the RK

approximation on the free parameter n is to be understood

herein for notational simplicity.

It should be noted that, in much of the literature, the

shifted basis term x� x0 is employed, while here the basis

using x0 � x is employed in order to unify the reproducing

kernel approximation and peridynamic derivative approx-

imation later in the text. The choice is arbitrary, and only

results in sign differences in gradient reproducing

conditions.

The kernel function Ua has compact support with

measure a, and the smoothness of the approximation is

inherited from the kernel. For example, using C2 kernels

yields C2 continuity of the approximation. In this work, the

cubic B-spline kernel is employed for kernel functions and

influence functions, which play the analogous role in

peridynamics as discussed in Sect. 3.5. The one-dimen-

sional cubic B-spline kernel shown in Fig. 2 is constructed

as:

UaðzÞ ¼

2

3
� 4z2 þ 4z3 for 0� z� 1

2
4

3
� 4zþ 4z2 � 4

3
z3 for

1

2
� z� 1

0 otherwise

8>>>><
>>>>:

;

z � jx0 � xj
a

:

ð5Þ

In multiple dimensions, one may construct a kernel by

tensor product yielding a box or cuboid support:

Uaðx0 � xÞ ¼
Yd
i¼1

Uaiðx0i � xiÞ; ð6Þ

or by defining Uaðx0 � xÞ ¼ UaðzÞ with z ¼ jx0 � xj=a,
yielding a spherical support.

When monomials are employed for HðxÞ, the coeffi-

cients bðxÞ are determined by enforcing nth order accuracy

of the approximation in (4). This can be achieved by

directly enforcing the so-called reproducing conditions

(discussed later), or by using a Taylor expansion. In this

work, the latter approach is employed in order to fully

illustrate the meaning and construction of an implicit gra-

dient. The Taylor series expansion of uðx0Þ around x

truncated to order n is:

uðx0Þ ’
Xn
aj j¼0

1

a!
x0 � xð ÞaoauðxÞ ð7Þ

where a ¼ ða1; . . .; adÞ is a multi-index in Rd of non-neg-

ative integers equipped with the notation aj j ¼ a1þ
� � � þ ad , a! ¼ a1! � � � ad!, xa ¼ xa11 . . .x

ad
d , and

oa ¼ oa1 . . .oad=oxa11 . . .ox
ad
d .

In matrix form (7) can be expressed as:

uðx0Þ ¼ DðxÞJH x0 � xð Þ ð8Þ

where DðxÞ is a row vector of fobuðxÞgnjbj¼0 and J is a

diagonal matrix with entries f1=b!gnbj j¼0. Substituting (8)

into (4) yields

R½n� u xð Þf g ¼ DðxÞJ
Z

X

H x0 � xð ÞHT x0 � xð Þb xð ÞUa x0 � xð Þdx0:

ð9Þ

The nth order accuracy of the approximation requires

that R½n�fu xð Þg ¼ u xð Þ in the above. Examining (9), this

can be phrased as the following vanishing moment

conditions:Z

X

H x0 � xð ÞHT x0 � xð Þb xð ÞUa x0 � xð Þdx0 ¼ H 0ð Þ ð10Þ

Fig. 2 Kernel function UaðzÞ
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where the fact that f1=b!gj bj j¼0 ¼ 1 has been employed.

Solving for b xð Þ from (10), the continuous RK approxi-

mation is obtained as

R½n� u xð Þf g ¼
Z

X

H 0ð ÞTM�1 xð ÞH x0 � xð ÞUa x0 � xð Þu x0ð Þdx0

�
Z

X

W x;x0 � xð Þu x0ð Þdx0 ð11Þ

where W x;x0 � xð Þ is the nth order continuous reproducing

kernel function with the dependency on a and n implied,

and

M xð Þ ¼
Z

X

H x0 � xð ÞHT x0 � xð ÞUa x0 � xð Þdx0 ð12Þ

is the so-called moment matrix. In arriving at (11) the

symmetry of M was employed, although it is not necessary

to construct the approximation.

In addition to nth order accuracy, the approximation can

be shown to satisfy the following equivalent reproducing

conditions:

R½n� H xð Þf g ¼ H xð Þ
orZ

X

W x;x0 � xð ÞH x0ð Þdx0 ¼ H xð Þ
ð13Þ

which is often employed as the condition (for better con-

ditioning of the moment matrix):Z

X

W x;x0 � xð ÞH x0 � xð Þdx0 ¼ H 0ð Þ: ð14Þ

As previously mentioned, it can be seen that the repro-

ducing kernel approximation (11) can also be obtained by

directly imposing the reproducing conditions (14) with the

construction in (4).

3.2 Continuous implicit gradient

An implicit gradient directly approximates the derivative

oau xð Þ of a function u xð Þ for some fixed a in the same form

of the reproducing kernel [55, 57]:

oau’ DðaÞ
½n� u xð Þf g ¼

Z

X

HT x0 � xð ÞbðaÞ xð ÞUa x0 � xð Þu x0ð Þdx0

ð15Þ

where the notation of multi-indices with parenthesis ðaÞ is
introduced to indicate evaluation with a fixed value of a
and to distinguish between terms of the form xa. Substi-

tution of the Taylor series expansion in (8) into (15) yields

DðaÞ
½n� u xð Þf g ¼ DðxÞJ

Z

X

H x0 � xð ÞHT x0 � xð ÞbðaÞ xð ÞUa x0 � xð Þdx0:

ð16Þ

The condition to reproduce the gradient oau up to nth order

accuracy can be expressed as all moments vanishing except

the moment corresponding to a, that is, requiring

DðaÞ
½n� u xð Þf g ¼ oauðxÞ for some given a, which can be

expressed as:Z

X

H x0 � xð ÞHT x0 � xð ÞbðaÞ xð ÞUa x0 � xð Þdx0 ¼ HðaÞ ð17Þ

where HðaÞ is a column vector of fa!dabgnjbj¼0 (emanating

from J�1):

HðaÞ ¼ [0, . . .; 0, a!, 0, . . .; 0]T:
"

a position

ð18Þ

To make the multi-index notation clear, consider H xð Þ and
HðaÞ in the construction of DðaÞ

½n� fuðxÞg in two dimensions

with n = 2, and a ¼ ð1; 0Þ, that is, to approximate first

order derivatives with respect to x1 with second-order

accuracy:

HðxÞ ¼ 1;½ x1; x2; x21 x1x2 x22
�T
;

Hð1;0Þ ¼ 0;½ 1; 0; 0; 0; 0�T:
ð19Þ

Solving for bðaÞ from (17), the continuous implicit gradient

approximation for oauðxÞ is obtained as

DðaÞ
½n� u xð Þf g¼

Z

X

HðaÞ
h iT

M�1 xð ÞH x0 �xð ÞUa x0 �xð Þu x0ð Þdx0

�
Z

X

WðaÞ x;x0 �xð Þu x0ð Þdx0

ð20Þ

where again the symmetry of M has been employed. From

the above, it can be seen that the RK approximation (11)

can be considered a special case of (20) with jaj ¼ 0, i.e.,

Wð0;0;0Þ ¼ W which has been observed in the early history

of meshfree methods [57, 59]. This also demonstrates that

since a simple change of H 0ð Þ to HðaÞ can approximate

derivatives, the matrix M xð Þ contains information about

derivatives as well as the function itself, and provides an

efficient way to obtain derivative approximations rather

than direct differentiation of (11), for which the cost is not

trivial [35]. This fact has been leveraged for solving partial

differential equations more efficiently than using direct

differentiation [36, 60].
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In addition, the implicit gradient approximation has

been utilized for strain regularization to avoid ambiguous

boundary conditions [55], avoid differentiation in stabi-

lization for convection dominated problems [58], among

other applications [60], and historically, the implicit gra-

dient has in fact been widely used (it its discrete form) to

solve partial differential equations: the generalized finite

difference method [61], synchronized derivatives [57], as

well as the pioneering work of the diffuse element method

[2] all utilize approximations which are essentially coin-

cident with the implicit gradient (for details, see [1]).

Finally as will be discussed in Sect. 3.3, the so-called

peridynamic differential operator [56] is also the implicit

gradient approximation with the selection of the same

bases and weighting functions.

Analogous to the RK approximation, the implicit gra-

dient can be shown to satisfy the following gradient

reproducing conditions [55]:Z

X

WðaÞ x;x0 � xð ÞH x0ð Þdx0 ¼ oaH xð Þ: ð21Þ

Or equivalently,Z

X

WðaÞ x;x0 � xð ÞH x0 � xð Þdx0 ¼ HðaÞ: ð22Þ

Similar to the reproducing kernel approximation, it can be

seen that the implicit gradient approximation (20) can be

also obtained by directly imposing (22) on the approxi-

mation (15).

3.3 Equivalence of the peridynamic differential
operator and the implicit gradient

In this section, the implicit gradient approximation

reviewed in Sect. 3.2, and the peridynamic differential

operator introduced in [56] are compared.

Let us start by recasting the implicit gradient from (15)

as:

oau ¼ D að Þ
n½ � u xð Þf g ¼

Z

Ha

Ûa x; x0 � xð Þu x0ð Þdx0; ð23Þ

where Ûa represents the corrected kernel function:

Ûa x; x0 � xð Þ ¼ Ĥ
T
x0 � xð ÞbðaÞ xð ÞUa x0 � xð Þ ð24Þ

and Ha is the kernel support, i.e., the portion of the domain

where Uaðx0 � xÞ is non-zero. Note that Ĥ ¼ H in (15),

that is, monomial bases of order n are employed, while here

Ĥ is used to indicate that a generic basis vector can be

employed.

Directly imposing the condition of gradient reproduction

(22) on (23) can be written asZ

Ha

H x0 � xð ÞÛa x; x0 � xð Þdx0 ¼ HðaÞ; ð25Þ

which is, for 0� bj j � n,Z

Ha

x0 � xð ÞbÛa x; x0 � xð Þdx0 ¼ a!dab: ð26Þ

Also, from (26) we get the following system:

Z

Ha

H x0 � xð ÞĤT
x0 � xð ÞUa x0 � xð Þdx0

8<
:

9=
;bðaÞ xð Þ ¼ HðaÞ;

ð27Þ

or

M̂ xð ÞbðaÞ xð Þ ¼ HðaÞ; ð28Þ

where M̂ðxÞ ¼
R
Ha
Hðx0 � xÞĤTðx0 � xÞUaðx0 � xÞdx0;

which, when we select the basis vector Ĥ to be H, becomes

the moment matrix employed in Sects. 3.1 and 3.2, and

leads to the construction in (20).

Consider now the peridynamic differential operator

introduced in [56]. A Taylor expansion of a function f ðxÞ is
first considered:

f xþ nð Þ ¼
Xn
n1¼0

Xn�n1

n2¼0

. . .
Xn�n1...�nd�1

nd¼0

1

n1!n2! � � � nd!
nn11 n

n2
2

. . .nndd
on1þn2þ���þnd f xð Þ
oxn11 ox

n2
2 . . .ox

nd
d

þ R n; xð Þ;

ð29Þ

where n ¼ x0 � x and the remainder Rðn; xÞ is considered

negligible.

The main idea of the peridynamic differential operator is

to define orthogonal functions gp1p2...pdn nð Þ, where pi, is akin
to ai (i.e., p and a are the same), and represents the order of

differentiation with respect to xi, with i ¼ 1; . . .; d, such
that the following gradient reproducing conditions are

imposed:

opf ¼
Z

Hx

f xþ nð Þgp1p2...pdn nð ÞdV

¼
Z

Hx

f x0ð Þgp1p2...pdn x0 � xð Þdx0; ð30Þ

where opf ¼ op1p2 ...pd f xð Þ
ox

p1
1
ox

p2
2
...ox

pd
d

, for some fixed p ¼ p1; p2; . . .; pdð Þ,
and Hx is the peridynamic neighbourhood of x.

By comparing (23) of the implicit gradient and (30) of

the peridynamic differential operator we see that they both
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aim at reproducing derivatives of a function of x through a

convolution by finding an appropriate kernel function. In

fact:

• Hx in (30) is the same as Ha in (23), as long as the RK

kernel support and peridynamic neighbourhood

coincide

• f ðxÞ in (30) is uðxÞ in (23): they both represent a generic
function of x

• gp1p2...pdn ðx0 � xÞ in (30) plays the role of Ûaðx; x0 � xÞ in
(23).

The functions gp1p2...pdn ðnÞ are found by imposing satis-

faction of the following orthogonality property:

1

n1!n2!. . .nd!

Z

Hx

nn11 n
n2
2 . . .n

nd
d gp1p2...pdn nð ÞdV

¼ dn1p1dn2p2 . . .dnd�1pd�1
dndpd ;

ð31Þ

that is, using the notation introduced in Sect. 3.2,Z

Hx

x0 � xð Þ~ngpn x0 � xð Þdx0 ¼ ~n!d~np; ð32Þ

where ~n ¼ ðn1; n2; . . .; ndÞ: This is the same condition that

is imposed on the corrected kernel Ûaðx; x0 � xÞ of the RK
implicit gradient (26). Therefore, if Ûa x; x0 � xð Þ ¼
gp1p2...pdn x0 � xð Þ then the reproducing kernel implicit gra-

dient and the peridynamic differential operator coincide. In

[56] gpn x0 � xð Þ is defined as:

gpn x0 � xð Þ ¼
Xn
q1¼0

Xn�q1

q2¼0

. . .
Xn�q1...�qd�1

qd¼0

ap1p2...pdq1q2...qd
wq1q2...qd x0 � xj jð Þ x01 � x1ð Þq1 . . . x0d � xdð Þqd ;

ð33Þ

which can be rewritten as:

gpn x0 � xð Þ ¼ ~H
T
x0 � xð Þa pð Þ; ð34Þ

where ~H x0 � xð Þ is a column vector of fwqðx0 � xÞqgnqj j¼0

and, for a given p, a pð Þ is a column vector of unknown

coefficients faðpÞq gnqj j¼0. For example, in two dimensions

(d ¼ 2):

~H
T
x0 � xð Þ ¼ w00;w10 x01 � x1ð Þ;w01 x02 � x2ð Þ; . . .;½

wn0 x01 � x1ð Þn;w0n x02 � x2ð Þn�;
ð35Þ

a pð Þ ¼ a
p1p2
00 ; ap1p210 ; ap1p201 ; . . .; ap1p2n0 ; ap1p20n

� �
: ð36Þ

By comparing (34) and (24) we notice that the defini-

tions of Ûa x; x0 � xð Þ and gp1p2...pdn x0 � xð Þ are analogous:

both are the product of a weighted basis vector

(Ĥ
T
x0 � xð ÞUa x0 � xð Þ in (24) and ~H

T
x0 � xð Þ in (34),

respectively) and unknown coefficients to be determined

(i.e., bðaÞ xð Þ and a pð Þ). It is therefore clear that, if the same

weighted basis vectors are selected, the two are the same,

meaning that the RK implicit gradient and the peridynamic

differential operator are the same operator. For example, to

select the same weighted basis vectors:

• Due to the arbitrariness of the choice of basis, one can

select Ĥ
T
x0 � xð Þ and Ua x0 � xð Þ in the RK implicit

gradient so that Ĥ
T
x0 � xð ÞUa x0 � xð Þ ¼ ~H

T
x0 � xð Þ

• If wq1q2...qd x0 � xj jð Þ is chosen so that

wq1q2...qd x0 � xj jð Þ ¼ w x0 � xj jð Þ [56], then

~H
T
x0 � xð Þ ¼ w x0 � xj jð ÞHT x0 � xð Þ. Therefore, by

selecting Ĥ
T
x0 � xð Þ = HT x0 � xð Þ as in Sect. 3.2, and

choosing Ua x0 � xð Þ ¼ w x0 � xj jð Þ, the same weighted

basis vector is employed.

Now, the unknown coefficients of the peridynamic dif-

ferential operator are found by substituting the definition of

gpn x0 � xð Þ [see (34)] into (32):Z

Hx

x0 � xð Þ~n ~HT
x0 � xð Þa pð Þ xð Þdx0 ¼ ~n!d~np; ð37Þ

which, for some given p and for 0� ~nj j � n, leads to

Z

Hx

H x0 � xð Þ ~HT
x0 � xð Þdx0

8<
:

9=
;a pð Þ ¼ ~b

p

n; ð38Þ

or

Aa pð Þ ¼ ~b
p

n; ð39Þ

where ~b
p

n is a column vector ~n!d~np

� �n

~nj j¼0
and A ¼R

Hx
H x0 � xð Þ ~HT

x0 � xð Þdx0 [56]. Again, we can see that

for a given gradient to be reproduced, if the same weighted

basis vector is chosen (i.e.,

Ĥ
T
x0 � xð ÞUa x0 � xð Þ ¼ ~H

T
x0 � xð Þ), then (38) and (39),

and (27) and (28) are the same, respectively, and this leads

to bðaÞ xð Þ ¼ M̂
�1

xð ÞHðaÞ ¼ A�1 ~b
p

n ¼ a pð Þ when a ¼ p.

Now, (39) is for reproducing the gradient opf for a given p.

Since A is independent of p, the equations associated with

reproducing gradients opf for 0� pj j � n can be combined

[56]. For example, in the two-dimensional case we can

write

Aa ¼ ~b; ð40Þ

where
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a ¼ a 00ð Þ; a 10ð Þ; a 01ð Þ; a 20ð Þ; . . .; a 0nð Þ
h i

; ð41Þ

and

~b ¼ ~b
00ð Þ

; ~b
10ð Þ

; ~b
01ð Þ

; ~b
20ð Þ

; . . .; ~b
0nð Þh i

: ð42Þ

In conclusion we have shown, even though the peridy-

namic differential operator represents arbitrary derivatives

of functions through a convolution over the peridynamic

neighbourhood, while the RK implicit gradient performs it

over the RK kernel support, the two operators and the idea

behind them, i.e., correcting a convolution operator using a

weighted basis vector to obtain gradients, are the same.

3.4 Deformation gradient under continuous
implicit gradients

We now return to the analysis and comparison of the

implicit gradient and the way in which state-based peri-

dynamics constructs the non-local deformation gradient. In

the Lagrangian RK approximation [62], shape functions are

constructed with reference to the material coordinate X,

and the approximation to displacement uh is constructed as:

uh X,tð Þ ’ R½n� u X,tð Þf g ¼
Z

X

W X;X0 � Xð Þu X0; tð ÞdX0:

ð43Þ

For simplicity, the dependence of these constructions on t

will be implied for other expressions. The deformation

gradient F is the gradient of the motion of the body x ¼
uðx,tÞ and is constructed as

Fij Xð Þ ¼ Iij þ
ouhi Xð Þ
oXj

ð44Þ

where I is the identity tensor. If implicit gradients (20) are

employed under the Lagrangian formulation, the defor-

mation is approximated in the material coordinate as

Fij Xð Þ ¼ Iij þ
Z

X

Hr
j

h iT
M�1 Xð ÞH X0 � Xð ÞUa X0 � Xð Þui X0ð ÞdX0

ð45Þ

where Hr
j ¼ ½0; d1j; d2j; d3j; 0; . . .; 0� corresponds to the

case of HðaÞ with jaj ¼ 1, for approximating first order

derivatives with respect to Xj, i.e.:

Hr
j ¼ [0, . . .; 0, 1, 0, . . .; 0]T:

"
jþ 1ð Þth position

ð46Þ

From the derivation by the Taylor expansion in Sect. 3.2, it

can be inferred (or directly shown) that the deformation

gradient constructed by implicit gradients possess nth order

accuracy (or nth order consistency) without additional

analysis needed.

3.5 Deformation gradient under continuous
peridynamics

To relate the theory of peridynamics to classical continuum

mechanics and provide the ability to employ conventional

constitutive models, a principle called reduction can be

employed [20] to relate the kinematic entity of the state Y

to a non-local version of a deformation gradient F , which

yields

F ðYÞ ¼ S �K�1 ð47Þ

where K is the reference shape tensor

KðXÞ ¼
Z

HX

wdðX0 � XÞ X0 � Xð Þ � X0 � Xð ÞdX0 ð48Þ

that describes the undeformed configuration around the

point X, and S is the deformed shape tensor

SðXÞ ¼
Z

HX

wdðX0 � XÞ x0 � xð Þ � X0 � Xð ÞdX0 ð49Þ

which describes the deformed configuration around the

point X. In the above, the function wdðX0 � XÞ is called the

influence function, which has compact support with mea-

sure d. Thus the influence function in the non-local

deformation gradient plays a closely analogous role to the

kernel function in the construction of the deformation

gradient by the implicit gradient (45), since both control

the locality of the approximation of deformation.

With F in hand, the associated stress is calculated as in

classical continuum mechanics, and is then related to the

force state T, which will be discussed in Sect. 4.3.

3.6 Analysis of the continuous peridynamic
deformation gradient

We next examine the properties of the nonlocal deforma-

tion gradient F . First, considering that the displacement

u ¼ x� X, using the definition of the deformation state

Y X0 � Xh i ¼ x0 � x and the reference position state

X X0 � Xh i ¼ X0 � X, the deformed shape tensor S can be

expressed as:

SðXÞ ¼
Z

HX

wdðX0 � XÞ ðX0 þ uðX0ÞÞ � ðXþ uðXÞÞð Þ � ðX0 � XÞdX0

¼ KðXÞ þ
Z

HX

wdðX0 � XÞ uðX0Þ � uðXÞð Þ � ðX0 � XÞdX0:

ð50Þ
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Using (50), the non-local deformation gradient (47) can

then be expressed as

SðXÞ ¼
Z

HX

wdðX0 � XÞ ðX0 þ uðX0ÞÞ � ðXþ uðXÞÞð Þ � ðX0 � XÞdX0

¼ KðXÞ þ
Z

HX

wdðX0 � XÞ uðX0Þ � uðXÞð Þ � ðX0 � XÞdX0:

ð51Þ

In component form, the above is,

F ijðXÞ ¼ Iij þ
Z

HX

wdðX0 � X)(uiðX0Þ � uiðX))(X0
m � XmÞK�1

mj ðXÞdX0:

ð52Þ

A Taylor expansion on uiðX0Þ gives, after some algebra,

F ijðXÞ ¼ Iij þ
ouiðXÞ
oXj

þ o2uiðXÞ
oXkoXl

1

2

Z

HX

wdðX0 � XÞðX0
k � XkÞðX0

l � XlÞ

	 ðX0
m � XmÞK�1

mj dX
0

þ o3uiðXÞ
oXkoXloXn

1

6

Z

HX

wdðX0 � XÞðX0
k � XkÞ

	 ðX0
l � XlÞðX0

n � XnÞðX0
m � XmÞK�1

mj dX
0

þ Oðd3Þ:
ð53Þ

Since the fourth term is an even function about X for

symmetric functions wd, we have the following truncation

error for the continuous non-local deformation gradient:

F ijðXÞ ¼ Iij þ
ouiðXÞ
oXj

þ o2uiðXÞ
oXkoXl

1

2

Z

HX

wdðX0 � XÞðX0
k � XkÞ

	 ðX0
l � XlÞðX0

m � XmÞK�1
mj dX

0 þ Oðd2Þ:

ð54Þ

When the neighborhood HX and influence function

wdðX0 � XÞ are centred around X and symmetric about

each axis (as in the case of spherically-shaped influence

functions that are purely a function of X0 � Xj j), away from
the influence of the boundary of the domain (maintaining a

perfectly spherical neighborhood) the third term on the

right-hand-side vanishes when integrated, since it is then an

odd function centred around X and thus

F ijðX) = Iij þ
ouiðXÞ
oXj

þOðd2Þ ð55Þ

and the continuous form of the non-local deformation

gradient in peridynamics is second-order accurate.

Near the boundary of the domain, or in the case that the

shape of HX or the influence function wdðX0 � XÞ is not

symmetric about each axis, the third term does not vanish,

and we have:

F ijðXÞ ¼ Iij þ
ouiðXÞ
oXj

þOðdÞ ð56Þ

and the continuous non-local deformation gradient is first-

order accurate. Thus in finite domains where the neigh-

borhood is not symmetric near the boundary, and in a

general case of arbitrary influence functions and neigh-

borhood definitions, the continuous non-local deformation

gradient is globally first-order accurate.

3.7 Comparison between continuous implicit
gradients and peridynamics

In [27], it was shown that in the interior of a domain (away

from the boundary, or in an infinite domain) with uniformly

discretized state-based peridynamics using the correspon-

dence principle, the discretized non-local deformation

gradient (47) is equivalent to employing a local deforma-

tion gradient by the discretized form of implicit gradients

(45). However, it will be demonstrated that in the general

case, this is not true for both the discretized form and

continuous form.

In order to facilitate a more general comparison between

the non-local deformation gradient by peridynamics and

the RK approximation, we first express the shape tensors

(49) in matrix form:

KðXÞ ¼
Z

HX

wdðX0 � XÞPðX0 � XÞPTðX0 � XÞdX0 ð57Þ

where PðXÞ � ½X1 X2 X3 �T can be considered a type of

‘‘basis vector’’ consisting of monomials of order one.

When the shape tensor is expressed this way, it is imme-

diately apparent that it is coincident with the Lagrangian

RK moment matrix with a ¼ d,
Ua X� X0ð Þ ¼ wd X� X0ð Þ, and linear basis, but omitting

the unity term in the RK basis vector HðXÞ. More dis-

cussion on this point will follow later in the text.

The deformed shape tensor can also be expressed in

matrix form as

SðXÞ ¼
Z

HX

wdðX0 � XÞPðxðX0Þ � xðXÞÞPTðX0 � XÞdX0:

ð58Þ

Noting that PðxðX0Þ � xðXÞÞ ¼ PðX0 � XÞ þ uðX0Þ�ð
uðXÞÞ we have
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SðXÞ ¼ KðXÞ

þ
Z

HX

wdðX�XÞðuðX0Þ � uðXÞÞPTðX0 � XÞdX0

ð59Þ

so that

F ðXÞ ¼ SðXÞK�1ðXÞ

¼ KðXÞ þ
Z

HX

wdðX0 � XÞðuðX0Þ � uðXÞÞPTðX0 � XÞdX0

0
B@

1
CAK�1ðXÞ

¼ Iþ
Z

HX

wdðX0 � XÞðuðX0Þ � uðXÞÞPTðX0 � XÞK�1ðXÞdX0:

ð60Þ

Introducing a vector Pr
j ¼ ½d1j; d2j; d3j� and using the

symmetry of K, the expression (60) can be recast in indi-

cial notation as:

F ijðXÞ ¼ Iij þ
Z

HX

Pr
j

� �T

K�1ðXÞPðX0 � XÞwdðX0 � XÞ

	 uiðX0Þ � uiðXÞð ÞdX0: ð61Þ

For comparison, the local deformation gradient Fij cal-

culated by implicit gradients (45) with a ¼ d, and

Ua X� X0ð Þ ¼ wd X� X0ð Þ can be expressed as:

FijðXÞ ¼ Iij þ
Z

HX

Hr
j

� �T

M�1ðXÞHðX0 � XÞwdðX0 � XÞuiðX0ÞdX0:

ð62Þ

Thus, the implicit gradient can be viewed as a type of non-

local operation with length-scale a, which is not surprising

since it approximates differentiation by integration, just

like the non-local deformation gradient in peridynamics

(see [27] for additional discussions). Two key differences

can be observed however. One is that the ‘‘basis’’ in peri-

dynamics PðXÞ omits the unity term in HðXÞ. If PðXÞ were
to be employed in the implicit gradient approximation

(20), partition of nullity [the completeness condition for

0th order accuracy in (13)] would not be able to be satis-

fied. This fact however seems to be ‘‘compensated for’’

in the peridynamic gradient by the convolution with

uiðX0Þ � uiðXÞ rather than uiðX0Þ alone. That is, if u ¼
constant then the non-local deformation gradient (61)

yields the correct result of F ij ¼ Iij (0th order accuracy).

Thus it can be seen that the form (61) is inherently first-

order accurate, and in special cases, as has been demon-

strated, is second-order accurate.

Another interesting point is that in examining (61), the

non-local peridynamic calculation of a gradient uses values

of u near X, except the actual value at X, while the implicit

gradient still uses the value of u at X. Thus one could

interpret the peridynamic operation ‘‘more non-local’’

versus the implicit gradient approximation. Indeed, when

X0 ¼ X in (61), the peridynamic ‘‘kernel’’ in the convolu-

tion also vanishes since P only contains first-order

monomials.

Finally, it should be emphasised that the deformation

gradient by implicit gradients, and the non-local deforma-

tion gradient by peridynamics, are clearly not the same. In

[27] however, an equivalence was established in the special

case of a uniform discretization, and away from the influ-

ence of the boundary.

4 Continuous reproducing kernel
peridynamic approximation

In this section, the continuous reproducing kernel peridy-

namic approximation is presented, which unifies the way in

which state-based peridynamics under correspondence

approximates gradients, and the implicit gradient approxi-

mation. The unification also provides two other distinct

cases which will be discussed.

4.1 Continuous reproducing kernel peridynamic
approximation

The convolution operations for the approximation of the

gradient of a function in (61) and (62) can be unified as

follows. First, consider a kernel estimate of the type (15)

with a basis of monomials from order m to n to estimate

gradients of a scalar field u Xð Þ, with the convolution of

uðX0Þ � uðXÞ rather than uðX0Þ as in (15), and a general

weighting function xl with measure l:

�DðaÞ
½n� u Xð Þf g ¼

Z

X

QT
½m;n� X

0 � Xð Þ�bðaÞ Xð Þxl X
0 � Xð Þ u X0ð Þ � u Xð Þð ÞdX0

�
Z
X

�WðaÞ
½m;n� X;X

0 � Xð Þ u X0ð Þ � u Xð Þð ÞdX0

ð63Þ

where Q½m;n�ðXÞ is a column vector of the set of monomials

fXbgnjbj¼m, and the dependency of the operator on m and l is

implied for notational simplicity. To facilitate nth order

accuracy in this approximation, taking the Taylor expan-

sion on uðX0Þ in (7) yields:

�DðaÞ
½n� u Xð Þf g ¼ �DðXÞ�J

Z

X

Q½1;n� X
0 � Xð Þ

	QT
½m;n� X

0 � Xð Þ�bðaÞ Xð Þxl X
0 � Xð ÞdX0

ð64Þ

where �DðXÞ is a row vector of fobuðXÞgnjbj¼1 and �J is a

diagonal matrix with entries f1=b!gnbj j¼1. Examining (64), it
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is apparent that in order to reproduce gradients

�DðaÞ
½n� fuðXÞg ¼ oauðXÞ up to nth order accuracy, we have

the following vanishing moment conditions:
Z

X

Q½1;n� X
0 � Xð ÞQT

½m;n� X
0 � Xð Þ�bðaÞ Xð Þxl X

0 � Xð ÞdX0 ¼ Q
ðaÞ
½1;n�

ð65Þ

where Q
ðaÞ
½m;n� is a column vector of fa!dabgnjbj¼m:

Q
ðaÞ
½m;n� ¼

[0, . . .; 0, a!, 0, . . .; 0]T:
"

a position

ð66Þ

If m = 1, then the system in (65) has a unique solution.

Alternatively, if m = 0 and n[ 0 the system is underde-

termined and an additional condition is required for

determining �b
ðaÞ
.

Consider also imposing the partition of nullity on (63) in

the case of m = 0 and n[ 0, that is, in addition to (65), the

following is imposed:Z

X

�WðaÞ
½m;n� X;X

0 � Xð ÞdX0 ¼ 0;m ¼ 0; n[ 0: ð67Þ

The system (65) can then be recast with (67) in hand to

yield a determined system for all free variables:

�M½m;n� Xð Þ�bðaÞ Xð Þ ¼ Q
ðaÞ
½m;n� ð68Þ

where

�M½m;n� Xð Þ¼
Z

X

Q½m;n� X
0 �Xð ÞQT

½m;n� X
0 �Xð Þxl X

0 �Xð ÞdX0:

ð69Þ

A unified approximation is finally obtained by solving for

�b
ðaÞ

from (68) and substituting into (63):

�DðaÞ
½n� u Xð Þf g ¼

Z

X

Q
ðaÞ
½m;n�

� �T
�M
�1

½m;n� Xð ÞQ½m;n� X
0 � Xð Þ

	xl X
0 � Xð Þ u X0ð Þ � u Xð Þð ÞdX0: ð70Þ

The approximation in (70) for derivatives is termed the

continuous reproducing kernel peridynamic approximation

herein. The selection of possible values of xl, jaj, n and m,

yield the implicit gradient approximation, as well as the

manner in which the deformation gradient is approximated

by peridynamics. In addition, two more approximations

can be obtained which are termed the continuous nth order

non-local deformation gradient, and continuous nth order

non-local higher-order derivatives, enumerated as follows:

1. When jaj[ 0, m = 0, xl ¼ Ua and n is a free variable,

(70) yields the implicit gradient approximation (20),

since Q½0;n�ðxÞ ¼ HðxÞ and Q
ðaÞ
½0;n�ðxÞ ¼ HðaÞ, and fur-

ther if m = 0, then partition of nullity is satisfied by the

imposition of (67) in (68), and the approximation (70)

yields:

�DðaÞ
½n� u Xð Þf g ¼

Z

X

�WðaÞ
½0;n� X;X

0 � Xð Þ u X0ð Þ � u Xð Þð ÞdX0

¼
Z

X

�WðaÞ
½0;n� X;X

0 � Xð Þu X0ð ÞdX0

� u Xð Þ
Z

X

�WðaÞ
½0;n� X;X

0 � Xð ÞdX0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

¼
Z

X

�WðaÞ
½0;n� X;X

0 � Xð Þu X0ð ÞdX0

¼ DðaÞ
½n� u Xð Þf g

ð71Þ

2. When m = 1, n = 1, and jaj ¼ 1 (approximating first

order derivatives only), and choosing xl ¼ wd, (70)

yields the peridynamic deformation gradient (61) when

approximating the derivative of ui, since in this case

Q½1;1�ðXÞ ¼ PðXÞ, �M½1;1�ðXÞ ¼ KðXÞ, and when taking

the derivative with respect to Xj we have

Q
ðaÞ
½m;n� ¼ Q

ðdj1,dj2,dj3Þ
½1;1� ¼ Pr

j , and

oui

oXj

’ Iij þ �Dðdj1,dj2,dj3Þ
½1� uiðXÞf g ¼ Iij

þ
Z

HX

Pr
j

� �T

K�1ðXÞPðX0 � XÞ

	wdðX0 � XÞ uiðX0Þ � uiðXÞð ÞdX0 ¼ F ijðXÞ
ð72Þ

3. When m = 1, jaj ¼ 1, xl ¼ wd, and n[ 1 is a free

parameter, when taking the gradient of the displace-

ment ui with respect to Xj, (70) yields a nth order

accurate non-local deformation gradient which is

denoted F ½n� herein:

oui

oXj

’ F ½n�
	 


ij
ðXÞ ¼ Iij þ �Dðdj1,dj2,dj3Þ

½n� uiðXÞf g ð73Þ

where

�Dðdj1,dj2,dj3Þ
½n� u Xð Þf g

¼
Z

HX

Qr
j

� �T
�M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þwd X0 � Xð Þ

	 u X0ð Þ � u Xð Þð ÞdX0 ð74Þ
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and

Qr
j � Q

ðdj1,dj2,dj3Þ
½1;n� ¼ [0, . . .; 0, 1, 0, . . .; 0]T:

"
jth entry

ð75Þ

In the above, �M½1;n� can be interpreted as a high-

order reference shape tensor, while Q½1;n� can also be

understood in the context of states. The arbitrarily

high-order versions of non-local deformation gradients

can also be understood in terms of reduction and

expansion of states to tensors, and tensors to states,

respectively. Details are given in ‘‘Appendix A’’.

4. When m = 1, jaj[ 1, and n is a free variable, choosing

xl ¼ wd in (70) yields nth order accurate non-local

higher order derivatives:

�DðaÞ
½n� u Xð Þf g ¼

Z

HX

Q
ðaÞ
½1;n�

� �T
�M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þ

	wd X0 � Xð Þ u X0ð Þ � u Xð Þð ÞdX0; jaj[ 1

ð76Þ

The terminology adopted herein is that when m = 1 and

xl ¼ wd, the derivative approximations are termed non-

local or peridynamic since they approximate derivatives in

the same manner as the non-local deformation gradient,

they embed the non-local length scale d, and also perform

differentiation by integration. The generalization occurs

with jaj[ 1 and/or n[ 1. That is, the original non-local

deformation gradient is recovered in the non-local deriva-

tives when jaj ¼ 1 and n ¼ 1. Thus the general expression

for nth order accurate non-local derivatives in the contin-

uous case is

�DðaÞ
½n� u Xð Þf g ¼

Z

HX

Q
ðaÞ
½1;n�

� �T
�M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þ

	wd X0 � Xð Þ u X0ð Þ � u Xð Þð ÞdX0:

ð77Þ

Therefore, the present formulation can be regarded as a

generalization of the way in which state-based peridy-

namics approximates derivatives using the non-local

technique.

4.2 Continuous nth order non-local gradient
and divergence operations

High-order non-local gradient and divergence operations

can be derived from the general formulation (70) with

m = 1, xl ¼ wd as in (77). Examining (70) with jaj ¼ 1

(for first order derivatives) and casting it as an operator to

approximate a non-local derivative of a function u with

respect to Xj, one obtains:

ru Xð Þð Þj ’ Dr
½n� u Xð Þf g

� �
j

¼
Z

HX

Qr
j

� �T
�M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þwd X0 � Xð Þ

	 u X0ð Þ � u Xð Þð ÞdX0

ð78Þ

where Qr
j is the same vector in (75).

In vector form, (78) can be cast as

ru Xð Þ ’ Dr
½n� u Xð Þf g

¼
Z

HX

~Q
r� �T

�M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þ

	wd X0 � Xð Þ u X0ð Þ � u Xð Þ½ �dX0

ð79Þ

where

~Q
r ¼ ½Qr

1 ; Q
r
2 ; Q

r
3 � ð80Þ

and here ru is a column vector. Thus the nth order non-

local gradient operation on a vector field f can be expressed

as:

r� f Xð Þ ’ Dr
½n� � f Xð Þ

¼
Z

HX

~Q
r� �T

�M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þwd X0 � Xð Þ

	 f X0ð Þ � f Xð Þð ÞTdX0 ð81Þ

where on the right hand side, f is represented as a column

vector. Likewise, the nth order non-local divergence on a

vector field f can be expressed as:

r � f Xð Þ ’ Dr
½n� � f Xð Þ

¼
Z

HX

f X0ð Þ � f Xð Þð ÞT ~Q
r� �T

�M
�1

½1;n� Xð Þ

	Q½1;n� X
0 � Xð Þwd X0 � Xð ÞdX0

ð82Þ

4.3 High-order force density via non-local
divergence of stress: continuous case

According to the correspondence principle [20], the force

state T can be calculated from the 1st PK stress r as a

function of the non-local deformation gradient (61) for

state-based peridynamics as:

T X; t½ � X0 � Xh i ¼ r Xð ÞK�1 Xð ÞP X0 � Xð Þwd X0 � Xð Þ:
ð83Þ

In the above, and in the following text, r denotes the matrix

form of the 1st PK stress according to the context.
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Comparing (1), (2) and (83), the integration of the force

state as a function of stress can be interpreted as a type of

non-local divergence operation on the nominal stress rT as:

r � rT Xð Þ !
Z

HX

r Xð ÞK�1 Xð ÞP X0 � Xð Þ
�

�r X0ð ÞK�1 X0ð ÞP X� X0ð Þ
�
wd X0 � Xð ÞdX0

ð84Þ

where the fact that wd ¼ wd X� X0j jð Þ was employed. A

force state consistent with the high order non-local defor-

mation gradient (73) can be obtained using the same cor-

respondence principle as (see ‘‘Appendix B’’ for the

derivation):

T X; t½ � X0 � Xh i ¼ r Xð Þ ~Q
r� �T

�M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þwd X0 � Xð Þ:

ð85Þ

The corresponding non-local divergence operation that

results from this force state can be expressed as:

r � rT Xð Þ !
Z

HX

r Xð Þ ~Q
r� �T

�M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þ

�

�r X0ð Þ ~Q
r� �T

�M
�1

½1;n� X
0ð ÞQ½1;n� X� X0ð Þ

�
wd X0 � Xð ÞdX0:

ð86Þ

However, despite being derived from the high-order

accurate deformation gradient, numerical testing shows

that the discretized form of the force density (86) viewed as

a mathematical operator on rT does not guarantee even 0th

order accuracy in the general case. That is, when the

nominal stress rT is constant, the total force density con-

tribution to a point X may be non-zero. Notably, this is also

true of (84), where under a constant state of stress, the

corresponding force-density could be non-zero, and the

original formulation using (84) also does not possess even

0th order accuracy in the general case. Thus, despite

whatever the accuracy the non-local deformation gradient

possesses (using the original formulation (47), with linear

accuracy, or the high-order formulation (73), with nth order

accuracy), the final solution computed using either (84) or

(86) may not even have 0th accuracy because of the

operation of computing the force density. This assertion is

verified numerically in Sect. 6.5.

Accordingly, a non-local divergence of the nominal

stress rT is proposed, which can be computed from the

generalization of (82) from vectors to tensors as

Dr
½n� � rT Xð Þ ¼

Z

HX

r X0ð Þ � r Xð Þð ÞT ~Q
r� �T

	 �M
�1

½1;n� Xð ÞQ½1;n� X
0 � Xð Þwd X0 � Xð ÞdX0:

ð87Þ

For the linear case (n = 1), the force density computed by

the proposed non-local divergence can be expressed as:

Dr
½1� � rT Xð Þ ¼

Z

HX

r X0ð Þ þ r Xð Þð ÞTK�1 Xð ÞP X0 � Xð Þ

	wd X0 � Xð ÞdX0

ð88Þ

where the fact that P X0 � Xð Þ ¼ �P X� X0ð Þ was

employed. Comparing to the standard force density by

peridynamics (84), which can also be simplified as

r � rT Xð Þ !
Z

HX

r Xð ÞK�1 Xð Þ þ r X0ð ÞK�1 X0ð Þ
� �

	P X0 � Xð Þwd X0 � Xð ÞdX0;

ð89Þ

it can be seen that constant and linear accuracy can be

introduced easily into state-based peridynamics via a small

modification of (89) to (88). In Sect. 6.5, it will be

demonstrated that any order of accuracy desired is main-

tained in the discrete case.

5 Discrete reproducing kernel
approximation and peridynamic
deformation gradient

In this section, the discretized versions of the continuous

approximations discussed in Sect. 3 are analysed and

compared.

5.1 Discrete reproducing kernel approximation

A discrete version of the reproducing kernel approximation

(4) can be obtained by performing numerical integration on

both (11) and (12) at a set of NP nodes xJ jxJ 2 Xf gNPJ¼1 that

discretize a domain X:

Rh
½n� u xð Þf g ¼

XNP
J¼1

H 0ð ÞTM�1 xð ÞH xJ � xð ÞUa xJ � xð ÞVJuJ

�
XNP
J¼1

WJ xð ÞuJ

ð90Þ

M xð Þ ¼
XNP
J¼1

H xJ � xð ÞHT xJ � xð ÞUa xJ � xð ÞVJ ð91Þ
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where uJ � uðxJÞ are nodal coefficients, WJðxÞ is the

reproducing kernel shape function, VJ is the nodal

quadrature weight for point xJ , and MðxÞ is the discrete

moment matrix. For notational simplicity, it should be

understood that MðxÞ and other quantities denote the dis-

crete or continuous counterparts depending on the context

in which they are employed.

Unlike the continuous case, the moment matrix (91) is

conditionally invertible, which requires ðnþ d)!=ðn!d!)
nodal kernels covering x which are non-colinear (in 2D) or

non-coplanar (in 3D) [29]. The selection of a kernel value

of a ¼ hðn + 1) with h the nodal spacing generally suffices

as a rule of thumb.

It is important to note that when the quadrature in (90) is

the same as in (91), nth order accuracy is maintained [5].

The construction in (90)–(91) can also be derived by using

the Taylor expansion procedure in Sect. 3 (the derivation is

omitted here), or can be derived by enforcing the repro-

ducing conditions directly on WJ , both of which can also

demonstrate that the discretized form possesses nth order

accuracy. The interested reader is referred to the literature

for these procedures, e.g., [1], and for discussions on

quadrature, see [5].

The set of shape functions WJ xð Þ satisfy the so-called

nth order reproducing conditions, i.e., possess nth order

completeness:

XNP
J¼1

WJ xð ÞH xJð Þ ¼ H xð Þ ð92Þ

or equivalently, as it is often expressed and employed for

better conditioning of the moment matrix:

XNP
J¼1

WJ xð ÞH xJ � xð Þ ¼ H 0ð Þ: ð93Þ

Alternative to the construction in (90)–(91), determination

of quadrature weights may be avoided by constructing the

so-called discrete RK approximation [62], which directly

imposes (92) on a corrected kernel function.

5.2 Discrete implicit gradient approximation

Analogous to the case of the discrete RK approximation

(90), a discrete implicit gradient approximation can be

obtained by employing quadrature on (20) at nodal

locations:

Dh
½n�

h iðaÞ
u xð Þf g¼

XNP
J¼1

HðaÞM xð Þ�1H xJ �xð ÞUa xJ �xð ÞVJuJ

�
XNP
J¼1

WðaÞ
J xð ÞuJ

ð94Þ

where MðxÞ is the same discrete moment matrix in (91). It

is apparent that as in the continuous case, as a special case

of (94) with jaj ¼ 0 we obtain (90), that is

Wð0;0;0Þ
J xð Þ ¼ WJ xð Þ.
So long as the moment matrix is discretized with the

same quadrature in (94), the gradients also enjoy nth order

accuracy, which can be confirmed by deriving (94) from a

Taylor expansion point of view (again the derivation is

omitted here), as in the RK approximation, or by directly

enforcing gradient reproducing conditions on WðaÞ
J .

It can be shown that the derivative approximations (94)

enjoy gradient completeness [55]:

XNP
J¼1

H xJð ÞWðaÞ
J xð Þ ¼ oaH xð Þ: ð95Þ

Or again, analogous to (22),

XNP
J¼1

H xJ � xð ÞWðaÞ
J xð Þ ¼ HðaÞ: ð96Þ

If desired, quadrature weights in implicit gradients may

also be avoided by employing a discrete implicit gradient

approximation [55], which directly imposes (95) on a

corrected kernel.

One final point to note which will be revisited, is that

given a discrete set of scattered data fuJgNPJ¼1, an approxi-

mation to derivatives oau can be obtained at any given

point x of interest using the implicit gradient approxima-

tion, providing a smooth field of derivative estimates in the

entire domain.

5.3 Deformation gradient under discrete implicit
gradient approximation

The discretization of the deformation gradient under the

implicit gradient approximation (45) is calculated in the

Lagrangian coordinates in a similar fashion as the contin-

uous case:

Fij Xð Þ ¼ Iij

þ
XNP
J¼1

Hr
j

h iT
M�1 Xð ÞH XJ � Xð ÞUa XJ � Xð ÞVJuJi

ð97Þ

where Hr
j is the same vector in (46).
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Since the deformation gradient is constructed by discrete

implicit gradients with nth order accuracy (or nth order

consistency), it can again be directly inferred that the dis-

crete deformation gradient (97) possesses nth order accu-

racy without additional analysis needed.

5.4 The discrete deformation gradient
under peridynamics

To discretize (47)–(49), nodal quadrature at NP nodes is

employed in the meshfree implementation [24], similar to

the discrete RK approximation and discrete implicit gra-

dient approximation:

KðXÞ ¼
XNP
J¼1

wdðXJ � XÞ XJ � Xð Þ � XJ � Xð ÞVJ ;

SðXÞ ¼
XNP
J¼1

wdðXJ � XÞ xJ � xð Þ � XJ � Xð ÞVJ :

ð98Þ

The discretized non-local deformation gradient is calcu-

lated from the above quantities as

F ðXÞ ¼ SðXÞ �K�1ðXÞ: ð99Þ

Again, for notational simplicity, depending on the context

it should be understood whether K, S or F is the contin-

uous or discrete form.

5.5 Analysis of the discrete deformation
gradient under peridynamics

Following the procedures in the continuous case in

Sect. 3.6, a Taylor expansion on the displacement in (98)–

(99) obtained from xðXÞ ¼ Xþ uðXÞ yields the discrete

expression:

F ijðXÞ ¼ Iij þ
ouiðXÞ
oXj

þ o2uiðXÞ
oXkoXl

1

2

XNP
J¼1

waðXJ � XÞðXkJ � XkÞ

	ðXlJ � XlÞðXmJ � XmÞK�1
mj ðXÞVJ

þ o3uiðXÞ
oXkoXloXn

1

6

XNP
J¼1

waðXJ � XÞðXkJ � XkÞ

	 ðXlJ � XlÞðXnJ � XnÞðXmJ � XmÞK�1
mj ðXÞVJ

þ Oðd3Þ: ð100Þ

In order to interpret the implications of (100), first consider

the case of a uniform discretization, away from the

boundary, with symmetric influence functions. The fourth

term on the right hand side is an even function (centred

around X) and will be non-zero due to the symmetry and

constant nodal weights. Under these conditions, the fol-

lowing is obtained:

F ijðXÞ ¼ Iijþ
ouiðXÞ
oXj

þ o2uiðXÞ
oXpoXq

1

2

XNP
J¼1

waðXJ �XÞðXpJ �XpÞðXqJ �XqÞ

	ðXmJ �XmÞK�1
mj ðXÞVJ þOðd2Þ:

ð101Þ

In the same situation, the third term disappears, but this

time only at nodal locations due to the discrete quadrature,

as the terms being summed will only cancel when they are

‘‘anti-symmetric’’ (which only occurs at nodal locations):

F ijðXÞ ¼ dij þ
ouiðXÞ
oXj

þOðd2ÞwhenX is a nodal location

ð102Þ

This also indicates that in the general case, it will be non-

zero unless a careful selection of the combination of

influence functions, nodal quadrature weights, and so on,

are selected, as was performed in [52], but is difficult to

generalize to non-uniform discretizations.

Finally, in the case of a non-uniform discretizations, or

even in a uniform discretization near the boundary, and

also away from nodal locations, the third term in (100) will

not disappear and the expression reduces to

F ijðXÞ ¼
oxiðXÞ
oXj

þOðdÞ: ð103Þ

Thus the discrete form and the continuous form share

the similar order of accuracy and behavior in accuracy; in

the best-case they are both second order accurate, and in

the general case, they are first-order accurate.

In summary, the same order of accuracy is attained for

both continuous and discrete versions of implicit gradients,

yet the continuous and discrete versions of the non-local

deformation gradient in peridynamics slightly differ. That

is, the accuracy is second-order in the best case (away from

the boundary, uniform discretizations, symmetric influence

functions), but in the discrete case second-order accuracy

can only be obtained at the nodes in this situation. In the

general case, the constructions are first-order accurate, for

both integral and discrete forms. These situations can be

rectified with the proposed generalized discrete formula-

tion given in Sect. 6.1.

5.6 Comparison between discrete implicit
gradients and peridynamics

In order to facilitate a comparison between the discrete

non-local deformation gradient by peridynamics and the
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discrete RK approximation, we first express the discrete

shape tensors (98) in matrix form:

KðXÞ ¼
XNP
J¼1

wdðXJ � XÞPðXJ � XÞPTðXJ � XÞVJ ;

SðXÞ ¼
XNP
J¼1

wdðXJ � XÞPðxðXJÞ � xðXÞÞPTðXJ � XÞVJ :

ð104Þ

As before, the undeformed shape tensor is coincident with

the Lagrangian RK discrete moment matrix (91) with

a ¼ d, Ua ¼ wd, and linear basis, but omitting the unity

term in the vector HðXÞ.
Following the procedures in Sect. 3.7, the discrete non-

local deformation gradient can be rearranged and expressed

as:

F ijðXÞ ¼ Iij þ
XNP
J¼1

Pr
j

h iT
K�1ðXÞPðXJ � XÞ

	wdðXJ � XÞ uiðXJÞ � uiðXÞ½ �VJ :

ð105Þ

For comparison, the local deformation gradient Fij cal-

culated by discrete implicit gradients (94) with a ¼ d, and
Ua ¼ wd can be expressed as:

FijðXÞ ¼ Iij þ
XNP
J¼1

Hr
j

h iT
M�1ðXÞHðXJ � XÞ

	wdðXJ � XÞ uiðXJÞ½ �VJ :

ð106Þ

It can be seen that in the discrete case, if PðXÞ were to be

employed in the implicit gradient approximation, partition

of nullity would also not be able to be satisfied. This fact is

again ‘‘compensated for’’ in the discrete peridynamic gra-

dient by the summation with uiðXJÞ � uiðXÞ½ � rather than
uiðXJÞ alone. That is, if u ¼ constant then the discrete non-

local deformation gradient still yields the correct result of

F ij ¼ Iij.

Another interesting point is that the gradient approxi-

mation (105) does not allow a continuous gradient field

representation from a discrete set of nodal data, since in

computing the quantity away from the discrete points with

known solutions (e.g., from scattered data or a PDE)

uiðXJÞ, the quantity uiðXÞ is unknown. This places a seri-

ous drawback on the approximation, as it can only yield

gradient estimations at the scattered data points them-

selves, but does not provide for an interpolation function

for the data. Thus formally, the peridynamic approximation

cannot provide a smooth field at all points X in the domain

given a finite set of nodal coefficients fuJgNPJ¼1. It can

however, given a function uðXÞ defined in the entire

domain, provide an estimate of derivatives. Finally, it can

be noted that it would be possible to interpolate the

derivative estimates at nodes, although this yields some

additional complexity.

6 Reproducing kernel peridynamic
approximation

In this section, the discrete form of the reproducing kernel

peridynamic approximation is given. High-order non-local

discrete deformation gradients and non-local divergence

operations are derived, as well as several other discrete

approximations. The order of accuracy of these operators is

also verified numerically.

6.1 Reproducing kernel peridynamic
approximation

Similar to the continuous case, the operations for the dis-

crete approximation of the gradient by peridynamics and

implicit gradients can be unified as follows. First, consider

a discrete approximation of the type (94) with a basis of

monomials from order m to n to estimate gradients of a

scalar field u Xð Þ, with use of uðXJÞ � uðXÞ rather than

uðXJÞ as in (105):

�Dh

½n�

h iðaÞ
u Xð Þf g ¼

XNP
J¼1

QT
½m;n� XJ � Xð Þ

	�b
ðaÞ

Xð Þxl XJ � Xð Þ u XJð Þ � u Xð Þ½ �VJ

�
XNP
J¼1

�WðaÞ
½m;n�J Xð Þ u XJð Þ � u Xð Þ½ �

ð107Þ

where Q½m;n�ðXÞ is the same column vector of the set of

monomials fXbgnjbj¼m as the continuous case. To facilitate

nth order accuracy in this approximation, taking the Taylor

expansion on u XJð Þ in (7) yields:

�Dh

½n�

h iðaÞ
u Xð Þf g ¼ �DðXÞ�J

XNP

J¼1
Q½1;n� XJ � Xð Þ

	QT
½m;n� XJ � Xð Þ�bðaÞ Xð Þxl XJ � Xð ÞVJ

ð108Þ

where �DðXÞ and �J are the same vectors and matrices in the

continuous case (64). Examining (108), it is apparent that

in order to reproduce gradients up to nth order accuracy,

we have the following discrete vanishing moment

conditions:

Computational Particle Mechanics

123



XNP
J¼1

Q½1;n� XJ � Xð ÞQT
½m;n� XJ � Xð Þ�bðaÞ Xð Þxl XJ � Xð ÞVJ

¼ Q
ðaÞ
½1;n�

ð109Þ

where Q
ðaÞ
½m;n� is a again a column vector of fa!dabgnjbj¼m. As

before, when m = 0 and n[ 0 the system is underdeter-

mined and an additional condition is required for deter-

mining �b
ðaÞ
. Imposing the partition of nullity on (107) in

the case of m = 0 and n[ 0:

XNP
J¼1

�WðaÞ
½m;n�J Xð Þ ¼ 0;m ¼ 0; n[ 0 ð110Þ

the system (109) can then be recast with (110) in hand to

yield a determined system for all free variables:

�M½m;n� Xð Þ�bðaÞ Xð Þ ¼ Q
ðaÞ
½m;n� ð111Þ

where

�M½m;n� Xð Þ¼
XNP
J¼1

Q½m;n� XJ�Xð ÞQT
½m;n� XJ�Xð Þxl XJ�Xð ÞVJ :

ð112Þ

A unified discrete approximation is obtained by solving for

�b
ðaÞ

from (111) and substituting into (107):

�Dh

½n�

h iðaÞ
u Xð Þf g ¼

XNP
J¼1

Q
ðaÞ
½m;n�

h iT
�M
�1

½m;n� Xð Þ

	Q½m;n� XJ � Xð Þxl XJ � Xð Þ u XJð Þ � u Xð Þ½ �VJ :

ð113Þ

The approximation in (113) for derivatives is termed the

reproducing kernel peridynamic approximation herein. The

selection of possible values of xl, jaj, n and m, yield both

the discrete implicit gradient approximation, as well as the

manner in which the deformation gradient is approximated

by the discretized version of peridynamics, and as before,

two additional approximations can be obtained which are

termed the nth order non-local deformation gradient, and

nth order non-local higher order derivatives herein:

1. When jaj[ 0, m = 0, xl ¼ Ua, and n is a free variable,

(113) yields the discrete implicit gradient approxima-

tion (94), since Q½0;n�ðxÞ ¼ HðxÞ and Q
ðaÞ
½0;n�ðxÞ ¼ HðaÞ,

and further if m = 0, then the discrete partition of

nullity is satisfied by the imposition of (110), and the

approximation yields:

�Dh

½n�

h iðaÞ
u Xð Þf g ¼

XNP
J¼1

�WðaÞ
½0;n�J xð Þ u XJð Þ � u Xð Þ½ �

¼
XNP
J¼1

�WðaÞ
½0;n�J xð Þu XJð Þ � u Xð Þ

XNP
J¼1

�WðaÞ
½0;n�J xð Þ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

¼
XNP
J¼1

�WðaÞ
½0;n�J xð Þu XJð Þ

¼ Dh
½n�

h iðaÞ
u xð Þf g

ð114Þ

2. When m = 1, n = 1, xl ¼ wd, and jaj ¼ 1 (approxi-

mating first order derivatives only), (113) yields the

discrete peridynamic deformation gradient (105) when

approximating the derivative of ui, since

Q½1;1�ðXÞ ¼ PðXÞ, �M½1;1�ðXÞ ¼ KðXÞ, and when taking

the derivative with respect to Xj we have Q
ðdj1,dj2,dj3Þ
½1;1� ¼

Pr
j and thus

FijðXÞ ’ Iij þ �Dh

½1�

h iðdj1,dj2,dj3Þ
uiðXÞf g

¼ Iij þ
XNP
J¼1

Pr
j

h iT
K�1ðXÞPðXJ � XÞ

	wdðXJ � XÞ uiðXJÞ � uiðXÞ½ �VJ ¼ F ijðXÞ
ð115Þ

3. When m = 1, jaj ¼ 1, xl ¼ wd, and n[ 1 is a free

parameter, when taking the gradient of the displace-

ment ui, (113) yields a nth order accurate non-local

deformation gradient denoted F ½n� herein:

F ½n�
� �

ij
ðXÞ ¼ Iij þ �Dh

½n�

h iðdj1,dj2,dj3Þ
uiðXÞf g ð116Þ

where

�Dh

½n�

h iðdj1,dj2,dj3Þ
¼

XNP
J¼1

Qr
j

h iT
�M
�1

½1;n� Xð Þ

	Q½1;n� XJ � Xð Þwd XJ � Xð Þ u XJð Þ � u Xð Þ½ �VJ

ð117Þ

and Qr
j is the vector in (75).

4. When m = 1, jaj[ 1, and n is a free variable, choosing

xl ¼ wd, (113) yields nth order accurate non-local

higher order derivatives:

�Dh

½n�

h iðaÞ
u Xð Þf g ¼

XNP
J¼1

Q
ðaÞ
½1;n�

� �T
�M
�1

½1;n� Xð Þ

	Q½1;n� XJ � Xð Þwd XJ � Xð Þ u XJð Þ � u Xð Þ½ �VJ ; jaj[ 1

ð118Þ
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As before, a general expression for discrete nth order

accurate non-local derivatives can be found by setting

m = 1 and xl ¼ wd in (113):

�Dh

½n�

h iðaÞ
u Xð Þf g ¼

XNP
J¼1

Q
ðaÞ
½1;n�

� �T
�M
�1

½1;n� Xð Þ

	Q½1;n� XJ � Xð Þwd XJ � Xð Þ u XJð Þ � u Xð Þ½ �VJ :

ð119Þ

It should be noted that similar to the discrete deformation

gradient in (99), this approximation cannot yield a con-

tinuous field of derivative estimates from a set of data

fuJgNPJ¼1, since u Xð Þ would be required at other points aside

from the nodal positions. This again places a limitation on

the approximation. However derivative approximations can

be obtained at the nodal positions XI themselves as:

�Dh

½n�

h iðaÞ
u Xð Þf g


X¼XI

¼
XNP
J¼1

Q
ðaÞ
½1;n�

� �T
�M
�1

½1;n� XIð Þ

	Q½1;n� XJ � XIð Þwd XJ � XIð Þ uJ � uI½ �VJ

ð120Þ

with uJ � u XJð Þ.

In contrast, the implicit gradient approximation (94), as

well as the direct derivative of the RK approximation (90)

can yield an approximation to derivatives of a field at every

point, constructed from a set of scattered nodal data

fuJgNPJ¼1. For the construction in (119), a form of post-

processing or reinterpolation would be involved.

Finally, it is notable that a discrete version of (113) can

be employed that omits quadrature weights entirely. Fol-

lowing the procedures common in the RK literature [1], the

following expression for the discrete reproducing kernel

peridynamic approximation without quadrature can be

shown to maintain nth order accuracy:

D
_ h

½n�

� �ðaÞ
u Xð Þf g

¼
XNP
J¼1

Q
ðaÞ
½m;n�

h iT
M
_ �1

½m;n� Xð ÞQ½m;n� XJ � Xð Þxl XJ � Xð Þ

	 u XJð Þ � u Xð Þ½ �
ð121Þ

where

M
_

½m;n� Xð Þ ¼
XNP
J¼1

Q½m;n� XJ � Xð ÞQT
½m;n� XJ � Xð Þxl XJ � Xð Þ:

ð122Þ

6.2 Deformation gradient test

Here the accuracy of the non-local deformation gradient by

the standard technique (99) and the proposed high-order

technique (116) is assessed and verified. The following

displacement fields are considered, with each component

(i = 1,2, two dimensions) prescribed the same value:

1. First order: u
ð1Þ
i ¼ 2xþ 3y, Fexact ¼ Iþ

2 3

2 3

" #

2. Second order: u
ð2Þ
i ¼ 2x þ 3y þ 2x2 þ 4xy þ 3y2,

Fexact ¼ I þ
2 þ 4x þ 4y 3 þ 6y þ 4x

2 þ 4x þ 4y 3 þ 6y þ 4x

" #

3. Third order: u
ð2Þ
i ¼ 2xþ 3yþ 2x2 þ 4xyþ 3y2þ

x3 þ 2x2yþ 3xy2 þ 4y3,

Fexact

¼Iþ
2þ4xþ4yþ3x2þ4xyþ3y2 3þ6yþ4xþ2x2þ6xyþ12y2

2þ4xþ4yþ3x2þ4xyþ3y2 3þ6yþ4xþ2x2þ6xyþ12y2

" #

The error in F11 and F12 are assessed since each component

of the displacement is the same. Two cases are chosen:

uniform and non-uniform discretizations of a domain [- 1,

1] 	 [- 1, 1] with nodal spacing of 0.2, as shown in Fig. 3.

Two points are chosen as indicated in the figure, to verify

the analysis in Sect. 5.5, for points away from the influence

of the boundary, and points near the boundary. Fixed

horizon to nodal spacing ratios are chosen as 1.75, 2.5, and

3.5 for the linear, quadratic, and cubic formulations,

respectively, and cubic B-spline influence functions in (5)

are employed.

Tables 1 and 2 show the absolute values of the errors for

the different orders of the solution for the uniform and non-

uniform discretizations, respectively. Here, FPD
ij denotes

the standard technique to compute the deformation gradient

(99), while FHOPD
ij denotes the deformation gradient com-

puted with the high-order technique (116), with the order of

accuracy chosen as the solution order. Note that for order 1,

the formulations are co-incident.

Here it can be seen that in uniform discretizations, the

original non-local deformation gradient has second-order

accuracy away from the boundary, but only first order

accuracy in the presence of the influence of the boundary.

For the non-uniform discretization, the deformation gra-

dient is first-order in all cases. This confirms the analysis

and discussions in Sect. 5.5. In contrast, the proposed high-

order formulation yields the desired order of accuracy in all

cases, in both uniform and non-uniform discretizations, as

well as in the presence of a boundary, and verifies the

ability of the formulation to provide arbitrary-order accu-

racy in the discrete case.
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6.3 nth order non-local gradient and divergence
operations

High-order non-local gradient and divergence operations

can be derived from (113) analogous to the continuous

case. Setting m = 1, jaj ¼ 1 and xl ¼ wd in (113) and

casting it as an operator for the non-local first order

derivative with respect to Xj, one obtains:

ru Xð Þ½ �j’ Dr
½n� u Xð Þf g

h i
j
¼

XNP
J¼1

Qr
j

h iT
�M
�1

½1; n� Xð Þ

	Q½1; n� XJ � Xð Þwd XJ � Xð Þ u XJð Þ � u Xð Þ½ �VJ

ð123Þ

where Qr
j is the same vector in (75). In column vector

form, (123) can be expressed as

ru Xð Þ ’ Dr
½n� u Xð Þf g ¼

XNP
J¼1

~Q
rh iT

�M
�1

½1; n� Xð Þ

	Q½1; n� XJ � Xð Þwd XJ � Xð Þ u XJð Þ � u Xð Þ½ �VJ

ð124Þ

where ~Q
r
is the same matrix in (80).

Fig. 3 Nodal discretizations for deformation gradient and force density tests. Left: uniform discretization. Right: non-uniform discretization

Table 1 Absolute values of

errors in deformation gradients

in the uniform node distribution

Solution order Location FPD
11 FPD

12 FHOPD
11 FHOPD

12

1 Interior point A 8.882e-16 8.882e-16 – –

Boundary point B 4.441e-16 8.882e-16 – –

2 Interior point A 8.882e-16 8.882e-16 2.220e-16 1.776e-15

Boundary point B 0.5437 0.1916 8.882e-15 8.882e-16

3 Interior point A 0.0687 0.1792 4.885e-15 3.553e-15

Boundary point B 1.2186 0.2040 5.151e-14 1.421e-14

Table 2 Absolute values of

errors in deformation gradients

in the non-uniform point

distribution

Solution order Location FPD
11 FPD

12 FHOPD
11 FHOPD

12

1 Interior point A 8.882e-16 8.882e-16 – –

Boundary point B 1.332e-15 8.882e-16 – –

2 Interior point A 0.0420 0.0407 2.220e-16 8.882e-16

Boundary point B 0.6975 0.1695 6.306e-14 8.882e-16

3 Interior point A 0.1037 0.2168 1.332e-15 1.332e-15

Boundary point B 1.5561 0.1768 9.237e-13 5.507e-14
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The discrete non-local gradient operation on a vector

field f can then be expressed as:

r� f Xð Þ ’ Dr
½n� � f Xð Þ ¼

XNP
J¼1

~Q
rh iT

�M
�1

½1; n� Xð Þ

	Q½1; n� XJ � Xð Þwd XJ � Xð Þ f XJð Þ � f Xð Þ½ �TVJ :

ð125Þ

Likewise, the discrete non-local divergence on a vector

field f can be expressed as:

r � f Xð Þ ’ Dr
½n� � f Xð Þ ¼

XNP
J¼1

f XJð Þ � f Xð Þ½ �T ~Q
rh iT

	 �M
�1

½1; n� Xð ÞQ½1;n� XJ � Xð Þwd XJ � Xð ÞVJ :

ð126Þ

6.4 High-order force density via non-local
divergence of stress: discrete case

As discussed previously, in the original state-based peri-

dynamic formulation under correspondence, the integral of

the action of force states in terms of the nominal stress rT

can be interpreted as an operator yielding a non-local

divergence operation. In the discrete case, this can be

expressed as:

r � rT Xð Þ !
XNP
J¼1

r Xð ÞK�1 Xð ÞP XJ � Xð Þ
�

�r XJð ÞK�1 XJð ÞP X� XJð Þ
�
wd XJ � Xð ÞVJ

: ð127Þ

The discrete non-local divergence operation that results

from the force state consistent with the high order non-

local deformation gradient can be obtained using the same

correspondence principle, as discussed in Sect. 4.3, and can

be found by discretizing (86):

r � rT Xð Þ !
XNP
J¼1

r Xð Þ ~Q
r� �T

�M
�1

½1;n� Xð ÞQ½1;n� XJ � Xð Þ
�

�r XJð Þ ~Q
r� �T

�M
�1

½1;n� XJð ÞQ½1;n� X� XJð Þgwd XJ � Xð ÞVJ :

ð128Þ

As discussed in Sect. 4.3, when (128) is viewed as a

mathematical operator on rT, it does not possess even 0th

order accuracy in the general case. That is, when the

nominal stress rT is constant, the total force density con-

tribution to a point X may be non-zero. Again, this is also

true of (127), where under a constant state of stress, the

corresponding force-density could be non-zero, and the

original formulation using (127) cannot guarantee even 0th

order accuracy. Thus, again, despite whatever the accuracy

the discrete non-local deformation gradient possesses

(using the original formulation (99) with linear accuracy, or

the high-order formulation (116) with nth order accuracy),

the final solution computed using either (127) or (128) may

not even have 0th accuracy because of the operation of

computing the force density. This assertion will be con-

firmed in Sect. 6.5, and in the numerical examples in

Sect. 8.

Because of this, a discrete non-local divergence of the

nominal stress rT is proposed to replace both (127) and

(128), which can be computed from the generalization of

(126) from vectors to tensors as

Dr
½n� � rT Xð Þ ¼

XNP
J¼1

r XJð Þ � r Xð Þð ÞT ~Q
r� �T

�M
�1

½1;n� Xð Þ

	Q½1;n� XJ � Xð Þwd XJ � Xð ÞVJ :

ð129Þ

For the linear case, the force density computed by the

proposed non-local divergence can be expressed as:

Dr
½1� � rT Xð Þ ¼

XNP
J¼1

r XJð Þ þ r Xð Þð ÞTK�1 Xð Þ

	P XJ � Xð Þwd XJ � Xð ÞVJ :

ð130Þ

Comparing to the standard discrete force density by peri-

dynamics (127), which can also be simplified as

r � rT Xð Þ !
XNP
J¼1

r Xð ÞK�1 Xð Þ þ r XJð ÞK�1 XJð Þ
� �

	P XJ � Xð Þwd XJ � Xð ÞVJ

ð131Þ

it can be seen that constant and linear accuracy (confirmed

in the discrete case now, since the proposed operator is

inherently nth order in the discrete case as well) can be

introduced easily into the existing peridynamics formula-

tion via a small modification.

6.5 Force density test

Consider again the discretizations used in Sect. 6.2, with

the uniform and non-uniform node distributions shown in

Fig. 3. The interior and boundary points are again con-

sidered for testing the discrete force density by peridy-

namics (127) and the proposed non-local divergence of

stress (129). Stresses are computed from the displacements

fields listed in Sect. 6.2, yielding one order lower polyno-

mial in the stress solution. The Lamé constants for this

computation are chosen as Young’s modulus E = 100 and

Poisson’s ratio t = 0.3. The force density computed from

the standard peridynamic technique is denoted T̂ PD

i , while

the force density from the high-order non-local divergence
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operation is denoted T̂ HOPD

i . The order chosen in the

higher-order accurate formulation is chosen to be one order

higher than the stress, corresponding to the case that the

same order of accuracy is used in both the deformation

gradient and the force density calculation.

Tables 3 and 4 show the absolute error in the solution at

the two points of interest, computed using these two

methods for various orders of solutions, both for uniform

and non-uniform discretizations, respectively. It can be

seen that in uniform discretizations, the traditional tech-

nique can compute the correct solution in the interior of the

domain for stress fields up to second-order. On the other

hand, near the boundary, this method does not produce

even 0th order accuracy. That is, when the stress is con-

stant, the force density will be non-zero. For non-uniform

discretizations, the traditional approach does not ever yield

0th order accuracy.

In contrast, the proposed formulation can compute the

exact force density for constant, linear, and quadratic stress

fields, regardless of the nodal arrangement (uniform, non-

uniform), and also in the presence of a boundary. These

numerical tests verify the necessity of the introduction of

the non-local divergence operation introduced in Sect. 6.4.

The numerical examples in Sect. 8 further demonstrate the

consequences of the choice of formulation.

7 The reproducing kernel peridynamic
method

In this section, a short summary of the proposed repro-

ducing kernel peridynamic method is given. First, the

discrete high-order deformation gradient is given in com-

pact form, with some examples of implementation. The

high-order non-local divergence of stress is then intro-

duced, and finally, the node-based collocation formulation

is given.

7.1 High-order non-local deformation gradient

The high-order accurate non-local deformation gradient in

(116) can be expressed succinctly at a node XI as:

F ijðXIÞ ¼ Iij þ
XNP
J¼1

UIJ
j uJi � uIi½ � ð132Þ

where

UIJ
j ¼ Qr

j

h iT
�M
�1

½1;n� XIð ÞQ½1;n� XJ � XIð Þwd XJ � XIð ÞVJ :

ð133Þ

Or, in matrix form, (132) can be expressed as:

Table 3 Absolute values of

errors in force density in the

uniform node distribution

Stress order Location T̂ PD

1 T̂ PD

2 T̂ HOPD

1 T̂ HOPD

2

0 Interior point A 1.705e-13 5.684e-14 1.251e-13 1.051e-13

Boundary point B 3.846e?3 1.602e?3 6.485e-13 5.004e-13

1 Interior point A 4.547e-13 6.821e-13 3.411e-13 2.274e-13

Boundary point B 8.439e?3 4.187e?3 1.387e-11 9.095e-13

2 Interior point A 0.000e?0 2.273e-13 3.411e-13 1.137e-12

Boundary point B 1.176e?4 5.990e?3 8.049e-11 3.638e-12

Table 4 Absolute values of

errors in force density in the

nonuniform node distribution

Stress order Location T̂ PD

1 T̂ PD

2 T̂ HOPD

1 T̂ HOPD

2

0 Interior point A 937.1 657.7 2.012e-13 3.878e-13

Boundary point B 3.204e?3 152.9 1.105e-12 6.027e-13

1 Interior point A 922.4 819.4 3.411e-13 4.548e-13

Boundary point B 6.792e?3 1042.4 4.082e-11 2.956e-12

2 Interior point A 920.5 831.5 3.183e-12 3.411e-13

Boundary point B 9.537e?3 1.921e?3 7.906e-10 5.275e-11
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F ðXIÞ ¼ Iþ
XNP
J¼1

UIJ uJ � uI½ �T ð134Þ

with

UIJ ¼ ~Q
rh iT

�M
�1

½1;n� XIð ÞQ½1;n� XJ � XIð Þwd XJ � XIð ÞVJ :

ð135Þ

To take an example of the terms involved, selecting n = 2,

one obtains the following:

Q½1;2�ðXÞ ¼ X1; X2; X3; X
2
1 ; X

2
2 ;X

2
3 ;X2X3; X1X3; X1X2

� �T
ð136Þ

Qr
1 ¼ 1; 0; 0; 0; 0; 0; 0; 0; 0½ �T

Qr
2 ¼ 0; 1; 0; 0; 0; 0; 0; 0; 0½ �T

Qr
3 ¼ 0; 0; 1; 0; 0; 0; 0; 0; 0½ �T

ð137Þ

�M½1;2� ¼
XNP
J¼1

Q½1;2� XJ � XIð ÞQT
½1;2� XJ � XIð Þwd XJ � XIð ÞVJ

ð138Þ

where we recall here for convince ~Q
r ¼ ½Qr

1 ; Q
r
2 ; Q

r
3 �.

7.2 High-order non-local divergence of stress

With (132) in hand, classical techniques can be employed

to compute the 1st PK stress r at each node. The non-local

divergence of the nominal stress (rT) can then be computed

at node XI as:

Dr
½n� � rT XIð Þ ¼

XNP
J¼1

r XJð Þ � r XIð Þð ÞT ~Q
r� �T

	 �M
�1

½1;n� XIð ÞQ½1;n� XJ � XIð Þwd XJ � XIð ÞVJ

ð139Þ

or, simply,

Dr
½n� � rT XIð Þ ¼

XNP
J¼1

r XJð Þ � r XIð Þð ÞTUIJ ð140Þ

where UIJ is the same term in (135). Finally, the non-local

equation of motion is solved for the proposed formation

under the nodal collocation framework, for all nodes XI

which are not boundary nodes:

€uðXI ; tÞqðXIÞ ¼ Dr
½n� � rT XI ; tð Þ þ bðXI ; tÞ: ð141Þ

Procedures for construction of an elastic stiffness matrix

based on peridynamic-type approximations (134) and (140)

can be found in [63]. For dynamic problems, standard time

integration techniques can be employed to solve the semi-

discrete Eq. (141).

8 Numerical examples

In this section, the order of solution exactness of the col-

location method using (134) and (140), described in

Sect. 7, and the existing peridynamic method using (99)

and (127) are tested, along with their associated conver-

gence rates, with the resulting formulations denoted as PD

for standard state-based peridynamics, and RKPD for the

reproducing kernel peridynamic method, respectively.

Permutations of their operators are also tested to examine

the effect. Nodal quadrature is employed in all approxi-

mations of integrals.

In order to enforce essential boundary conditions, a

ghost boundary layer is considered in the examples, along

with direct enforcement on boundary nodes without a ghost

layer to examine the effect. For ghost nodes, a layer of

uniform ghost nodes is generated with thickness based on

the horizon, sufficient to eliminate effects of a finite

boundary. All boundary conditions are pure Dirichlet, to

set aside any complications with enforcing natural bound-

ary conditions. Finally, in addition to other nodes, ghost

nodes are also employed as collocation points.

As discussed previously, convergence in peridynamics

can be interpreted in a few ways [48]. For one, a non-local

solution can be obtained with d fixed, and one may

examine the error as the nodal spacing goes to zero. The

numerical solution in this case converges to the non-local

solution [46, 48]. On the other hand, as the non-local length

scale in peridynamics goes to zero concurrently with the

nodal spacing in the discretization, the numerical solution

converges to the local solution [48]. In the following

examples, the latter is chosen to be tested. Accordingly,

horizon sizes with a fixed ratio to nodal spacing are chosen

as 1.75, 2.5, and 3.5 for the linear, quadratic, and cubic

order formulations, respectively. All problems are solved

with influence functions chosen as the cubic B-spline in

(5).

8.1 Patch tests

In the following set of patch tests, ‘‘PD’’ denotes the state-

based peridynamic force density and deformation gradient,

while ‘‘RKPD’’ indicates the proposed high-order peridy-

namic formulation for force density and deformation gra-

dient. Permutations of these two formulations are tested in

order to assess and verify the order of accuracy of the

operators involved.

Consider a two-dimensional linear patch test, which

requires recovering the exact solution by a numerical

method when the solution to a boundary value problem is

linear. Zero body force is prescribed with the following

Dirichlet boundary conditions:
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u1 ¼ 0:1 xþ 0:3 y on Cg1 ;

u2 ¼ 0:2 xþ 0:4 y on Cg2 :
ð142Þ With zero body force and the prescribed displacement in

(142), the solution is the same linear displacement (142).

Both the uniform and non-uniform discretizations shown in

Fig. 4 are examined, in order to test the effect of non-

(a) (b)

(c) (d)

Fig. 4 Nodal discretizations for

patch tests: a uniform,

b uniform with ghost nodes with

two layers (used for the

quadratic case), c nonuniform;

and d nonuniform with ghost

nodes with two layers (used for

the quadratic case)

Table 5 Linear patch test

results for peridynamics and

RKPD

Deformation Gradient Force density Discretization Ghost boundary layer L2 error norm

Linear (standard) PD Uniform No 0.072

Linear (standard) PD Uniform Yes 2.923e216

Linear (standard) RKPD Uniform No 3.043e216

Linear (standard) PD Non-uniform No 0.239

Linear (standard) PD Non-uniform Yes 0.358

Linear (standard) RKPD Non-uniform No 1.112e215

Rows of text in boldface indicates the method passes the patch test
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uniformity of node distributions. Here, the case with two

layers of ghost nodes necessary to eliminate the boundary

effect for the quadratic test is depicted for illustration. For

the non-uniform case, the nodes in the uniform dis-

cretization are perturbed away from their original position

in a random fashion, as shown in Fig. 4.

Table 5 shows the results for the linear patch test under

various conditions. Note that the deformation gradient with

linear accuracy under RKPD is coincident with the stan-

dard peridynamic deformation gradient, although the force

density is not. First, it can be seen that the original for-

mulation can only pass the linear patch test under a uniform

discretization with ghost boundary nodes. On the other

hand, RKPD is able to pass the patch test without ghost

nodes, and in both uniform and non-uniform

discretizations.

The deformation gradient analysis and tests show that

the standard peridynamic deformation gradient exhibits at

least linear accuracy in all situations: for a linear dis-

placement field, such as the one in this problem, the

associated constant deformation gradient is calculated

exactly. Thus in this problem, the peridynamic force den-

sity is operating on a constant stress field. In the case of a

non-uniform discretization and/or without ghost nodes, the

standard peridynamic method fails the patch test, indicat-

ing that the peridynamic force density, considered as a

mathematical operator on the stress, does not possess 0th

order accuracy in non-uniform discretizations or near the

boundary of the domain, which is confirmed also by the

tests made in Sect. 6.5. On the other hand, these results

confirm that the force density is at least 0th order accurate

in uniform discretizations and away from the boundary,

since in this problem it operates on a constant stress, and

the patch test is passed in a uniform discretization with

ghost nodes.

Now consider a quadratic patch test with the exact

solution:

u1 ¼ 0:12 xþ 0:14 yþ 0:16 x2 þ 0:18 x yþ 0:2 y2;

u2 ¼ 0:11 xþ 0:13 yþ 0:15 x2 þ 0:1 x yþ 0:21 y2:

ð143Þ

The procedure to design such a higher-order patch test

(boundary conditions and other prescribed data) has been

described in various references (cf. [41]).

Table 6 shows the results using both linear accuracy in

the deformation gradient (PD, RKPD coincident) and

quadratic accuracy using RKPD, under various conditions.

Once again the standard peridynamic method exhibits

quadratic exactness in uniform discretizations with ghost

nodes, which agrees with the analysis and other numerical

tests herein. However when one or more of these

conditions is violated, the method fails to pass the patch

test. The implications are discussed as follows.

Peridynamics in a uniform discretization with ghost

nodes will calculate the exact linear deformation gradient

for quadratic displacements; thus the peridynamic force

density in this problem operates on a linear stress. And

since the quadratic patch test is passed with peridynamics

only in uniform discretizations with ghost nodes, this

indicates that the peridynamic force density operation on

the stress is at least first-order accurate in uniform dis-

cretizations, away from a boundary. And otherwise, the

operator is again not even 0th order accurate, as in these

cases the method fails the patch test.

Finally, the proposed formulation with second-order

deformation gradient and second-order non-local diver-

gence of stress can pass the quadratic patch test under both

uniform and non-uniform discretizations, and does not

need ghost nodes.

Next, a cubic patch test is considered. The boundary

conditions and body force are prescribed according to the

exact displacement solution:

u1 ¼ 0:12 xþ 0:14 yþ 0:16 x2 þ 0:18 x yþ 0:2 y2

þ 0:02 x3 þ 0:04 x2yþ 0:06 xy2 þ 0:08 y3;

u2 ¼ 0:11 xþ 0:13 yþ 0:15 x2 þ 0:1 x y

þ 0:21y2 þ 0:11x3 þ 0:09x2yþ 0:07 xy2 þ 0:1y3:

ð144Þ

The results under the various conditions and permutations

of formulations are shown in Table 7. With cubic accuracy

in the deformation gradient, the exact quadratic deforma-

tion gradient is obtained under RKPD. Thus the standard

peridynamic force density in this problem operates in some

cases on a quadratic stress, and from the results in the patch

test, the correct result can be obtained with uniform dis-

cretization and using a boundary layer. With this test, it is

apparent that the original deformation gradient and the

original force density can both yield quadratic accuracy in

a uniform discretization away from the boundary, but in the

general case, the force density operator does not possess

even 0th order accuracy.

On the other hand, RKPD is seen to pass the patch test

when both the deformation gradient and force density are

calculated using the proposed formulation with cubic

accuracy. Ghost nodes are not necessary, and it can pass

the cubic patch test in a non-uniform discretization.

One final interesting note, is that formulations using two

operators with quadratic accuracy can pass the cubic patch

test in uniform discretizations with ghost nodes (i.e., the

standard technique in uniform discretizations with ghost

nodes, and RKPD). That is, when two operators of a certain

order are used in conjunction with one another (such as a
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deformation gradient paired with the force density here),

the combined formulation possesses one order of accuracy

higher, at least in uniform discretizations, away from the

boundary. This observation is consistent with the results of

the recursive gradient technique of using two combined

operators [37].

Table 6 Quadratic patch test

results for peridynamics and

RKPD

Deformation gradient Force density Discretization Ghost boundary layer L2 error norm

Linear (standard) Standard Uniform No 0.122

Linear (standard) Standard Uniform Yes 2.13E216

Linear (standard) RKPD Uniform No 0.037

Linear (standard) RKPD Uniform Yes 2.15E216

Linear (standard) Standard Non-uniform No 0.254

Linear (standard) Standard Non-uniform Yes 0.388

Linear (standard) RKPD Non-uniform No 0.019

Linear (standard) RKPD Non-uniform Yes 0.019

Quadratic (RKPD) Standard Uniform No 4.847

Quadratic (RKPD) Standard Uniform Yes 0.487

Quadratic (RKPD) RKPD Uniform No 8.89E215

Quadratic (RKPD) Standard Non-uniform No 19.63

Quadratic (RKPD) Standard Non-uniform Yes 0.729

Quadratic (RKPD) RKPD Non-uniform No 1.37E214

Rows of text in boldface indicates the method passes the patch test

Table 7 Cubic patch test results

for peridynamics and RKPD
Deformation gradient Force density Discretization Ghost boundary layer L2 error norm

Linear (standard) Standard Uniform No 0.1472

Linear (standard) Standard Uniform Yes 3.19E215

Linear (standard) RKPD Uniform No 0.0458

Linear (standard) RKPD Uniform Yes 2.58E215

Linear (standard) Standard Non-uniform No 0.2839

Linear (standard) Standard Non-uniform Yes 0.4576

Linear (standard) RKPD Non-uniform No 0.0534

Linear (standard) RKPD Non-uniform Yes 0.0201

Quadratic (RKPD) Standard Uniform No 7.6464

Quadratic (RKPD) Standard Uniform Yes 1.20E214

Quadratic (RKPD) RKPD Uniform No 0.0051

Quadratic (RKPD) RKPD Uniform Yes 1.24E214

Quadratic (RKPD) Standard Non-uniform No 36.2528

Quadratic (RKPD) Standard Non-uniform Yes 0.6386

Quadratic (RKPD) RKPD Non-uniform No 0.0102

Quadratic (RKPD) RKPD Non-uniform Yes 0.0059

Cubic (RKPD) Standard Uniform No 5.3107

Cubic (RKPD) Standard Uniform Yes 2.02E214

Cubic (RKPD) RKPD Uniform No 1.40E213

Cubic (RKPD) Standard Non-uniform No 4.3538

Cubic (RKPD) Standard Non-uniform Yes 0.5503

Cubic (RKPD) RKPD Non-uniform No 7.40E214

Rows of text in boldface indicates the method passes the patch test
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8.2 One-dimensional convergence
in a manufactured solution

Consider the following one-dimensional equation:

d2u

dx2
¼ ex ð145Þ

over the domain [- 1, 1], with boundary conditions:

u � 1ð Þ ¼ e�1

u 1ð Þ ¼ e
ð146Þ

This problem can be considered a one-dimensional elastic

bar with unit Young’s modulus, with a high-order body

force term. The solution to this problem is u ¼ ex.

Two cases are considered of uniform and non-uniform

discretizations. The uniform case is discretized with nodal

spacing h ¼ [1=4, 1=8, 1=16, 1=32], as shown in Fig. 5a.

For the non-uniform case, shown in Fig. 5b, the first

refinement of the uniform case is perturbed, with each

subsequent refinement adding nodes at the halfway point

between two nodes.

The first case tested is the standard peridynamic for-

mulation (PD) and higher-order peridynamics (RKPD)

with linear accuracy. In this case, the deformation gradient

calculations are the same, but the force densities differ. The

convergence of the solutions in the L2 norm for uniform,

non-uniform, ghost nodes, and no ghost nodes are shown in

Fig. 6. Here it can be seen that the only case in which the

standard peridynamic formulation converges is in the uni-

form case with ghost nodes. This could be attributed to the

fact that in non-uniform discretizations, or in the presence

of a finite boundary, the force density operation on the

stress does not possess 0th order consistency. On the other

hand, the proposed RKPD formulation converges at the

rate of two (n ? 1) for both uniform and non-uniform

discretizations, with and without ghost nodes. These results

confirm the necessity of a high-order non-local divergence

for a high-order numerical solution, that is, a high-order

non-local deformation gradient alone is insufficient for

high-order accuracy.

Finally, it should be noted that the rate of n ? 1 for this

odd-order approximation indicates superconvergence of

the solution. That is, in nodal collocation approaches, the

rate of n - 1 is observed for odd orders of accuracy

[17, 36, 37, 40], with the further implication that linear

completeness does not yield convergence. Meanwhile, the

present formulation can converge with linear accuracy.

This could be attributed to the fact that in essence, the

combination of the two linear operators here produce

something akin to higher-order differentiation, which is

similar to the recursive gradient technique recently intro-

duced [37], where linear basis was shown to be sufficient

(a)

(b)

Fig. 5 One-dimensional nodal discretizations and refinements for

convergence test: a uniform; and b nonuniform
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Fig. 6 One-dimensional convergence test for PD and linear RKPD: a uniform discretization, b non-uniform discretization. In the uniform case

(a), the case of PD with ghosts gives nearly identical results as RKPD with ghosts. Slope of n ? 1 is indicated
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for convergence in strong form collocation, while also

exhibiting the superconvergence phenomenon.

The second case considered is a quadratic-order defor-

mation gradient paired with the standard force density,

denoted ‘‘PD’’ and the high-order force density, denoted

‘‘RKPD’’, respectively, in order to test the effect of the

different permutations, as well as the proposed RKPD

formulation. Figure 7 shows the convergence plots for the

cases tested. Here it can again be seen that using both the

high-order deformation gradient and the high-order force

density yields consistently convergent results. In addition,

the proposed RKPD formulation can provide much lower

errors than PD, and yields convergent solutions in both

uniform and non-uniform cases tests, as well as with and

without ghost nodes. On the other hand, the other cases

either slowly converge, or do not converge at all. A slope

of two (n) is indicated in the figures, where it can be seen

that RKPD obtains rates consistent with nodal collocation

of the strong form [17, 36–38]. That is, for even orders of

accuracy, a rate of n is expected, and is obtained with the

current formulation.

Finally, the cubic RKPD deformation gradient is tested,

paired with the traditional force density, denoted ‘‘PD’’,

and the high-order force density, denoted ‘‘RKPD’’. Fig-

ure 8 shows that the proposed formulation converges at the

rate of n ? 1, while PD does not converge at all. This again

indicates superconvergence for odd orders of approxima-

tion (two orders higher than n - 1 for standard nodal

collocation formulations). In addition, the high-order

accuracy can be obtained in uniform and non-uniform

discretizations, with and without ghost nodes.
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Fig. 7 One-dimensional convergence test for PD and quadratic RKPD: a Uniform discretization, b non-uniform discretization. Slope of n is

indicated
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Fig. 8 One-dimensional convergence test for PD and cubic RKPD: a uniform discretization, b non-uniform discretization. Slope of n ? 1 is

indicated
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8.3 Convergence in a manufactured 2-D solution

A two dimensional manufactured plain-strain elasticity

problem is considered over a domain [- 1, 1] 9 [- 1, 1]

with the following exact solution:

u1 ¼ sin
px
2

� �
cos

py
2

� �
;

u2 ¼ cos
px
2

� �
sin

py
2

� �
:

ð147Þ

Accordingly, the body force density components associated

with this solution, given in components are

b1 ¼ � E 1� tð Þp2
2 2t2 þ t� 1ð Þ sin

px
2

� �
cos

py
2

� �
;

b2 ¼ � E 1� tð Þp2
2 2t2 þ t� 1ð Þ cos

px
2

� �
sin

py
2

� �
:

ð148Þ

where E is Young’s modulus, with E = 100,000 and t is

Poisson’s ratio, with t = 0.3 in this example. The essential

boundary conditions on all four edges of the domain are

given by the displacement in (147).

As before, uniform and non-uniform discretizations are

considered, shown in Fig. 9, with and without ghost

boundary nodes, resulting in four test cases. The ghost

nodes are uniform and the thickness of the ghost layer is

selected to be sufficient to eliminate any effect of the

boundary on the approximations, as in the previous

examples.

First, linear accuracy in the deformation gradient (PD,

RKPD coincident) paired with both the standard force

density (denoted PD) and the proposed high-order force

density (denoted RKPD) is considered. Figure 10 shows

the convergence of the solution for both uniform and non-

uniform discretizations. PD without ghost nodes converges

Fig. 9 Two-dimensional nodal

discretizations and refinements

for convergence test: a uniform;

and b nonuniform
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Fig. 10 Two-dimensional convergence test for PD and linear RKPD: a uniform discretization, b non-uniform discretization. In the uniform case

(a), the case of PD with ghosts gives nearly identical/overlapping results as RKPD with ghosts. Slope of n ? 1 is indicated
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at a rate of approximately one in the uniform case without

ghost nodes, and approximately two in the case of a uni-

form discretization with ghost nodes. PD is seen to

essentially not converge at all in the non-uniform case,

likely due to the lack of consistency in the operation on

stress to produce the force density in the standard

formulation.

Finally, it is again seen that the proposed formulation

can consistently give convergent results across all types of

discretizations, with the superconvergent rate of n ? 1,

rather than n - 1 in standard direct nodal collocation

techniques.

A second-order case is considered next, with RKPD

denoting second-order accurate operators, and PD denoting

the second-order accurate deformation gradient paired with

the standard force density. Figure 11 shows the

convergence behaviour of the various permutations in

discretizations and solution techniques. The trend is similar

to the one-dimensional case. Here, it is seen that second-

order convergence is obtained (order n), which is consistent

with nodal collocation approaches with even-order accu-

racy. For the PD formulation, the solution is again seen to

converge slowly or not at all, and in the case of PD without

ghost nodes, the solution is seen to diverge in non-uniform

discretizations.

Finally, the cubic case is considered. RKPD again

denotes the pairing of the high-order deformation gradient

and non-local divergence, while PD denotes the high-order

deformation gradient paired with the standard force den-

sity. Figure 12 shows that the proposed RKPD formulation

converges in all situations with the superconvergent rate of

n ? 1 (rather than n - 1), both with or without ghost
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Fig. 11 Two-dimensional convergence test for PD and quadratic RKPD: a uniform discretization, b non-uniform discretization. Slope of

n indicated
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Fig. 12 Two-dimensional convergence test for PD and cubic RKPD: a uniform discretization, b non-uniform discretization. Slope of n ? 1

indicated
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nodes, and in uniform and non-uniform discretizations.

Similar to other cases, the PD approach either converges

incrementally, or not at all.

9 Conclusion

A unification of local and non-local meshfree approxima-

tions is presented and is termed the reproducing kernel

peridynamic approximation. The continuous, or integral

form is presented, as well as the discrete form. With the

selection of free parameters, the generalized approximation

can yield both the implicit gradient approximation, and the

way in which state-based peridynamics under the corre-

spondence principle approximates derivatives via the non-

local deformation gradient. Perhaps just as important, the

generalization yields the ability to obtain arbitrary-order

accurate non-local gradient and divergence operations, as

well as higher-order non-local derivatives, with arbitrary

accuracy as well. Thus, the formulation generalizes and

formalizes the concept of non-local derivatives beyond

first-order.

The framework also demonstrates that the non-local

deformation gradient is not in fact equivalent to the

implicit gradient approach, which has been speculated

previously. In addition, it has been shown that the peri-

dynamic differential operator is equivalent to the implicit

gradient approximation, which by analogy is not equivalent

to the generalization of the non-local approximation of

derivatives.

The analysis presented demonstrates that the continuous

form of the non-local deformation gradient is at best sec-

ond-order accurate, but in the general case near the influ-

ence of a boundary, is first-order. In the discrete case, this

deformation gradient is also at best second-order accurate,

in the case of uniform nodal distributions, away from the

influence of the boundary, but only at nodal locations. In all

other situations, it is first-order accurate. Several numerical

examples are provided to confirm this analysis.

The force density in terms of the stress, obtained via the

standard peridynamic formulation is also found to be at

best, second-order accurate, and at worst, without any order

of consistency, which has been confirmed numerically

using several tests. This work proposes a high-order

accurate non-local divergence operation on the stress to

replace this force density, in order to obtain globally high-

order accurate numerical solutions. The pairing of the high-

order non-local deformation gradient, along with the high-

order non-local divergence of stress is termed the repro-

ducing kernel peridynamic (RKPD) method. The method is

tested under the collocation framework, although weak

formulations are also certainly possible. It is suspected

however, that in addition to the computational expense of

double integrals, numerical integration may play a key role

on the convergence of the method, as in local Galerkin

meshfree methods [1].

The numerical examples demonstrate that the existing

peridynamic formulation can pass the linear, quadratic, and

cubic patch tests, but only in uniform discretizations, with

ghost nodes. In all other situations, the method fails to pass

any patch test. On the other hand, the proposed formulation

is able to pass arbitrary-order patch tests in both uniform

and nonuniform discretizations, with and without ghost

nodes.

The examples further show that the existing peridy-

namic formulation can generally converge at rates of two

and one for uniform discretizations, with and without ghost

nodes, respectively. The examples further demonstrate that

in non-uniform discretizations, the standard deformation-

gradient based peridynamic formulation essentially does

not converge at all. This situation can be rectified by the

proposed formulation, which shows consistent convergence

behavior in both uniform and non-uniform discretizations,

with and without ghost nodes. One noteworthy aspect of

this approach is that linear accuracy will still yield con-

vergent results, in contrast to the standard collocation

approach. In addition, the proposed formulation exhibits

superconvergence: a rate of n is obtained for even orders of

accuracy, and n ? 1 for odd orders. This is in contrast to

typical nodal collocation approaches, where the rates

observed are n and n - 1 for even and odd orders,

respectively.

So far, the convergence behavior has been tested with

respect to local solutions. Quadrature weights were also

employed in the approximation, which are not necessary to

obtain nth order accuracy. In addition, all problems tested

were with pure Dirichlet boundary conditions. Finally, the

performance against some existing similar methods, such

as collocation with implicit gradients, or collocation with

explicit gradients, was not tested, although the present

generalized formulation can encapsulate these methods.

Future work could examine the convergence to non-local

solutions, natural boundary conditions, the approximation

accuracy of the non-local approximation with and without

quadrature weights, comparisons with similar numerical

formulations, as well as formulation of the RKPD method

under the Galerkin framework.

Other future work could possibly leverage the unifica-

tion presented for techniques that have been extensively

developed for local methods over the past several decades,

such as the use of enrichment functions. Finally, the higher

order non-local derivatives that can be obtained by the

formulation have not been investigated for any particular

use yet. Two possibilities would be to employ the non-local

derivatives to directly discretize partial differential equa-

tions, or employ them for strain regularization in order to
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avoid ambiguous boundary conditions. The direct dis-

cretization of derivatives however, is suspected to yield the

typical collocation convergence rates, rather than the

superconvergent rates of the present formulation.

One last point, the importance of which was emphasized

by feedback from a talk on this method by the late Steve

Attaway, is that under this unification, state-based peridy-

namic codes can be converted to use local meshfree

approximation methods, while local meshfree codes can be

converted to use non-local peridynamic approximations.
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Appendix A: Higher order reductions
and expansions

One may cast the generalization of peridynamics to nth

order accuracy in terms of the entities of states given forth

in [20]. We briefly recall some basic definitions and

operations given and proceed to generalize them (for fur-

ther details and definitions, the reader is referred to [20]).

First, the expansion of a tensor A to a state A is defined

as

A ¼ EðAÞ Xh i ¼ A � X ð149Þ

for all vectors X. To relate a state to a tensor, a principle

called reduction can be employed. First, define the refer-

ence shape tensor by the ‘‘*’’ operation for states, with X

by itself:

KðXÞ ¼ X 
 X

�
Z

HX

wdðX0 � XÞX X0 � Xh i � X X0 � Xh idX0

ð150Þ

where X is the reference position vector state defined by

X X0 � Xh i ¼ X0 � X. The shape tensor KðXÞ describes the
undeformed configuration around the point X. Then the

reduction of a state A to a tensor A is defined as

A ¼ <ðA) = (A 
 XÞ �K�1 ð151Þ

It can be shown [20] that the reduction of a state obtained

by the expansion of a tensor A is the same tensor A, that is,

<ðEðA)) = A.

To relate the deformation state Y X0 � Xh i ¼ x0 � x to a

non-local deformation gradient F , the reduction in (151)

can be applied to Y:

F ðYÞ ¼ <ðY) = (Y 
 XÞ �K�1 ð152Þ

The above is often expressed as

F ðYÞ ¼ S �K�1 ð153Þ

where

SðXÞ ¼ Y 
 X

¼
Z

HX

wdðX0 � XÞY X0 � Xh i � X X0 � Xh idX0

ð154Þ

is the deformed shape tensor which describes the deformed

configuration around the point X.

In order to generalize the concept of reduction, first

define a state f which maps a vector X � Rd onto a vector

f � Rq containing the complete nth order monomials

greater than order zero, where q ¼ ðnþ d)!=ðn!d!) - 1 is

the total number of monomials and:

f Xh i ¼ f ¼ ½X1; X2; X3; X2
1 ; . . . ; X

n
3 �: ð155Þ

We then define the nth order reference shape tensor:

K½n�ðXÞ ¼ f 
 f

¼
Z

HX

wdðX0 � XÞf X0 � Xh i � f X0 � Xh idX0

ð156Þ

One can then define the nth order reduction of a state A to a

second-order tensor A � Rd

<½n�ðA) = (A 
 fÞ K½n�
	 
�1�Q̂ ð157Þ

where Q̂ ¼
P3

i¼1
~d
½i� � d½i�; ~d

½i�
and d½i� are identity-type

vectors ~d
½i� ¼ d1i d2i d3i 0 . . . 0½ � and d½i� ¼ d1i d2i d3i½ �,

of length q and three, respectively. It can be seen that the

reduction (151) is the case of (157) with n = 1.

We may also define the nth order expansion, analogous

to (149):

E½n�ðAÞ fh i ¼ A � f 8f ð158Þ

If the a state A is expanded from a second-order tensor A,

i.e., Ah�i ¼ E½n�ðAÞh�i, then the reduction (157) of the

expansion (158) gives A:
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<½n�ðAÞ ¼ ðA 
 fÞ � K½n�
	 
�1�Q̂

¼
Z

HX

wdðX0 � XÞA � f� fdX0

0
B@

1
CA � K½n�

	 
�1�Q̂

¼ A �K½n� � K½n�
	 
�1�Q̂

¼ A

ð159Þ

The nth order reduction of the deformation state Y yields

an nth order non-local deformation gradient tensor F ½n�:

F ½n� ¼ <½n�ðY) = S½n� � K½n�
	 
�1�Q̂ ð160Þ

where S½n�ðXÞ is a high-order deformed shape tensor and

K½n�ðXÞ is the high order reference shape tensor in (156)

S½n�ðXÞ ¼
Z

HX

wdðX0 � XÞY X0 � Xh i � f X0 � Xh idX0

K½n�ðXÞ ¼
Z

HX

wdðX0 � XÞf X0 � Xh i � f X0 � Xh idX0

ð161Þ

The high-order non-local deformation gradient (160) is

identical to the one expressed in (73).

Appendix B: A force state for high-order
non-local deformation gradients

A force state corresponding to the high-order deformation

gradient can be obtained via energy principles [20]:

DW ¼ oX
oF ij

DF ij

¼ oX
oF ij

DF ijk � DYk

¼ rijDF ijk � DYk

ð162Þ

where rij is the first Piola–Kirchhoff stress tensor, and the

dot product ‘‘�’’ for states is defined as

A � B ¼
Z

HX

wdðX0 � XÞA X0 � Xh i � B X0 � Xh idX0 ð163Þ

Using (160) and (161) we have the explicit expression

F ½n�ðY) =
Z

HX

wdðX0 � XÞY X0 � Xh i � f X0 � Xh i

� K½n�
	 
�1�Q̂ dX0 ð164Þ

so that

F ½n�ðYþ DYÞ ¼ F ½n�ðYÞ þ
Z

HX

wdðX0 � XÞDY X0 � Xh i

� f X0 � Xh i � K½n�
	 
�1�Q̂ dX0

ð165Þ

Writing in component form,

F ½n�
� �

ij
ðYþDY) = F ½n�

� �
ij
ðYÞ

þ
Z

HX

wdðX0 �XÞDYi X
0 �Xh if

p
X0 �Xh i K½n�

	 
�1

pr
Q̂rjdX

0

ð166Þ

we have, rearranging (166),

F ½n�
� �

ij
ðYþDYÞ

þ
Z

HX

wdðX0 � XÞdkiDYk X0 � Xh if
p
X0 � Xh i K½n�

	 
�1

pr
Q̂rjdX

0

¼ F ½n�
� �

ij
ðYÞ þ DYk � DF ½n�

� �
ijk

ð167Þ

where

DF ½n�
� �

ijk
¼ wdðX0 � XÞdkifp X0 � Xh i K½n�

	 
�1

pr
Q̂rj ð168Þ

Then using (162) we have

DW ¼ rij DF ½n�
� �

ijk
�DYk

¼ rijwdðX0 � XÞdkifp X0 � Xh i K½n�
	 
�1

pr
Q̂rj � DYk

¼ rkjwdðX0 � XÞf
p
X0 � Xh i K½n�

	 
�1

pr
Q̂rj � DYk

¼ rkjwdðX0 � XÞQ̂rj K½n�
	 
�1

pr
f
p
X0 � Xh i � DYk

ð169Þ

For an elastic peridynamic continuum [20], T ¼ DWðYÞ
and thus we have

Ti ¼ wdðX0 � XÞrijQ̂rj K½n�
	 
�1

rp
f
p
X0 � Xh i ð170Þ

Finally, using the Piola transformation for the first PK

stress rij ¼ JsikF�1
jk where J ¼ detðF Þ and s is the Cauchy

stress, it can be shown that the definition of the force state

(170) satisfies angular momentum according to the

requirements put forth in [20]:
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Z

HX

Y X0 �Xh i	T X0�Xh idX0

0
B@

1
CA

i

¼eijk

Z

HX

Yj X
0�Xh iwdðX0 �XÞ JsksF�1

qs

� �
Q̂pq K½n�

	 
�1

pr
f
r
X0�Xh idX0

0
B@

1
CA

¼eijk JsksF�1
qs

� �
Q̂pq K½n�

	 
�1

pr

Z

HX

Yj X
0�Xh iwdðX0 �XÞf

r
X0�Xh idX0

0
B@

1
CA

¼eijk JsksF�1
qs

� �
Q̂pq K½n�

	 
�1

pr
S½n�
	 


jr

¼eijk JsksF�1
qs

� �
F jq

¼eijkJsksdjs
¼eijkJskj
¼0

ð171Þ

where eijk is the Levi-Civita symbol.
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6. Strouboulis T, Copps K, Babuška I (2001) The generalized finite

element method. Comput Methods Appl Mech Eng

190(32–33):4081–4193
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