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Résumé — For extremely large deformation problems in solid mechanics, the Lagrangian finite element
approach is often ineffective. Galerkin meshfree methods developed extensively over the past twenty
years and are sufficiently mature to handle simulations involving large deformations with relative ease.
Many state-of-the-art advances in these methods have been implemented into a research code called
Meshfree Explicit Galerkin Analysis (MEGA) at The Pennsylvania State University. The code has been
validated and verified against both linear and nonlinear mechanics benchmark solutions.
Mots clés — meshfree methods, finite strain, explicit dynamics.

1 Introduction

Galerkin meshfree methods offer a path forward to compute solutions to extremely large deformation 
problems where the traditional finite element approach is generally ineffective [1]. A meshfree discreti-
zation is simply a point-cloud of nodes and surface information and constructs shape functions directly 
in Cartesian coordinates. Thus, a meshfree approach and does not rely on a mesh to construct approxima-
tion functions ; this difference between the traditional finite element method is contrasted in Figure 1 [1]. 
Correspondingly, these methods offer significant advantages in extremely l arge deformation problems 
where Lagrangian finite elements become distorted or entangled. This is made possible by the fact that 
node connectivity and shape functions can be continually reconstructed, rather than being dictated by a 
Lagrangian element topology.

The Meshfree Explicit Galerkin Analysis (MEGA) code is an explicit, large-strain nonlinear dynamic 
code based on the meshfree Reproducing Kernel Particle Method (RKPM) [2, 3]. The reproducing kernel 
approximation is employed for test and trial functions resulting in a Bubnov-Galerkin discretization in 
space under the Updated Lagrangian formulation [4]. In order to handle extreme deformations where the 
mapping between undeformed configuration and current configuration is no longer valid, a semi-
Lagrangian RKPM discretization [5] is employed which constructs the meshfree approximations in 
the current configuration.

Nodal integration is employed for (spatial) domain integration, i.e., meshfree particles (or nodes) 
are used as the integration points themselves. Thus, the meshfree particles serve as Lagrangian material 
points, allowing natural treatment of path-dependent material models. A strain-smoothing method called 
Stabilized Non-conforming Nodal Integration (SNNI) [5] is adopted in MEGA in order to remedy the

(a) (b)

FIGURE 1 – (a) A Finite Element shape function in the global domain and (b) Meshfree shape function.
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instability inherent in nodal integration and to provide improved solution accuracy over direct nodal 
integration. Naturally Stabilized Nodal Integration [6] is further introduced under the strain-smoothing 
framework, which provides additional coercivity in nodal integration.

With the meshfree spatial discretization in hand, time-space calculations are performed using the 
Newmark-β time integration scheme [7] with the central difference method. To make the algorithm fully 
explicit, a lumped mass matrix is utilized, along with mass-proportional damping.

The remainder of this paper is organized as follows. First, the code structure is discussed in Sec. 2 
along with user input and code execution. Governing equations and the meshfree discretization of the 
equations are given in Sec. 3. Numerical quadrature via enhanced nodal integration is discussed in 
Sec. 4, and time integration of the semi-discrete form is discussed in Sec. 6. Constitutive modeling is 
treated in Sec. 5, and numerical examples are given in Sec. 7. Finally, a summary of current capabilities 
and limitations, and future directions are given in Sec. 8.

2 Computer Implementation

2.1 MEGA Code Structure

MEGA is a parallel Fortran90 code which employs Open Multi-Processing (OpenMP) for a shared 
memory implementation, suitable for running in a workstation environment. The code structure follows 
the algorithms outlined in Sections 3-6, and is summarized in Algorithm 1.

Data: Model and input parameters : Control.dat and *.k (Section 2.2) 
Result: VTK file with nodal data requested in the control file (Section 2.3) 
Initialize OpenMP;
Generate nodal volumes, supports, and smoothing cells;
Assign boundary conditions, material properties and other attributes to nodes; 
Log model, control parameters, and nodal properties;
while time < total simulation time do

Form predictors (Section 6);
Do node search;
for all selected nodes do

Pick up nodal data from global arrays;
Construct shape functions (Section 3);
Calculate strain (Section 4);
Calculate stress and assemble the contribution of this node to the internal force
(Section 5);

end
Assemble the contribution of this thread to the global internal force;
Generate physical displacements from generalized displacements;
Update nodal positions;
Calculate acceleration from equation of motion;
Calculate correctors and assign boundary conditions (Section 6);
if output timer has passed the output frequency then

Output data;
Reset the timer;

end
Log the estimates of total simulation time remaining; 

end
Algorithm 1: Structure of the MEGA program

2.2 MEGA Input and Execution

Two files are required for running MEGA. The first file called the model file provides the geometric
definition of the problem along with the identification of sets of nodes. This file has an LS-DYNA input
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*MODEL
# Name
taylorbar.k

*TIME PARAMETERS
# TIME_END
1.0E-04
#IAUTO_TS (AUTO TIME STEP = 1)
1
# FACTOR
0.9

*SET NAME
# SET NO (in CUBIT or TRELIS)
1
#NAME OF THIS SET
BAR

*SET NAME

#SET NO (in CUBIT or TRELIS)
2
#NAME OF THIS SET
WALL

*BOUNDARY CONDITION
#SET NO. OR NODE SET NAME
WALL
#FIXITY
0 0 1

*INITIAL CONDITION
#SET NO. OR NODE SET NAME
BAR
#VEL
0 0 -373

*MATERIALS
#SET NO. OR NODE SET NAME

BAR
#TYPE
2
#props
0.3 78.2e9 2700 0.29e9 125
0.1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

*OUTPUT PARAMETERS
#TIME_OUTPUT
5.0E-07

*OUTPUT VARIABLES
basic

FIGURE 2 – Example of a Control File for MEGA.

file format and is stored as ’*.k’ (* here indicates a wildcard). Information on the exact format of this file 
is readily available online, and can also be generated with a variety of preprocessors.

The second one is the Control File named ’Control.dat’, which is a text file containing all the other 
information needed to run the simulation, such as specification of boundary conditions, material pro-
perties, total simulation time, and so on. These aspects are specified in terms of node sets unless they 
are global parameters such as output frequency and simulation time. The node sets are assigned when 
building the model in the preprocessor and can then be given names in the control file.

The MEGA Control File uses the card system. In MEGA, each card begins with an asterisk ’*’ and 
is followed directly by the name of the card. Followed by that, are either comment lines or lines giving 
the specified values. Other than the format of the cards themselves, the Control File is free, i.e., the order 
of the cards is arbitrary, and apart from mandatory cards (such as the card that specifies total simulation 
time), certain cards are optional (e.g., cards for advanced users). An example Control File for the Taylor 
bar problem in Section 7.1 is given in Figure 2.

2.3 Output

The user specifies w hich v ariables t o o utput i n t he C ontrol F ile u nder t he c ard ’ *OUTPUT VA-
RIABLES’ with the output frequency specified i n ’ *OUTPUT PARAMETERS’. M any v ariables are 
available such as stress, strain, plastic strain, and so on. Output files are in a VTK format [8] using the 
UNSTRUCTURED_GRID data type and are generated for each output step. The content of these files can 
be rendered with the open-source software ParaView (https ://www.paraview.org/).

3 Spatial Discretization

3.1 Updated Lagrangian Scheme

Let ΩX denote the initial configuration of the body with material coordinates X  and a boundary ∂ΩX , 
and let Ωx be the current configuration of the body with current coordinates x and a boundary ∂ Ωx at a 
time t. The updated Lagrangian equation of motion can be derived using the principle of virtual power 
in the current configuration [4] :∫

Ωx

∇xδv : σdx−
∫

Ωx

δv ·bρdx−
∫

∂Ωh
x

δv ·hdx+
∫

Ωx

δv · v̇ρdx = 0, (1)
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where δ is the variational operator, ∇x the left gradient with respect to the current coordinates x, v the
material velocity, σ the Cauchy stress, b the prescribed body force in the current configuration, ρ the
density in the current configuration, (̇) denotes differentiation with respect to time, and h is the prescribed
traction on boundary of the body in the current configuration ∂Ωh

x .

3.2 Semi-Lagrangian Reproducing Kernel Approximation

Let the domain Ω̄x = Ωx∪∂Ωx be discretized by a set of Np nodes N = {x1, · · · ,xNP
|xI ∈ Ω̄x} with

corresponding node numbers Z = {I|xI ∈N }. In the semi-Lagrangian scheme [5], the nodal locations in
the current configuration follow the motion of the body, i.e., xI = x(X I, t) where X I are nodal locations in
the undeformed configuration, but shape functions are constructed with respect to distance measurements
in the current configuration.

In conjunction with the Updated Lagrangian Scheme, this avoids any mapping between the current
and undeformed configuration, which is invalid in the presence of extremely large deformations. A typi-
cal example is when free surface formulation or closure occurs, and the mapping is no longer one-to-one.

The nth order semi-Lagrangian reproducing kernel (RK) approximation of the displacement field
d(x, t) is constructed as [5] :

dh(x, t) = ∑
I∈Z

ΨI(x)dI(t) (2)

where {ΨI (x)}I∈Z is the set of RK shape functions, and {dI(t)}I∈Z are the associated coefficients. It is 
important to note that in general, the RK shape function lacks the Kronecker delta property (ΨI(xJ) 6= 
δIJ), and thus the coefficients are not the actual values of displacements at the nodes, and are termed 
generalized displacements. This results in difficulty in imposing essential boundary conditions. In 
MEGA, the boundary singular kernel technique [9] is adopted where nodal coefficients on the boundary 
take on the value of their associated field variables, and conditions are enforced directly at the nodes.

The shape functions are constructed by the product of a kernel function Φa(x−xI) and the correction 
function C(x;x − xI ) :

ΨI(x) = Φa(x− xI)C(x;x− xI) (3)

where
C(x;x− xI) = H(x− xI)

T b(x). (4)

In the above, H(x− xI) is a column vector consisting of complete nth order monomials, and b(x) is a co-
lumn vector of coefficients. The kernel function Φa(x−xI) defines the locality of the approximation, and
also the smoothness. For instance, a C2 cubic B-spline kernel gives C2 continuity of the approximation.
In MEGA, various kernel functions with different levels of smoothness are available. The coefficients
b(x) enforce the monomial reproducing conditions :

∑
I∈Z

ΨI(x)H(xI) = H(x). (5)

With the coefficients b(x) obtained from (4) and (5), the RK shape functions are constructed as :

ΨI (x) = H(0)M(x)−1H(x − xI )Φa(x − xI ) (6)

where
M(x) = ∑

I∈Z
H(x− xI)H(x− xI)

T
Φa(x− xI). (7)

In (7), the moment matrix needs to be invertible in order to be able to construct the RK shape func-
tions (6). This requires a minimum number of nodes (with non-coplanar locations) covering a given
point x, which can be difficult to achieve in a simulation of extremely large deformations, particularly in
fragment-impact problems. To remedy this situation, MEGA employs the quasi-linear RK approximation
[10], which guarantees that the moment matrix is never singular.
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FIGURE 3 – Smoothing nodal domains for (a) SCNI and (b) SNNI.

3.3 Discretization

For discretization of (1), the displacements in (1) are approximated by (2). Employing the arbitrary
nature of the virtual coefficients, we have the following semi-discrete matrix form :

Ma = f ext − f int (8)

where a is the column vector of generalized accelerations {d̈I}I∈Z , M, f ext , and f int are the mass matrix,
external force, and internal force, respectively :

MIJ = I3

∫
Ωx

ΨI(x)ΨJ(x)ρdx (9a)

f ext
I

=
∫

Ωx

ΨI(x)b(x)ρdx+
∫

∂Ωh
x

ΨI(x)t(x)dx (9b)

f int
I

=
∫

Ωx

BT
I (x)Σ(x)dx (9c)

ˆ

Ωx

∇xΨI(x) dΩ =
∫

where I3 is a 3×3 identity matrix, b(x) and t(x) are the vector forms of the body force and prescribed 
tractions, respectively, B(x) is the strain-gradient matrix, and Σ(x) is the matrix form of the Cauchy 
stress.

4 Numerical Quadrature in MEGA

Nodal integration is the preferred method of quadrature in meshfree methods since it is numerically 
efficient and maintains desirable characteristics of meshfree methods on the discrete level. However, this 
approach can yield non-convergent results and solution instability [11] since the weak-form is under-
integrated. Advanced nodal integration methods that address these issues are implemented in MEGA.

4.1 Stabilized Nodal Integration

A Stabilized Conforming Nodal Integration (SCNI) [11] has been introduced to remedy rank in-
stability in direct nodal integration, and also provide optimal convergence for linearly complete shape 
functions. In this method, gradients are smoothed over conforming nodal representative domains which 
partition the domain as shown in Figure 3(a). Thus they are not evaluated directly at the nodes, avoiding 
rank instability. With the smoothed nodal gradients in hand, nodal integration is performed.

The smoothing is also done in such a way that the first order variational consistency condition (for 
Galerkin linear exactness) is ensured. This is the requirement to satisfy the following divergence equality 
with the set of test functions and∫ the chosen numerical

ˆ
 integration [11] :

∂Ωx

ΨI(x)n(x) dΓ ∀I (10)

where “ ˆ ” denotes numerical integration, and ΨI(x) is a shape function with first order completeness
used in the Galerkin equation. SCNI considers gradient smoothing with divergence in each nodal repre-
sentative domain by

∇̃xΨI(xL) =
1
|ΩL|

∫
ΩL

∇xΨI(x) dΩ =
1
|ΩL|

∫
∂ΩL

ΨI(x)n(x) dΓ. (11)
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Here |ΩL| =
∫

ΩL
dΩ and ΩL is the representative domain of node L. The conforming nodal domains

can be generated by, e.g., Voronoi diagrams. When the gradient approximation (11) is employed in the
Galerkin equation in conjunction with first-order complete approximations, the integration constraint
(10) is satisfied, and exactness in linear problems (passing the linear patch test) is attained, along with
optimal convergence rates associated with linear completeness.

The reformation of the conforming domains in SCNI such as those shown in Figure 3(a) can be
cumbersome in the presence of extreme deformations, and stabilized non-conforming nodal integration
(SNNI) [5] has been introduced as a simplification of SCNI. Figure 3(b) shows the gradient smoothing
schemes by non-conforming cells constructed by considering box domains surrounding the node [12]. In
MEGA, the smoothing cells are constructed to be conforming in the initial configuration.

The energy of sawtooth modes may still be under-sampled in smoothed nodal integration methods
when the surface area-to-volume ratio of the domain is relatively small, or when the discretization is
sufficiently fine. To this end, a Naturally Stabilized Nodal Integration (NSNI) [6] is implemented into
MEGA under the strain-smoothing framework, which provides additional coercivity in nodal integration
and precludes these sawtooth modes.

5 Constitutive modeling

The MEGA code implements small deformation elasticity and finite-strain plasticity models. The
elastic model is only valid for small deformations and has not yet been generalized to large strains
and rotations, e.g., viz the Neo-Hookean model. Plasticity models in MEGA include J2 (von Mises)
plasticity with isotropic hardening and isotropic damage (e.g., for metals), and Drucker-Prager plasticity
with tension cut-off and isotropic damage (e.g., for geomaterials).

5.1 Objective Stress update

MEGA employs the Jaumann rate of the Cauchy stress to maintain objectivity in constitutive mode-
ling. For the time step from tn to tn+1, Hughes and Winget [13] showed that a hypo-elastic constitutive
equation can be integrated in time in an incrementally objective way (preserving further objectivity in a
discrete sense) by first defining an incremental deformation gradient G with respect to the configuration
xn+1/2 = 1/2

(
xn + xn+1

)
:

Gi j =
∂∆di

∂xn+1/2
j

(12)

where ∆d = dn+1−dn is the increment of displacement. In MEGA, the gradient (12) is computed using
the smoothed shape functions in Sec. 4. The symmetric part of the gradient G is then employed for
the strain measurements in calculating the elastic trial stress in plasticity. With the trial stress in hand,
the true Cauchy stress σn+1 at time n+ 1 is obtained via iteration on the plasticity equations. Then the
internal force f n+1

int
is formed with nodal integration :

f n+1
int

= ∑
I∈Z

B̃T
(xI)Σ

n+1(xI)VI (13)

where B̃T and Σ
n+1 are vectors containing the smoothed spatial gradients and stresses σn+1, respectively,

and VI is the nodal volume in the current configuration. The contribution to the internal force by NSNI
follows analogously. Further details can be found in [6].

6 Time integration

Time integration on the semi-discrete form (8) is accomplished using the Newmark-β algorithm with
the explicit central difference scheme (β = 0 and γ = 1/2). First, to make the algorithm fully explicit,
the mass in (8) is lumped into a lumped-mass matrix Ml using the row-sum technique. In the explicit
dynamic context, the Rayleigh damping is adopted with a purely mass-proportional damping matrix.
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The predictor-corrector algorithm in a-form is employed ; given the quantities at the previous timestep n,
for time n+1, the predictors are first computed :

d̃n+1 = dn +∆tvn +
∆t2

2
an, ṽn+1 = vn +

∆t
2

an (14)

Based on predictors, the shape functions, stresses, and internal forces are updated as described in Sec-
tions 3.2 and 5. With the mass lumping and mass-proportional damping in hand, the explicit central
difference formulas yield the generalized accelerations at each node I :

an+1
I =

1
Ml

II +
1
2CII∆t2

{(
f n+1

ext

)
I−
(

f n+1
int

)
I−CII

(
ṽn+1

)
I

}
(15)

where Ml
II and CII are the scalar mass and damping coefficient associated with node I from mass lumping

and mass-proportional damping, respectively. The correctors are then calculated as

dn+1 = d̃n+1, vn+1 = ṽn+1 +
∆t
2

an+1 (16)

which begins the process again with n← n+1 in (15)-(16) for the next time step via the predictors (14).

7 Numerical Examples

7.1 Taylor bar impact problem

Consider an aluminum cylindrical bar impacting a rigid wall. This problem was experimentally per-
formed in [14] and is often used to benchmark the implementation of a nonlinear large deformation
computer code. The initial radius and height of the bar are 0.391 cm and 2.346 cm, respectively, and the
impact velocity is 373 m/sec. J2 plasticity is employed to model the material ; more details can be found
in [3]. The numerical results and experimental data are compared in Table 1. For reference, a purely
Lagrangian RKPM [15] solution is also computed using MEGA. As one can observe, the results from
MEGA match well with the experimental data which indicates the success of the implementation for
modeling nonlinear large deformation problems.

TABLE 1 – Comparison of deformed height and radius for the Talyor bar impact problem

Lagrangian RKPM Semi-Lagrangian RKPM Experimental data [14]
Height (cm) 1.647 1.691 1.651
Radius (cm) 0.792 0.799 NA

7.2 Earth Moving problem

For purely demonstrative purposes, an earth moving problem is simulated. A rigid blade digs into
a soil bed and moves the material. The blade is modeled using RKPM with a prescribed displacement,
while the soil is modeled using the Drucker-Prager material model. The progression of the simulation is
shown in Figure 4.

8 Outlook

8.1 Current Applications and Limitations

The MEGA code is suitable for running many problems involving extremely large deformations. For
instance, problems in geomechanics such as slope stability, landslide simulation, earth moving, tillage,
and penetration and perforation.
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(a)
(b) (c)

FIGURE 4 – Earth moving simulation at a time (a) 0.0s, (b) 1.65s and (c) 3.3s

As an explicit dynamic code, the limitations of MEGA are inherited from this framework. Problems
where the loadings and response are low frequency (e.g., structural dynamics) are not well-suited for
analysis by MEGA, and should instead be solved using an implicit approach for a much more effective
solution. The shared-memory implementation of MEGA is also limiting since large computing clusters
currently cannot be utilized for calculations.

8.2 Future Directions

In the future, more material models will be added as needed (e.g., to simulate the deposition process
in additive manufacturing). Frameworks will be developed in order to avoid constant recalculation of
shape functions at each time step, which is a major cost of the calculations ; this is an open research topic.
More accurate contact algorithms will also be implemented into the program. On the practical side, a
distributed memory implementation using Message Passing Interface will be considered to accommodate
different machine architectures, i.e., high-performance computing clusters, so that MEGA can solve
problems with finer discretizations for more accurate solutions. Finally, work is already underway to
convert the Fortran90 code to Julia, which can be leveraged for a robust CPU or GPU implementation.
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