
1 23

Computational Particle Mechanics
 
ISSN 2196-4378
 
Comp. Part. Mech.
DOI 10.1007/s40571-019-00254-z

A non-ordinary state-based Godunov-
peridynamics formulation for strong shocks
in solids

Guohua Zhou & Michael Hillman



1 23

Your article is protected by copyright and all

rights are held exclusively by OWZ. This e-

offprint is for personal use only and shall not

be self-archived in electronic repositories. If

you wish to self-archive your article, please

use the accepted manuscript version for

posting on your own website. You may

further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Computational Particle Mechanics
https://doi.org/10.1007/s40571-019-00254-z

A non-ordinary state-based Godunov-peridynamics formulation
for strong shocks in solids

Guohua Zhou1 ·Michael Hillman2

Received: 7 March 2019 / Revised: 4 June 2019 / Accepted: 7 June 2019
© OWZ 2019

Abstract
The theory and meshfree implementation of peridynamics has been proposed to model problems involving transient strong
discontinuities such as dynamic fracture and fragment-impact problems. For effective application of numerical methods to
these events, essential shock physics and Gibbs instability should be addressed. The Godunov scheme for shock treatment
has been shown to be an effective approach for tackling these two issues but has not been considered yet for peridynamics.
This work introduces a physics-based shock modeling formulation for non-ordinary state-based peridynamics, in which the
Godunov scheme is introduced by embedding the Riemann solution into the force state, resulting in a shock formulation free
of tuneable parameters. Several benchmark problems are solved to demonstrate the effectiveness of the proposed formulation
for modeling problems involving shocks in solids.

Keywords Peridynamics · Meshfree · Shockwaves · Godunov scheme

1 Introduction

The theory of peridynamics [1,2] has been proposed to
effectively model problems that involve dynamic strong dis-
continuities such as dynamic fracture and fragment-impact
problems. It bypasses essential difficulties of classic contin-
uum mechanics in fracture modeling due to the invalidity
of taking spatial derivatives across cracks and necessity for
geometric descriptions of arbitrary three-dimensional propa-
gating crack surfaces, by directly working on integral forms
of governing equations that do not involve spatial derivatives.

The first peridynamics model is called bond-based peri-
dynamics [1] which was proposed to model the formation of
discontinuities in elastic brittle solids. As a non-local theory,
bonds are defined between a point and all of its neighboring
points within a zone called a horizon. The two points in a sin-
gle bond interact via a spring-like force depending ononly the
stretch of the bond itself, and cracks can be naturallymodeled
by the breakage of the bonds. This method has been applied
to dynamic crack branching in brittle glass [3,4], impact and
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damage of layered glass [5], and damage in concrete [6],
among other problems.

However, the bond-based peridynamics formulation suf-
fers from restrictions on the material response, for example,
Poisson’s ratio is limited to a fixed value. Meanwhile,
constitutive laws need to be developed specifically for peri-
dynamics. To overcome these limitations, state-based peri-
dynamics [2] was introduced. In this formulation, the bond
force depends on the collective deformation of all the bonds
within a horizon rather than a single bond independently, as
in the bond-based model. The so-called non-ordinary state-
based peridynamics based on correspondence [2] defines the
constitutive response through a non-local deformation gra-
dient and can thus incorporate classical constitutive models.
This approach has been applied to ballistic impact of alu-
minum panels [7], high-velocity impact [8], and dynamic
fracture of aluminum [9].

Although the non-ordinary state-based peridynamics has
been widely applied to model high strain rate problems,
there is limited work published on shock modeling. Shock
wave propagation is an important physics to be considered
in numerical methods for problems such as high-velocity
impact and blast, where peridynamics has great advantages
due to its natural ability to model transient discontinuities.
In [10,11], the artificial viscosity technique was employed
to treat shocks in peridynamics. This approach is simple

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s40571-019-00254-z&domain=pdf
http://orcid.org/0000-0001-5889-7170


Computational Particle Mechanics

to implement, but involves tunable parameters, which is
undesirable since it leads to parameter-dependent results,
which are not objective. In [12], artificial dissipation via a
rate-dependent material model was introduced for the same
purpose, with similar limitations.

An effective approach for shock modeling is the class
of Godunov schemes originating from the method proposed
by Godunov [13] under the finite difference framework. In
these methods, the jump conditions and the entropy solu-
tion are embedded by solving a Riemann problem defined
at cell interfaces. They have been extended to the discon-
tinuous Galerkin method [14], smoothed particle hydrody-
namics [15], the finite point method [16], among other meth-
ods [17–22]. Higher-order Godunov schemes [23] have also
been developed to enhance accuracy. Under the reproduc-
ing kernel particle method framework [24,25] with stabilized
conforming nodal integration (SCNI) [26], a Riemann-SCNI
method [27,28] has been developed to introduce theGodunov
scheme by a Riemann solution enriched pressure gradient,
smoothed over SCNI cells.

In this paper, the Godunov scheme is embedded into
the non-ordinary state-based peridynamics, and the result-
ing formulation is termed Godunov-peridynamics. First, the
force state is expressed in terms of Cauchy stress and sepa-
rated into volumetric and deviatoric contributions since the
pressure dominates the Cauchy stress under strong shocks.
Effective surface information between two points is then
obtained by drawing an analogy between the resulting dis-
crete peridynamic formulation and the finite volumemethod.
This surface information is then used to define a Riemann
problem between two points, and the Riemann solution is
then employed in the volumetric force state to embed shock
physics into state-based peridynamics.

The remainder of this paper is organized as follows. In
Sect. 2, the non-ordinary state-based peridynamics formu-
lation is reviewed. In Sect. 3, the Godunov-peridynamics
formulation is then introduced. Numerical implementation
of the proposed method is given in Sect. 4. Numerical results
are then presented in Sect. 5 to demonstrate the effective-
ness of the proposed method, followed by discussions and
conclusions in Sect. 6.

2 Non-ordinary state-based peridynamics
formulation

In this section, we briefly review the non-ordinary state-
based peridynamics formulation [2]. Let x and X denote
coordinates in the deformed and undeformed configuration,
respectively. A continuum pointX interacts non-locally with
its neighbors within a horizon H with measure δ as shown in
Fig. 1. The bond of a point XI with another point XJ in the
undeformed configuration is

XI : J = XJ − XI . (1)

The same bond in the deformed configuration is denoted as

xI : J = xJ − xI . (2)

A non-local deformation gradient FI at point I can be com-
puted via the principle of constitutive correspondence [2] as

FI =
(∫

HXI

ωI : JxI : J ⊗ XI : JdVXJ

)
· K−1

I , (3)

where KI is the reference shape tensor defined as

KI =
∫
HXI

ωI : JXI : J ⊗ XI : JdVXJ , (4)

and ωI : J is the so-called influence function which is a func-
tion of the distance between point I and J . In this paper, the
Lagrangian peridynamics formulation is adopted; the influ-
ence function is defined in terms of material distance, and
HXI and dVXJ in the above equations are the horizon of
point I and volume associated with point J , respectively, in
the undeformed configuration.

For the influence function, the following cubic spline func-
tion is chosen:

ωI : J 〈XI : J 〉=

⎧⎪⎪⎨
⎪⎪⎩

2
3−4

∣∣∣XI : J
δ

∣∣∣2 +4
∣∣∣XI : J

δ

∣∣∣3 for 0 ≤
∣∣∣XI : J

δ

∣∣∣ ≤ 1
2 ,

4
3−4

∣∣∣XI : J
δ

∣∣∣+4
∣∣∣XI : J

δ

∣∣∣2 − 4
3

∣∣∣XI : J
δ

∣∣∣ for 1
2 ≤

∣∣∣XI : J
δ

∣∣∣ ≤ 1,

0 otherwise,

(5)

where δ is the radius of the horizon HXI as shown in
Fig. 1a. The above influence function smoothly vanishes at
the horizon boundary, which helps to improve the accuracy
of numerical integration [29].

The force state between point I and J in terms of the
first Piola–Kirchhoff stress tensor σ under correspondence
is computed from the state TI : J acting on a bond XI : J :

TI : J 〈XI : J 〉 = ωI : Jσ I (FI ) · K−1
I · XI : J (6)

where σ I (FI ) is given by the constitutive model. The angle
bracket in the above is used to denote the variable that a state
operates on. The final equation of motion in the non-ordinary
state-based peridynamics formulation at a point I is

ρI üI−
∫
HXI

(
TI : J 〈XI : J 〉−TJ : I 〈XJ : I 〉

)
dVXJ −bI = 0, (7)

where ρI is the density, üI is the acceleration (uI is the dis-
placement), and bI is the external body force density, at point
I .
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(a) undeformed continuum (b) undeformed discretized (c) deformed discretized

Fig. 1 Schematic of peridynamics representations: continuum and discrete cases

3 Godunov-peridynamics formulation

In the presence of shock waves, Eq. (7) with the force state
given by (6) leads to severely oscillating nonphysical solu-
tions due to lack of consideration of shock physics and Gibbs
instability. To address these issues, the Godunov scheme [13]
is introduced into the peridynamics formulation,which is dis-
cussed in this section.

3.1 Equation of motion

For convenience, the integrand of the second term in (7) is
first expressed as

T̂I : J = TI : J 〈XI : J 〉 − TJ : I 〈XJ : I 〉, (8)

where T̂I : J is the total force state between point I and J .
Substitution of (6) into (8) yields the expression in terms of
the first Piola–Kirchhoff stress

T̂I : J = ωI : Jσ I (FI ) ·K−1
I ·XI : J −ωJ : Iσ J (FJ ) ·K−1

J ·XJ : I .
(9)

Making use of the fact thatωI : J = ωJ : I andXI : J = −XI : J ,
Eq. (9) can be rewritten as

T̂I : J = ωI : J
(
σ I (FI ) · K−1

I + σ J (FJ ) · K−1
J

) · XI : J . (10)

Employing the relationship between Cauchy stress τ and the
first Piola–Kirchhoff stress

σ = τ · F−T det(F) (11)

where det(F) is the determinant of the non-local deformation
gradient F, Eq. (10) can be expressed as

T̂I : J = ωI : J
(
τ I · F−T

I · K−1
I det(FI )

+ τ J · FJ
−T · K−1

J det(FJ )
) · XI : J . (12)

Since the pressure is the dominant portion of the Cauchy
stress in strong shock problems, the stress tensor is split into
volumetric τ v and deviatoric portions τ d:

τ v = PI, (13)

τ d = τ − τ v, (14)

where P = 1
3 (τ11 + τ22 + τ33) is the pressure and I is the

second-order identity tensor. Substituting (13) and (14) into
(12) and collecting the deviatoric and volumetric portions
yields

T̂I : J = T̂
d
I : J + T̂

v
I : J , (15)

where

T̂
d
I : J = ωI : J

(
τ d
I · F−T

I · K−1
I det(FI )

+ τ d
J · FJ

−T · K−1
J det(FJ )

) · XI : J (16)

and

T̂
v
I : J = ωI : J

(
PIF

−T
I · K−1

I det(FI )

+ PJF
−T
J · K−1

J det(FJ )
) · XI : J (17)

are the deviatoric and volumetric contributions, respectively.
When applied to problems with strong shocks, the solution
obtained by using these force states shows severe oscillations
as the shock physics and Gibbs instability are not addressed.
In this paper, the essential shock physics is introduced into
the volumetric force state by embedding Godunov scheme,
which is to be discussed next.

In Eq. (17), on the right-hand side, the first term involving
PI and the second term involving PJ physically represent the
contribution to the volumetric force state between the two
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points I and J from each pressure of the points, or in other
words they represent the force exchangebetweenpoints I and
J due to pressure. In this paper, we introduce the Godunov
scheme by solving theRiemann problembetween point I and
J to enrich this exchange.After solving theRiemannproblem
via aRiemann solver, theRiemann solution enrichedpressure
andvelocity are obtained {P∗

IJ , v
∗
I , } (‘*’ denotes theRiemann

solution), and P∗
IJ is then used to replace the PI and PJ in

Eq. (17), and in this manner, the entropy solution and jump
conditions are embedded into the force state. Accordingly,
T̂
v
I : J becomes T̂

v∗
I : J and (17) becomes

T̂
v∗
I : J = ωI : J P∗

IJ

(
det(FI )F

−1
I ·K−1

I +det(FJ )F
−1
J ·K−1

J

) ·XI : J ,
(18)

where P∗
IJ is the pressure solution of the Riemann prob-

lem between point I and J . The details about how to define
and solve the Riemann problem are discussed in Sects. 3.2
and 4.2.

Finally, the equation of motion after embedding the
Godunov scheme is

ρI üI −
∫
HxI

[
T̂
d
I : J 〈XI : J 〉 + T̂

v∗
I : J 〈XI : J 〉

]
dVXJ − bI = 0,

(19)

where T̂
d
I : J and T̂

v∗
I : J are given in (16) and (18). The resulting

formulation is termed Godunov-peridynamics.

3.2 Discussion

To examine the properties of the algorithm and to define the
Riemann problem, (18) is first rewritten in the following form

T̂
v*
I : J = P∗

IJαIJ , (20)

with

αIJ = F−T
I · K−1

I · XI : Jdet(FI )ωI : J ,
+F−T

J · K−1
J · XI : Jdet(FJ )ωI : J . (21)

With nodal integration (further discussed in Sect. 4.1), the
total driving internal force density f v*I at point I due to pres-
sure in (20) is expressed as

f v*I =
∑
J∈NI

P∗
IJαIJ VJ , (22)

where NI is the set containing the point indices within the
horizon of point I and VJ is the integration weight assigned
to point J . The term αIJ in the above can be seen to control

Fig. 2 Velocity projection in the deformed configuration

the contribution of the pressure to a given point I from point
J .

On the other hand, a finite volume method calculates the
driving force f̄

v*
I from the enriched pressure for a cell I from

faces J of its neighboring cells as [30]

f̄
v*
I =

∑
J∈FI

P∗
IJ ᾱIJ VJ , (23)

where FI is the set containing faces indices for cell I , and

ᾱIJ = nIJ AIJ

VI VJ
(24)

is the equivalent coefficient for the finite volume method,
with nIJ the surface normal and AIJ the surface area shared
by cell I and J . Therefore, the coefficientαIJ for the proposed
formulation can be interpreted as containing effective surface
information between point pairs, with nα = αIJ/|αIJ | the
effective normal, andwill be the basis of the presentGodunov
implementation in Sect. 4.2.

Note that by substituting XI : J = −XI : J into (21), it is
obvious that

αIJ = −αJI . (25)

This antisymmetric property is again shared by finite volume
cells where the normal of one cell is opposite to that shared
by its neighboring cells yielding ᾱIJ = −ᾱJI , which is criti-
cal to ensure conservation in the finite volume method [30].
The antisymmetric property of αIJ in the present formulation
means that the force exchange due to pressure between points
I and J is equal and opposite in the case that VI = VJ .
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Fig. 3 Schematic of
one-dimensional elastic bar
impact problem

Fig. 4 One-dimensional elastic
bar impact: axial stress and
velocity distribution at time
t = 6µs, a, b by peridynamics,
c, d by Godunov-peridynamics
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4 Numerical implementation

This section describes the numerical implementation of
Godunov-peridynamics. Nodal quadrature used to numer-
ically evaluate domain integrals is given, along with the
Riemann problem solution and time integration procedures.

4.1 Nodal integration

As can be seen, F in (3),K in (4), and the second term in (19)
require numerical integration. After discretization as shown
in Fig. 1, the nodal integration scheme is employed [31] and

these terms are computed as

KI =
∑
J∈NI

ωI : JXI : J ⊗ XI : J VJ , (26)

FI =
∑
J∈NI

ωI : JxI : J ⊗ XI : J VJ , (27)

and

ρI üI −
∑
J∈NI

[
T̂
d
I : J 〈XI : J 〉 + T̂

v∗
I : J 〈XI : J 〉

]
VJ − bI = 0.

(28)
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Fig. 5 Elastic bar impact: axial
stress and velocity distribution
at time t = 10µs, a, b by
peridynamics, c, d by
Godunov-peridynamics
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While the quadrature employed is inherently low-order, influ-
ence functions such as the cubic spline (5) help to reduce
inaccuracy in integration and yield more consistent solution
convergence behavior [29].

4.2 Riemann solution

In (18), the term T̂
v∗
I : J involves P∗

IJ which is obtained by
solving the Riemann problem at the middle point between
point I and J .

First, a piecewise distribution in pressure and velocity is
assumed to eliminate Gibbs instability: Between point I and
the middle point, and point J and the middle point, the pres-
sure and velocity are assumed to be constant. The Riemann
problem is then solved along the effective normal direc-
tion between the two nodes in the deformed configuration
nα = αIJ/|αIJ |, as shown in Fig. 2, with the normal velocity
calculated as

vα−n
I = vI · nα. (29)

The Riemann problem then consists of a left state
{PI , vα−n

I , ρI } and right state {PJ , v
α−n
J , ρJ }, with the solu-

tion {P∗
IJ , v

α−n∗
IJ }. In “Appendix”, the Dukowicz Riemann

solver [32] employed in this work is given for convenience.

4.3 Time integration procedures

For clarity in describing the time integration procedure,
Eq. (28) is rewritten in the following form,

ρI üI = f dI + f v*I + bI , (30)

with

fdI =
∑
J∈NI

[
T̂
d
I : J 〈XI : J 〉

]
VJ , (31)

f v*I =
∑
J∈NI

[
T̂
v∗
I : J 〈XI : J 〉

]
VJ . (32)
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Fig. 6 Elasto-plastic bar
impact: axial stress and velocity
distribution at time t = 6µs, a,
b by peridynamics, c, d by
Godunov-peridynamics
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TheNewmark-beta method is employed to perform temporal
discretization of Eq. (30) with β = 0 and γ = 1

2 resulting in
the explicit central difference scheme. In what follows, the
superscript (n) denotes a variable at the nth time step. The
central difference time integration procedures for a point I
in a predictor–corrector implementation are given as:

(1) Initialization:

(a) Form initial b(0)
I .

(b) Calculate initial acceleration a(0)
I by

ρIa
(0)
I = b(0)

I .

(2) At the (n + 1)th time step:

(a) Predictor phase: calculate displacement predictor ũI

and velocity predictor ṽI
ũ(n+1)
I = u(n)

I + 	tv(n)
I + 	t2

2 a(n)
I ,

ṽ(n+1)
I = v(n)

I + 	t
2 a(n)

I .

(b) Calculate τ
d(n+1)
I and P(n+1)

I .

(c) Calculate Riemann solution for point I ’s pairs.
(d) Calculate f d(n+1)

I and f v*(n+1)
I according to Eq. (31)

and (32), respectively, and also compute b(n+1)
I .

(e) Solve ρIa
(n+1)
I = f d(n+1)

I + f v*(n+1)
I + b(n+1)

I for

acceleration a(n+1)
I .

(f) Corrector phase:

v(n+1)
I = v(n)

I + 	t

2
(a(n)

I + a(n+1)
I ),

u(n+1)
I = ũ(n+1)

I .

(3) If time t is less than the total simulation time t f inal , set
n → n + 1 and go to (a) in step (2).

Compared with the standard non-ordinary state-based peri-
dynamics formulation (without shock enrichment), all of
the procedures here in Godunov-peridynamics are the same
except that the volumetric force portion is evaluated by
Eq. (32) with Riemann solution enriched pressure P∗

IJ .
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Fig. 7 One-dimensional elasto-plastic bar impact: axial stress distribu-
tion with different discretizations at time t = 6µs

5 Numerical examples

In all the numerical examples, uniform point distributions are
used; the radius of the horizon is set to be 1.65 times the spac-
ing, and the cubic spline influence function (5) is employed.
All examples are impact problems. The impact is not explic-
itly modeled as a contact condition; instead, it is achieved
by modeling the impact and target objects as one body with
different initial velocities, where the shock physics moments
before the bars physically separate are observed. The terms
“peridynamics” and “Godunov-peridynamics” are used to
denote the results obtained by the non-ordinary state-based
peridynamics and the proposed Godunov-peridynamics for-
mulations.

The exact solutions used in all of the following examples
are based on the classical continuum theory which is a local
theory; nevertheless, they still serve as reference solutions
for peridynamics since the non-local formulation converges
to the classical solution provided the horizon approaches
zero [33,34]. As such, in the refinement study in Sect. 5.2
reduces the nodal horizon and nodal spacing simultane-
ously at a fixed ratio, such that the numerical formulation
will converge to the classical local solution that it is tested
against [34].

5.1 Elastic bar impact

A one-dimensional elastic bar impact problem shown in
Fig. 3 is solved as thefirst example. Thebars aremadeof 6061

Fig. 8 Schematic of high-velocity plate impact problem

T-6 aluminum, which is described by a J2 perfect plasticity
material model. The material properties are given as Young’s
modulus E = 77.11GPa, Poisson’s ratio ν = 0.334, den-
sity ρ = 2703 kg/m3, and yield strength Y0 = 270MPa. The
deformation is only allowed along the axial direction and the
lateral direction is constrained by rollers (see Fig. 3). The ini-
tial velocity of the impact bar is 3.00×104 mm/s, and that of
the target bar is 0.00mm/s, which results in elastic waves in
the bars due to the relatively low impact velocity. Both bars
have a length of 50mm and are discretized with 800 points
in the axial direction. The analytical solution of this prob-
lem can be derived by making use of the Rankine–Hugoniot
jump conditions (see [35]). We consider the solution at two
different moments: at time 6µs (before free end reflection)
and time 10µs (after free end reflection).

The numerical solutions by peridynamics and Godunov-
peridynamics at time 6 µs are given in Fig. 4. After free end
reflection, at time 10µs, the resulting axial stress and velocity
magnitudes remain the same as at time 6 µs. The associated
numerical results for both formulations are shown in Fig. 5.
As can be seen, the results by peridynamics in both cases
show severe oscillations in stress and velocity.

5.2 Elasto-plastic bar impact

This problem is similar to the example in Sect. 5.1 but with a
higher impact velocity 2.73× 105mm/s. The geometry size,
material properties, boundary conditions, and discretization
of the bars are the same as in the previous problem. The
higher impact velocity of 2.73 × 105mm/s is chosen such
that the yield strength is reached, and as a result, an elastic
shockwave is formed, followed by a plastic shockwave.Here
the solution at time 6µs is examined. The numerical solu-
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Fig. 9 High-velocity plate
impact pressure contours: left
two (left to right), peridynamics
and Godunov-peridynamics
results at time t = 0.075µs, and
right two (left to right),
peridynamics and
Godunov-peridynamics results
at time t = 0.25µs

tions by peridynamics and Godunov-peridynamics are given
in Fig. 6 and compared with the exact solution [35]. Both
formulations give the correct shock speeds and jump magni-
tudes if the averaged magnitudes are used for the oscillatory
peridynamics results; however, the peridynamics solutions
show severe oscillations, while the Godunov-peridynamics
formulation offers a non-oscillatory solution. A set of dis-
cretizations, 400 points, 800 points, and 1600 points in the
axial direction are used to check the solution convergence,
and the result is given in Fig. 7. Here the ratio of horizon
to nodal spacing is fixed at 1.65, such that the numerical
solution should converge to the local solution [34]. In the
enlarged subfigure, one can observe that the numerical solu-
tion by Godunov-peridynamics converges.

5.3 High-velocity plate impact

Here, a two-dimensional plane-strain high-velocity plate
impact problem is modeled. A flyer plate with a velocity
of 1.00 × 106mm/s impacts another plate that is initially
static.All in-plane edges are unconstrained resulting inmulti-
dimensional wave propagation. After the compression shock
wave reaches the free surface, a rarefaction wave is formed
and propagates inside from the outer edges. Each plate is
8mm wide by 2mm thick (see Fig. 8) and is discretized
as 161 points by 41 points, in each direction, respectively.
The impact occurs along the longer 8mm edge. The mate-
rial is again 6061 T-6 aluminum, modeled with the same
material properties and constitutive model as in the previous
problems. The pressure contours at time t = 0.075µs and
t = 0.25µs are provided in Fig. 9. Consistent with the above
discussion, a compression shock wave is first generated and
then propagates along the impact direction, and a rarefaction

wave forms from the lateral edges, which relieves the pres-
sure in the initially compression-loaded zone. This pressure
relief phenomenon in the boundary normal direction is simi-
lar to the case shown in Fig. 5 of the one-dimensional elastic
bar impact problem in Sect. 5.1.

Peak pressure behind the shock wave was experimen-
tally measured by Marsh [36] as 8.00GPa. Here, the result
by peridynamics is 9.01GPa with 12.63% error, whereas
Godunov-peridynamics gives a more accurate peak pressure
of 7.61GPa with 4.87% error. On the other hand, the two
pressure contours by Godunov-peridynamics at two these
time instances are both essentially free of oscillation while
the solutions by peridynamics are highly oscillatory. This
example also shows the ability to accurately solve prob-
lems involvingmulti-dimensional shockwavepropagation by
Godunov-peridynamics.

6 Conclusion

In this paper, a shockmodeling formulation termedGodunov-
peridynamics is proposed that incorporates shock physics
by employing the Godunov scheme into non-ordinary state-
based peridynamics. The essential shock physics of entropy
and jump conditions are considered by introducing the Rie-
mann problem solution into the volumetric portion of the
force state. The Riemann problem is defined at the middle
point of each point pair via effective surface information α in
the deformed configuration. The antisymmetric property ofα
ensures a volumetric force state conservation in uniform dis-
cretizations where equal integration weights are employed.
The resulting formulation does not introduce any tunable
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parameters and controls the oscillations otherwise induced
by shocks.

This work also provides a general technique to bridge the
Godunov scheme and other numerical methods when effec-
tive surface information α in (22) can be obtained.

Several benchmark problems involving one-dimensional
and two-dimensional shocks are examined, where non-
oscillatory solutions with high accuracy are obtained under
the present formulation. Future effort will be devoted to
applying this formulation to shock-induced fragmentation
by incorporating bond breakage and material damage.
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Appendix

Here, a brief overview of the Dukowicz Riemann solver [32]
employed in this work is given. Consider a left state
{PL, vL, ρL} and right state {PR, vR, ρR}, with the solution
{P∗, v∗}. In this solver, the velocity v* is first computed by
solving the following semi-quadratic equation,

ρLBL
∣∣v∗ − v∗

min

∣∣(v∗ − v∗
min

) + ρRBR
∣∣v∗

− v∗
max

∣∣(v∗ − v∗
max

) + P∗
L − P∗

R, (33)

where

v∗
min = vL − 0.5CL/BL,

v∗
max = vR − 0.5CR/BR;
P∗
L = PL − 0.25ρL

(
CL

)2
/BL,

P∗
R = PR − 0.25ρR

(
CR

)2
/BR. (34)

Here, C is the speed of sound and B is a parameter that
is directly related to the shock density ratio in the limit of
strong shocks (for more details, refer to [32]). Equation (33)
becomes a quadratic equation after assuming a sign for

(
v∗−

v∗
min

)
and

(
v∗ −v∗

max

)
yielding four cases in total. One of the

two roots of each quadratic equation can be abandoned in
advance, and the other root left is the unique solution for each
case. Once the velocity v* is solved, the pressure solution P*
can be readily calculated by the following equation,

P∗ = 0.5
(
P∗
L + P∗

R

) + 0.5ρLBL
∣∣v∗ − v∗

min

∣∣(v∗ − v∗
max

)
− 0.5ρRBR

∣∣v∗ − v∗
max

∣∣(v∗ − v∗
min

)
. (35)

As can be seen, this Riemann solver is non-iterative.
In the end, the obtained P∗ is used as P∗

IJ in (18) to com-
pute the Riemann solution enriched volumetric force state.
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