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Graphical Abstract

Abstract

Enforcement of essential boundary conditions in many Galerkin meshfree methods is non-trivial due to the fact that field
ariables are not guaranteed to coincide with their coefficients at nodal locations. A common approach to overcome this issue
s to strongly enforce the boundary conditions at these points by employing a technique to modify the approximation such that
his is possible. However, with these methods, test and trial functions do not strictly satisfy the requirements of the conventional
eak formulation of the problem, as the desired imposed values can actually deviate between nodes on the boundary. In this
ork, it is first shown that this inconsistency results in the loss of Galerkin orthogonality and the best approximation property,

nd correspondingly, failure to pass the patch test. It is also shown that this induces an O(h) error in the energy norm in the
solution of second-order boundary value problems that is independent of the order of completeness in the approximation. As
a result, this places a barrier on the global order of accuracy of Galerkin meshfree solutions to that of linear consistency. That
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is, with these methods, it is not possible to attain the higher order accuracy offered by meshfree approximations in the solution
of boundary-value problems. To remedy this deficiency, two new weak forms are introduced that relax the requirements on
the test and trial functions in the traditional weak formulation. These are employed in conjunction with strong enforcement of
essential boundary conditions at nodes, and several benchmark problems are solved to demonstrate that optimal accuracy and
convergence rates associated with the order of approximation can be restored using the proposed method. In other words, this
approach allows p-refinement, and h-refinement with pth order rates with strong enforcement of boundary conditions beyond
inear (p > 1) for the first time. In addition, a new concept termed a-refinement is introduced, where improved accuracy is

obtained by increasing the kernel measure in meshfree approximations, previously unavailable.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Meshfree methods; Essential boundary conditions; Refinement; Transformation method

1. Introduction

Galerkin meshfree methods [1] are a unique class of numerical approaches based on a purely point-based
iscretization. They offer advantages in classes of problems where mesh-based finite elements encounter difficulty,
uch as those involving extreme-deformation, multi-body evolving contact, fragmentation, among others; they also
ffer other attractive features like arbitrary smoothness or roughness uncoupled with the order of accuracy, ease of
iscretization, ease of adaptivity, and intrinsic enrichment [1–4]. However, their implementation is less trivial than
he finite element method. For instance, careful attention needs to be paid to numerical quadrature, and enforcement
f essential boundary conditions (cf. [1]). The focus of this work is the latter issue.

Enforcement of essential (or Dirichlet) boundary conditions is non-trivial in Galerkin meshfree methods since the
odal coefficients of shape functions do not coincide with their field variables at nodal locations in the general case.
olloquially, this is described as lacking the Kronecker delta property, or weak-Kronecker delta property (although
n even weaker condition is sufficient to impose values at nodes on the boundary as will be discussed). Therefore,
nlike the finite element method, essential boundary conditions cannot be directly enforced on the shape functions’
oefficients. Several techniques have been proposed to overcome this difficulty.

In general, these methods can be classified into two categories: (1) strong enforcement of essential boundary
onditions at nodal locations [5–9], and (2) weak enforcement of boundary conditions, such as the Lagrange
ultiplier method [10], the penalty method [7] and Nitsche’s method [11,12]. In the first category, the idea is

o modify the approximations such that nodal coefficients correspond to field variables on the essential boundary.
or the second, these methods allow test and trial functions which do not need to satisfy any particular requirement
elated to the essential boundary, and instead impose boundary conditions weakly, i.e., in the sense of a distribution.

The first method proposed for enforcing essential boundary conditions in meshfree methods was the Lagrange
ultiplier approach used in the element free Galerkin (EFG) method [10]. While this circumvents the aforemen-

ioned difficulties in a relatively straight-forward manner, additional degrees of freedom are introduced, and the
tiffness matrix is also positive semi-definite. The choice of the approximation for these multipliers is also subject
o the Ladyzhenskaya-Babuška-Brezzi (LBB) stability condition, which is an inf-sup condition necessary for well-

posedness of the discrete problem [13,14]; an approximation to the multiplier that is not “well-balanced” with
the discretization of the primary variable will not yield a stable solution. Shortly after, a modified variational
principle [15] was proposed to overcome these shortcomings. In this method, the idea is to substitute the physical
meaning of the Lagrange multiplier (the constraint “forces”) in terms of the primary variable back into the weak
form; thus, the problem does not involve any additional degrees of freedom. However, this method does not
guarantee stability either as it is equivalent to using a penalty value of zero in Nitsche’s method, while a minimum
penalty value is necessary for stability [16].

The penalty method is also a straight-forward way to enforce essential boundary conditions, which augments
the potential with a weak penalty on the constraint. However, the solution is strongly dependent on the value
of the penalty parameter: lower values lead to large errors on the essential boundary, while large values lead to
an ill-conditioned system matrix [12]. Nitsche’s method can be viewed, in some sense, as a combination of the
modified variational principle and the penalty method. The solution error is much less sensitive to the value of the
penalty parameter than the penalty method, as the penalty parameter plays an alternate role of ensuring solution

stability rather than enforcing boundary conditions. Nevertheless, an extremely large or small parameter also leads
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to the same issues as the penalty method [12]. A reliable way to select the parameter is based on an eigenvalue
problem related to the discretization [16]. However, an important corollary is that the parameter depends on the
discretization, and for meshfree methods that have a variety of free parameters, this entails the distribution of points,
order of approximation, kernel measure, kernel function, etc. In the authors’ experience, it is difficult to choose a
suitable penalty parameter (to maintain desired convergence rates) a priori for accuracy higher than linear. More
details on the effect and choice of the penalty value for these methods can be found in [12,16].

So far, the methods discussed are all in the class of weak enforcement of essential boundary conditions. Strong
methods have been developed as well, which modify the approximation such that their enforcement is similar to
the finite element method. The transformation method also known as the collocation method was first introduced
n [5]. This method constructs the relationship between nodal coefficients and their field values in order to achieve the
ronecker delta property in the approximation. This however requires the inverse of a system-size matrix to solve the
roblem at hand. This technique was independently derived and discussed by several researchers later [6–9]. To avoid
nverting a system-size matrix, a technique has been introduced to greatly reduce the size of the matrix involved in
his method that needs to be inverted [7,17], which has been termed the mixed transformation method. It is worth

entioning the work in [17] offers convenient and simple implementations of these transformation methods with
ow-swap operations on the system matrix. Using these techniques is equivalent to employing Lagrange multipliers
o enforce the essential boundary constraint point-wise at nodal locations [17].

Alternatively, approximations can also be constructed so that direct imposition of essential boundary conditions
an be performed without inverting any matrices. These techniques are most convenient for explicit dynamic
alculations for obvious reasons. Approaches include coupling of meshfree shape functions with finite elements
ear the essential boundary [18–20], employing singular kernel functions for nodes on the essential boundary of
he domain [17], and constructing moving-least squares approximations with the interpolation property via primitive
unctions [21]. Forcing the correction function to be zero on the essential boundary has also been introduced [22],
hich yields the interpolation property (for a discussion on this aspect of meshfree approximations see [23]), but

his technique is difficult to use in high dimensions and complex geometry. More recently a conforming kernel
pproximation has been introduced which possesses the weak Kronecker delta property, and can thus strictly
atisfy the requirements on the test function (and for simple boundary conditions, the trial function) in the weak
ormulation [24]. Finally, outside of these two classes of methods, a novel way to impose boundary conditions using
’Alembert’s principle was introduced in [25].
The most common method employed in the literature appears to be strong enforcement at nodal points. To the

est of the authors’ knowledge, there has been only one paper [21] examining the accuracy of higher-order meshfree
pproximations used with these strong-form type methods. There it was reported that while using quadratic basis
o approximate a function can yield expected convergence rates, employing it in the Galerkin equation results in
nly first-order accuracy, a discrepancy which was attributed to a lack of verifying the desired conditions for test
nd trial functions in between the nodes.

In this paper, this assertion, and the effect of this discrepancy in the strong-type approach is closely examined,
here it is shown that the requirements on test and trial functions in the weak form are indeed not verified between
odal locations. And, in fact, the difference between the desired values is of order h on the boundary (h is the nodal
pacing), independent of the approximation order p. It is further shown that this discrepancy results in failure to
ass the patch test, and loss of Galerkin orthogonality. Patch tests performed demonstrate that the L2 norm of the
rror in the domain is restricted to order O(h2) due to these inconsistencies, and order O(h) in the energy norm,
egardless of the order of approximation employed.

Correspondingly, convergence rates much lower than expected are obtained for meshfree basis functions of order
igher than linear (p > 1), and the rate of convergence is limited to that of employing approximations of linear
onsistency. To remedy these deficiencies, two weak forms are introduced that allow for larger spaces of test and
rial functions. When employed with the strong-type methods, optimal convergence rates (for sufficiently regular
olutions) are obtained. This technique thus allows, for the first time using strong methods, p-refinement, and

h-refinement with pth order optimal rates beyond linear. Further, it is shown that the proposed method provides
mproved accuracy by increasing the kernel measure a in the meshfree approximation, previously unavailable, which
s termed a-refinement.

The remainder of this paper is organized as follows. The reproducing kernel approximation is first introduced

n Section 2 as a basis for examination of a typical meshfree method, and issues with strong essential boundary
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condition enforcement are discussed. In Section 3, two weak forms are introduced which allow the enlargement
of the approximation spaces to include meshfree approximations constructed under the strong-type enforcement
techniques. Numerical procedures are described in Section 4, and numerical results are then given in Section 5 to
demonstrate the effectiveness of the proposed methods. Section 6 provides concluding remarks.

2. Background

2.1. Reproducing kernel approximation

In this work, the reproducing kernel is chosen as a model approximation that does not strictly meet the
equirements of the commonly used weak statement of a problem that includes Dirichlet boundary conditions.

Let a domain Ω̄ = Ω ∪ ∂Ω be discretized by a set of N p nodes S = {x1, . . . , xNP |x I ∈ Ω̄} with corresponding
node numbers η = {I |x I ∈ S}. The pth order discrete reproducing kernel (RK) approximation uh(x) of a function
u(x) is defined as [5,26]:

uh(x) =

∑
I∈η

Ψ
[p]
I (x)u I (1)

where {Ψ
[p]
I (x)}I∈η is the set of RK shape functions, and {u I }I∈η are the associated coefficients.

The shape functions (1) are constructed by the product of a kernel function Φa(x − x I ) and a correction function
[p](x; x − x I ):

Ψ
[p]
I (x) = Φa(x − x I )C [p](x; x − x I ). (2)

The correction function is composed of a linear combination of monomials up to order p, which allows the exact
reproduction of these monomials and pth order accuracy in the approximation (1). In matrix form this function can
be expressed as:

C [p](x; x − x I ) = H [p](x − x I )
Tb[p](x) (3)

here H [p](x) is a column vector of complete pth order monomials and b[p](x) is a column vector of coefficients.
The coefficients are obtained by enforcing the following reproducing conditions:∑

I∈η

Ψ
[p]
I (x)H [p](x I ) = H [p](x), (4)

r equivalently,∑
I∈η

Ψ
[p]
I (x)H [p](x − x I ) = H [p](0). (5)

mploying (2)–(5), the RK shape functions in (1) are constructed as:

Ψ
[p]
I (x) = H [p](0)T

{M [p](x)}−1 H [p](x − x I )Φa(x − x I ) (6)

here

M [p](x) =

∑
I∈η

H [p](x − x I )H [p](x − x I )TΦa(x − x I ) (7)

nd is called the moment matrix. Without modification, the approximation is in general non-interpolatory, that is,
h(x I ) ̸= u I . A simple demonstration of this property is given in Fig. 1.

.2. Strong enforcement of essential boundary conditions at nodal locations

.2.1. Model problem: Poisson’s equation
Without loss of generality, in this work we consider the strong form (S) of Poisson’s equation as a model boundary

alue problem, which asks: given s : Ω → R, t : ∂Ωt → R, and g : ∂Ωg → R, find u : Ω̄ → R such that the
ollowing conditions hold:

2

∇ u + s = 0 in Ω (8a)

4
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Fig. 1. Example of a meshfree approximation of data u I = x I sin(x I ).

∇u · n = t on ∂Ωt (8b)

u = g on ∂Ωg (8c)

here ∇
2

≡ ∇ · ∇, and ∂Ωt and ∂Ωg denote the natural boundary and essential boundary, respectively, with
Ωg ∩ ∂Ωt = ∅, ∂Ω = ∂Ωg ∪ ∂Ωt , and Ω̄ = Ω ∪ ∂Ω .

2.2.2. Conventional Galerkin approximation
A weak form (W) of Poisson’s equation (8) can be constructed that seeks u ∈ H 1

g , H 1
g = {u|u ∈ H 1(Ω ), u =

g on ∂Ωg} such that for all v ∈ H 1
0 , H 1

0 = {v|v ∈ H 1(Ω ), v = 0 on ∂Ωg} the following equation holds:

a(v, u)Ω = (v, s)Ω + (v, t)∂Ωt (9)

where

a(v, u)Ω =

∫
Ω

∇v · ∇u dΩ , (10a)

(v, s)Ω =

∫
Ω

vs dΩ , (10b)

(v, t)∂Ωt =

∫
∂Ωt

vt dΓ . (10c)

With approximations vh of test functions v and uh of trial functions u, with vh
= 0 on ∂Ωg and uh

= g on ∂Ωg , a
proper Galerkin approximation to (9) can be constructed which employs finite-dimensional subsets Sg ⊂ H 1

g and
S0 ⊂ H 1

0 , and seeks uh
∈ Sg such that for all vh

∈ S0 the following equation holds:

a(vh, uh)Ω = (vh, s)Ω + (vh, t)∂Ωt . (11)

In approximations which possess the Kronecker delta property, and in particular the weak Kronecker delta
property, a subset of H 1

0 is usually easily constructed. For instance, in linear finite elements, the boundary of the
computational domain is defined by element edges where nodal values are linearly interpolated, so enforcement
of a value of zero at nodes on the boundary ensures vh

= 0 on ∂Ωg . For any method with the weak Kronecker
delta property and the partition of unity, the same argument follows. For construction of a subset of H 1

g , a common
choice is to let the approximation interpolate values of g on the essential boundary, and Sg is also subset of H 1

g ,
or closely resembles a subset of H 1

g .
For meshfree methods which generally do not possess these properties, it is apparent from these discussions that

1 1
the construction of subsets of H0 and Hg is non-trivial.

5
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2.3. Strong nodal imposition in meshfree methods

Strong imposition of essential boundary conditions at nodal locations is a popular choice in meshfree methods to
approximately, as will be shown) construct admissible test and trial functions for the conventional weak formulation
9). Essentially, these entail a modification of meshfree shape functions such that nodal degrees of freedom on the
ssential boundary coincide with their field variables. For this to be the case, the Kronecker delta property is not
ctually necessary [17,21], and instead the set of modified shape functions {Ψ̂

[p]
I (x)}I∈η only need to verify the

equirements:

Ψ̂
[p]
J (x I ) = 0 ∀ I ∈ ηg, J ∈ η \ ηg (12)

nd

Ψ̂
[p]
I (x J ) = δI J ∀ I ∈ ηg, J ∈ ηg (13)

here δI J is the Kronecker delta function, and η\ηg is the complement of the set of node numbers ηg = {I |x I ∈ Sg}

or nodes Sg = {x I |x I ∈ ∂Ωg} located on the essential boundary. The above means that all “inside nodes” should not
ontribute to the approximation at “boundary nodes”, while all “boundary nodes” need to verify the delta property
t nodal locations on the boundary.

It is important to note that (12) and (13) only verify the prescribed conditions at nodal locations, but not in
etween nodes. Therefore one may enforce boundary conditions on nodal coefficients, as is done in the literature,
ut cannot ensure proper approximation spaces are constructed.

In contrast, the above properties are distinct from the weak Kronecker delta property, where only boundary shape
unctions contribute to the approximation on the entire essential boundary:

Ψ̂
[p]
J (x) = 0 ∀ x ∈ ∂Ωg, J ∈ η \ ηg. (14)

rom the above, it is apparent that approximations with (14) will have little issue with constructing proper subsets
or very close approximations) necessary for the weak formulation (9). Meanwhile for meshfree approximations
ith only (12) and (13), and not (14), as is most common, constructing proper subsets is not possible.

.3.1. Test function construction
Using these modified shape functions, in an attempt to construct a test space satisfying S0 ⊂ H 1

0 , the following
pproximation is typically employed:

vh(x) =

∑
I∈η\ηg

Ψ̂
[p]
I (x)vI (15)

here {Ψ̂
[p]
I (x)}I∈η is the set of modified shape functions with properties (12) and (13), and {vI }I∈η\ηg are

oefficients of the test function.
Due to (12) and (13), the test functions verify vh(x I ) = 0 ∀ I ∈ ηg . However, for these meshfree approximations,

he value of vh(x) is in the general case, non-zero between nodes on the essential boundary and therefore violates
he construction S0 ⊂ H 1

0 .
To illustrate this, consider a domain Ω̄ = [−1, 1] × [−1, 1] discretized uniformly in each direction by 9 nodes

ith 9 × 9 = 81 nodes total. A linear RK approximation (p = 1 in (15)) is employed using a cubic B-spline kernel
unction with a normalized support of 3. A test function with the arbitrary coefficients set to unity is constructed
sing the transformation method, with ∂Ω = ∂Ωg . As seen in Fig. 2, the test functions are in fact non-zero between
odes along ∂Ωg with the employment of (15). According to the norms computed in Table 1, the “error” (defined
s non-zero values on the essential boundary) does converge at about a rate of one (O(h)) in the L2(∂Ωg) norm, yet
he magnitude of the error (in L∞(∂Ωg)) stays about the same regardless of the discretization. According to [27],
he L2(∂Ωg) error should be O(h3/2), however it seems to be O(h) when observed numerically, at least for meshfree
pproximations.

Next, the same setup is tested with p = 2 and p = 3, since a “linear” error occurs for the previous test, and linear
asis was employed. The same norms are computed, shown in Tables 2 and 3, respectively for the two cases. Again
n O(h) error is observed, and it is seen that this error is apparently independent of the order of approximation.
6
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Fig. 2. Example of a test function in meshfree methods using the transformation method.

Table 1
Norms of error for boundary conditions imposed by test and trial functions, p = 1, varying h.

h L2(∂Ωg) L∞(∂Ωg)

Test Rate Trial Rate Test Trial

0.5000 0.01821 – 0.03615 – 0.03516 0.08443
0.2500 0.01014 0.84513 0.02137 0.75856 0.03645 0.10125
0.1250 0.00523 0.95507 0.01119 0.93372 0.03630 0.10495
0.0625 0.00262 0.99535 0.00573 0.96561 0.03628 0.10688

Table 2
Norms of error for boundary conditions imposed by test and trial functions, p = 2, varying h.

h L2(∂Ωg) L∞(∂Ωg)

Test Rate Trial Rate Test Trial

0.5000 0.01105 – 0.01935 – 0.02249 0.05458
0.2500 0.00352 1.65251 0.00640 1.59508 0.01476 0.03715
0.1250 0.00172 1.03368 0.00330 0.95787 0.01441 0.03723
0.0625 0.00086 1.00177 0.00176 0.90788 0.01440 0.03990

Table 3
Norms of error for boundary conditions imposed by test and trial functions, p = 3, varying h.

h L2(∂Ωg) L∞(∂Ωg)

Test Rate Trial Rate Test Trial

0.5000 0.00666 – 0.00975 – 0.01241 0.02231
0.2500 0.01016 −0.60978 0.01614 −0.72816 0.04419 0.09271
0.1250 0.00317 1.68073 0.00702 1.20050 0.02588 0.07773
0.0625 0.00163 0.95634 0.00353 0.99222 0.02653 0.07701

Later, it will be shown that this error can be directly related to the error in the energy norm of the problem—which
will limit the rate of convergence for higher order (p > 1) approximations. This will then be confirmed numerically.

Finally, as a test, the kernel measure a is varied, with p = 1 and h = 1/4 fixed; the results are shown in
Table 4. One can first observe that if a ≈ 1 then the error (not shown to full significant digits) is machine precision;
in this case the RK approximation closely resembles a bilinear finite element discretization. Then, as the kernel
7
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Table 4
Norms of error for boundary conditions imposed by test and trial functions, h = 1/4, p = 1,
varying a.

a L2(∂Ωg) L∞(∂Ωg)

Test Trial Test Trial

1.01 0.00000 0.00000 0.00000 0.00000
1.50 0.00118 0.00207 0.00592 0.01363
2.00 0.00483 0.00873 0.01821 0.04438
2.50 0.00863 0.01693 0.03007 0.08018
3.00 0.01014 0.02137 0.03645 0.10125
3.50 0.01085 0.02303 0.04106 0.11543
4.00 0.01207 0.02563 0.04533 0.13379

measure increases, the error on the boundary increases as well. It is generally expected that in the solution of
partial differential equations (PDEs), that increasing the measure of an approximation will increase the accuracy of
the solution; however this is not observed in practice, and an “optimal” value is observed in meshfree methods [26].
The increasing error on the boundary can explain that there exists two competing mechanisms: increasing error
with increasing a due to failure to satisfy the requirements of test functions, and increasing the accuracy of the
pproximation with increasing a.

2.3.2. Trial function construction
Strong enforcement at boundary nodes uh(x I ) = g(x I ) is also typically introduced, and in an attempt to construct

Sg ⊂ H 1
g , the following approximation is employed:

uh(x) =

∑
I∈η\ηg

Ψ̂
[p]
I (x)u I + gh(x), (16)

where

gh(x) =

∑
I∈ηg

Ψ̂
[p]
I (x)gI , (17)

the values {u I }∈η\ηg are the trial functions coefficients, and gI ≡ g(x I ) is the prescribed value of g(x) at an essential
boundary node x I ∈ Sg . Because of the properties (12) and (13), the trial functions verify uh(x I ) = g(x I ) ∀ I ∈ ηg .

While essential boundary conditions for trial functions are verified at nodal locations, the condition uh
= g is

again not enforced between the nodes. Fig. 3 depicts a linear function prescribed as g(x) = x +2y and approximated
y (17) using the same discretization that was employed for the test function. Again it can be seen that along the
oundary, the solution is collocated only at nodal points. As shown in Table 1, the L2(∂Ωg) norm of the difference
etween g and gh also converges at a rate of approximately one (O(h)) just as the test function, while the magnitude
f error (in L∞(∂Ωg)) also stays roughly the same, despite refinement. It should be noted that even though linear
ases are employed, the function is not exactly represented due to the influence of the interior nodes on the value
f the meshfree approximation on the essential boundary between nodes. That is, it should be clear from Fig. 3 that
he RK approximation under the transformation framework does not possess the weak Kronecker delta property.

Next, p = 2, and p = 3 are tested, with the same norms computed and shown in Tables 2 and 3, respectively.
gain an O(h) error is observed, and it is seen that this error in representing the essential boundary conditions is

lso apparently independent of the order of approximation. The kernel measure a is again varied, with p = 1 and
h = 1/4 fixed, and the results are shown in Table 4. Again for a ≈ 1 the boundary conditions are represented
quite well, as the RK approximation simply interpolates the boundary condition in the limit of a → 1. Then, as
he kernel measure increases, the error on the boundary increases as before.

In the next section, it will be shown that the errors on the boundary in the test and trial functions are directly
elated to the error in the solution of PDEs. That is, while O(h) in L2(∂Ωg), the errors manifest as errors of O(h2)

2
n L (Ω ) and O(h) in H1(Ω ), limiting the rate of convergence of the solution.

8
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Fig. 3. Approximation gh (x) in meshfree methods using the transformation method.

2.3.3. Error assessment of inconsistencies
As a point of departure in considering the error induced by these inconsistencies, we first examine the weighted

residual formulation, which is more a more general way to arrive at a weak formulation than a potential. The latter
point of view will be revisited.

Integrating the product of an arbitrary weight function v and the residual of (8a) over Ω we have:

(v, ∇2u + s)Ω = 0. (18)

Integrating (18) by parts and employing divergence theorem one obtains

a(v, u)Ω = (v, s)Ω + (v, n · ∇u)∂Ω . (19)

er the usual procedures, employing (8b), v = 0 on ∂Ωg , and the boundary decomposition, we have the weak form
W) in (9) which asks to find u ∈ H 1

g such that for all v ∈ H 1
0 the following equation holds:

a(v, u)Ω = (v, s)Ω + (v, t)∂Ωt .

Provided u is sufficiently smooth, the above equation can be integrated by parts to obtain

(v, ∇2u + s) + (v, t − ∇u · n)∂Ωt − (v, ∇u · n)∂Ωg = 0 (20)

here

(v, ∇u · n)∂Ωg =

∫
∂Ωg

v∇u · n dΓ . (21)

mploying the fact that v = 0 on ∂Ωg , u = g on ∂Ωg , and the arbitrary nature of v one obtains the strong form
8), that is we have the following equivalence

(W) ⇔ (S)

However, in meshfree methods it is difficult to achieve vh
= 0 on ∂Ωg in the Galerkin discretization as discussed

reviously. And, in fact, as shown in [17], the transformation method is actually consistent with a weak formulation
hat only attests to strong enforcement of essential boundary conditions at nodal locations, rather than the entire
ssential boundary in the true strong form.

Either way, to demonstrate one significant consequence of employing (9), consider the following relation found
y using Green’s first identity and the conditions in (8):

a(vh, u)Ω = −(vh, ∇2u)Ω + (vh, n · ∇u)∂Ω
h h h (22)
= (v , s)Ω + (v , t)∂Ωt + (v , n · ∇u)∂Ωg .

9
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Subtracting (22) from (9) gives

a(vh, uh
− u)Ω = (vh, n · ∇uh)∂Ωg (23)

hich is the relation given in [27], and demonstrates that if vh
̸= 0 on ∂Ωg Galerkin orthogonality is lost. It can be

asily shown that using this relation, the best approximation property no longer holds, i.e., the minimum error in
he norm induced by a(·, ·) is not obtained for the Galerkin solution. One immediate consequence is that the patch
est will fail.

Now, as discussed in [27], the left hand side is bounded by a(uh
− u, uh

− u)1/2
Ω . Since the discrepancy on the

oundary induced by the inadmissibility of test functions has been numerically observed as O(h), one should expect
(h) error in the energy norm of the problem, independent of the order of approximation. This will be confirmed

umerically in the next Subsection.

emark 1. To further elucidate the failure of the patch test, consider the viewpoint of variational consistency
resented in [28]. Starting from (9), and following [28], it can be shown using (8) and (4), that the requirements
or obtaining an exact solution u[p] of order p using the traditional weak formulation is

a⟨vh, u[p]
⟩Ω = −⟨vh, ∇2u[p]

⟩Ω + ⟨vh, n · ∇u[p]
⟩∂Ωt (24)

where a⟨·, ·⟩, ⟨·, ·⟩Ω , and ⟨·, ·⟩∂Ωt denote the quadrature versions of a(·, ·), (·, ·)Ω , and (·, ·)∂Ωt , respectively. However,
using integration by parts, with sufficiently high order (e.g. machine precision) quadrature it is obvious that

a⟨vh, u[p]
⟩Ω ≈ −(vh, ∇2u[p])Ω + (vh, n · ∇u[p])∂Ω ̸= −(vh, ∇2u[p])Ω + (vh, n · ∇u[p])∂Ωt ≈ −⟨vh, ∇2u[p]

⟩Ω

+ ⟨vh, n · ∇u[p]
⟩∂Ωt (25)

and a patch test will fail unless vh
= 0 on ∂Ωg . That is, no matter how high order the quadrature (or even with

exact integration), one will not be able to pass the patch test. In addition, even if variationally consistent integration
(VCI) is employed (which was developed to pass the patch test), one will still not be able to pass the patch test
with strong-type essential boundary condition enforcement (unless vh

= 0 on ∂Ωg), since VCI-based methods are
based on consistent weak forms (Nitsche’s method, Lagrange multiplier, etc., see [28] for details) and one obtains:

a⟨vh, u[p]
⟩Ω = −⟨vh, ∇2u[p]

⟩Ω + ⟨vh, n · ∇u[p]
⟩∂Ω ̸= −⟨vh, ∇2u[p]

⟩Ω + ⟨vh, n · ∇u[p]
⟩∂Ωt (26)

where ⟨·, ·⟩∂Ω denotes the quadrature version of (·, ·)∂Ω . That is, these methods are incompatible with the
inconsistent (traditional) weak form. On the other hand, as will be seen later in the text, the consistent weak forms
proposed in Section 3 are in fact compatible with VCI methods.

2.3.4. Numerical assessment of the order of errors in boundary value problems
To examine the effect of these inconsistencies on the numerical solution to PDEs, and verify the assertions made

in the previous section, a few patch tests are first performed, with the solution obtained using the transformation
method.

Consider the Poisson problem (8) on the domain Ω̄ = [−1, 1] × [−1, 1] with the pure essential boundary
condition ∂Ωg = ∂Ω . First, let the prescribed body force and boundary conditions be consistent with the linear
solution u = 0.1x + 0.3y:

u = 0.1x + 0.3y on ∂Ωg, (27a)

s = 0 in Ω . (27b)

Since the patch test in meshfree methods is intimately related with quadrature [28], the effect of the order of
quadrature is first considered. That is, according to conventional wisdom, a failure of the patch test in meshfree
methods is generally attributed to the lack of quadrature accuracy in the weak formulation. However, as has been
discussed, no matter the accuracy of quadrature employed, one will not be able to pass the patch test with the weak
formulation in conjunction with a strong-type boundary method. In addition, as discussed in Remark 1, the VCI
technique used to patch past tests will not succeed.

To demonstrate this, the patch test is first performed with varying orders of quadrature denoted N Q. Gauss cells
with N Q × N Q rules are employed that are coincident with the nodal spacing such that each cell is associated
10
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Fig. 4. Norms of error for the transformation method in a linear patch test in Poisson’s problem with respect to number of quadrature points
NQ”. “T” denotes transformation, “T+VC” denotes transformation using VCI.

with four nodes, with boundary Gauss points defined by the outer segments of cells intersecting ∂Ω for integration
of boundary terms. Cubic B-spline kernels are employed for the RK approximation, with normalized supports of
p + 1. This integration scheme and choice of kernel functions will be employed throughout this manuscript unless
otherwise stated.

Linear basis is used in the RK approximation so that the solution can be represented exactly. VCI is also employed
to verify the relations stated in Remark 1. The domain is discretized uniformly with a nodal spacing of h = 1/5.
As seen in Fig. 4, no matter the order of accuracy of quadrature, the patch test cannot be passed (error on the
level of machine precision). Increasing the quadrature accuracy does not result in a better solution, and in fact, the
solution error converges at N Q = 5. That is, increasing the order quadrature past this point has little effect on
the solution. In addition, it can be seen that the VCI technique also does not pass the patch test with strong-type
essential boundary condition enforcement.

As a result of this study, N Q = 5 will be employed for the following patch test studies in this Subsection, and
any remaining error should be due to other variational crimes: the only inconsistency present in the formulation
hen is the inability to satisfy the requirements on test and trial functions in the weak form [27].

Standard convergence of the solution (with respect to h) is now tested, with the errors in the L2(Ω ) norm and
H 1(Ω ) semi-norm shown in Fig. 5. VCI is again employed to verify the relations stated in Remark 1. First, it
an be seen that the patch tests are indeed not passed, which can be attributable to the errors in constructing the
roper approximation spaces, since there are no other variational crimes committed (the quadrature error should be
egligible according to Fig. 4). Also, with the addition of VCI, one is still not able to pass the patch test, and the
rror is generally unaffected.

Importantly, it is also seen that through refinement of the discretization (decreasing h), the order of error induced
y the inconsistency in the boundary conditions on the test and trial functions manifest as O(h2) and O(h), for the

L2(Ω ) norm and H 1(Ω ) semi-norm, respectively. That is, the errors reduce with refinement, at a rate consistent
ith employing linear basis. One may thus expect that these errors will have no influence on the convergence rates

n the solution of PDEs with linear basis, but will have influence on solutions using higher order basis, which will
e confirmed later.

Next, consider a quadratic patch test with quadratic basis with the same test of h-refinement. Here the following
uadratic solution is considered: u = 0.1x + 0.3y + 0.8x2

+ 1.2xy + 0.6y2. The following conditions result in this
olution:

2 2
u = 0.1x + 0.3y + 0.8x + 1.2xy + 0.6y on ∂Ωg, (28a)

11
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Fig. 5. Norms of error for the transformation method in a linear patch test in Poisson’s problem, rate of convergence indicated. “T” denotes
transformation, “T+VC” denotes transformation using VCI.

Fig. 6. Norms of error for the transformation method in a quadratic patch test in Poisson’s problem, rate of convergence indicated. “T”
denotes transformation, “T+VC” denotes transformation using VCI.

s = −2.8 in Ω . (28b)

The error in the L2(Ω ) norm and H 1(Ω ) semi-norm are shown in Fig. 6. First, it can be seen that indeed no
ethod can pass the patch test, even when VCI is employed. This is again attributable to the inconsistency of the
eak formulation used in conjunction with the strong approach to boundary conditions.
It can also be seen that the inconsistent enforcement of boundary conditions results in errors O(h2) and O(h) in

he previously mentioned norms, respectively. That is, the errors again decrease at a rate consistent with “linear”
ccuracy, despite the fact that higher-order accurate basis functions are employed. One may then expect that these
rrors will limit the order of convergence in the solution of PDEs, which again, will be confirmed later.

To conclude, these results indicate that quadrature is not the only factor that influences the ability to pass the patch
est, and in fact, using the strong-type enforcement of boundary conditions in conjunction with the conventional
eak formulation precludes this. The failure of the patch test using VCI also indicates that the transformation method

ust be corrected in some way in order to use VCI effectively for these strong methods. Importantly, the inability

12
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Fig. 7. Convergence of transformation method with linear basis with various kernel measures a: rates indicated in legend.

to construct proper approximation spaces also yields errors of linear order in the solution of PDEs, independent of
the order of completeness employed.

To examine the possible, and now expected, effect on convergence rates, consider (8) with the source term and
pure essential boundary ∂Ωg = ∂Ω with domain Ω̄ = [0, 1] × [0, 1]:

g(x, 0) = sin(πx), g(x, 1) = g(0, y) = g(1, y) = 0 on ∂Ωg, (29a)

s = 0 in Ω . (29b)

The exact solution of this problem is high order [12]:

u = {cosh(πy) − coth(π ) sinh(πy)} sin(πx). (30)

Linear, quadratic, and cubic bases are employed with the transformation method, with uniform refinements of the
domain. Various normalized support sizes (denoted “a” in the Figure legends) are employed, to examine the effect
of varying the measure of Φa(x − x I ), as it is well known that linear basis degenerates to linear finite elements
as the normalized measure a approaches unity. Thus, larger values of a are expected to show more pronounced
error due to boundary condition enforcement, since finite elements have little to no difficulty in constructing proper
approximation spaces, or at least ones which do not induce significant solution errors. In these convergence tests,
20 × 20 quadrature is employed to isolate the effects of the boundary condition enforcement completely (see Fig. 4).

Fig. 7 shows the convergence for linear basis in the L2(Ω ) norm and H 1(Ω ) semi-norm; it can be seen that the
optimal rates of two and one are essentially maintained, regardless of the kernel measure.

For quadratic basis, it can be seen in Fig. 8 that these same linear rates are also generally obtained, yet the
optimal rates for quadratic basis should be three and two for the L2(Ω ) norm and H 1(Ω ) semi-norm, respectively.

herefore optimal rates are not obtained in this case, and rather, the solution exhibits linear accuracy rather than
uadratic.

For the case of cubic basis, shown in Fig. 9, it can again be seen that the rates obtained are far lower than
xpected; the linear rates of two and one are again obtained in most cases for the L2(Ω ) norm and H 1(Ω )
emi-norm, respectively, when the optimal convergence rates associated with employing approximations with cubic
ompleteness are four and three, respectively. Again, the solution exhibits linear accuracy, rather than cubic.

Higher order bases were also tested but are not shown here for conciseness of presenting the present study. The
ransformation method also provided only linear solution accuracy.

To conclude, the numerical results in this section indicate that the error due to the inability to satisfy the
equirements of the conventional weak form (9) is characterized as O(h2) error in the L2(Ω ) norm and O(h) error
n the H 1(Ω ) semi-norm, limiting the rate of convergence for bases higher than linear.
13
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Fig. 8. Convergence of transformation method with quadratic basis with various kernel measures a: rates indicated in legend.

Fig. 9. Convergence of transformation method with cubic basis with various kernel measures a: rates indicated in legend.

It seems that through the popular choice of linear basis in meshfree approximations over the past two decades,
his observation has somehow been overlooked, or hardly reported in the literature. To the best of the authors’
nowledge, only [21] reports results with quadratic basis and strong enforcement of boundary conditions (using the
K approximation with interpolation property), where the same trend was observed.

. Consistent weak forms for meshfree methods

.1. Consistent weak form I: A consistent weak formulation for inadmissible test functions

A consistent weak formulation for test functions inadmissible in the conventional weak form can be derived by
onsidering the possibility of vh

̸= 0 on ∂Ωg in between nodes. First, consider the weighted residual of (8), as
efore:

(v, ∇2u + s) = 0.
Ω

14
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Integrating by parts and employing divergence theorem one obtains

a(v, u)Ω = (v, s)Ω + (v, n · ∇u)∂Ω .

Now, by employing (8b) and allowing v ̸= 0 on ∂Ωg , a consistent weak form which we denote (W1
C ) is arrived at,

which asks to find u ∈ H 1
g , such that for all v ∈ H 1, the following equation holds:

a(v, u)Ω − (v, n · ∇u)∂Ωg = (v, s)Ω + (v, t)∂Ωt (31)

here the requirement on v ∈ H 1
0 has been relaxed to simply v ∈ H 1 where H 1

= H 1(Ω ), which allows the
mployment of (15) for the test function without committing a variational crime.

It is important to note, that when (31) is integrated by parts, it is straightforward to show the weak form (31)
ttests to (8), and the equivalence of the weak form and the strong form is verified, that is, W1

C ⇔ S:

(v, ∇2u + s) + (v, h − ∇u · n)∂Ωt . (32)

ince v in the above is arbitrary and u ∈ H 1
g , the strong form (8) is recovered.

The corresponding Galerkin approximation seeks uh
∈ Sg , Sg ⊂ H 1

g such that for all vh
∈ S, S ⊂ H 1 the

ollowing holds

a(vh, uh)Ω − (vh, n · ∇uh)∂Ωg = (vh, s)Ω + (vh, t)∂Ωt (33)

here vh is constructed from (15) and uh is constructed from (16).
In this formulation, we have relaxed the condition on the test function, but still attempt to construct approximation

paces that satisfy the usual conditions. That is, the present weak formulation (W1
C ) can be considered a consistent

ay to employ the condition vh
= 0 on ∂Ωg strongly at nodes.

So far, the inconsistency in the construction of the trial function is neglected, yet in the numerical examples in
ection 5 it is shown that this has little consequence on the solution accuracy. The reason for this is discussed in

he Remark below.

emark 2. Subtracting (22) from (33) gives

a(vh, uh
− u)Ω = (vh, n · ∇(uh

− u))∂Ωg (34)

nd a type of Galerkin orthogonality is restored (compare to (23)). If one recalls that the left hand side is bounded
y a(uh

− u, uh
− u)1/2

Ω , this indicates that the limiting term on the boundary in (23) will be released and proper
onvergence rates associated with the approximation space should be achieved. To emphasize, the additional term in
31) corrects for a non-zero test function on ∂Ωg , and appears to be the most important correction to the strong-type
ethods since it eliminates the O(h) term that limits the rate of convergence. The possibility that u ̸= g on ∂Ωg

oes not seem to be as problematic, since it does not show up in (23).

emark 3. The consistent weighted residual procedure generalizes easily to various boundary value problems (see
he Appendix).

.2. Consistent weak form II: A consistent weak formulation for inadmissible test and trial functions with
ymmetry

The employment of (31) yields a non-symmetric stiffness matrix which is often undesirable. In addition, unless
rial functions can satisfy the essential boundary conditions exactly, we do not have W1

C ⇔ S, and strictly speaking
1
C is still not consistent with a meshfree discretization (although as discussed previously, this may not be as

roblematic).
To address these two issues, consider a more general form of the weighted residual formulation with weights

Ω on Ω and vg on ∂Ωg:

(vΩ , ∇2u + s)Ω + (vg, u − g)
∂Ωg

= 0. (35)

arious weights can be chosen, however the choice of vΩ = v and vg = n ·∇v yields a symmetric weak form which

ill be shown as follows. Further impetus is provided by the fact that a flux term n · ∇u is the “work-conjugate”

15
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to u in terms of the potential associated with (8) and yields consistent “units” of the problem at hand. With this
choice, (35) is expressed as

(v, ∇2u + s)Ω + (n · ∇v, u − g)∂Ωg = 0. (36)

ntegrating (36) by parts and employing the natural boundary condition (8b), one obtains a symmetric weak form
hat we denote (W2

C ), which asks to find u ∈ H 1 such that for all v ∈ H 1, the following equation holds

a(v, u)Ω − (v, n · ∇u)∂Ωg − (n · ∇v, u)∂Ωg = (v, s)Ω + (v, t)∂Ωt − (n · ∇v, g)∂Ωg . (37)

he above allows the complete relaxations of simply requiring v ∈ H 1 and u ∈ H 1, and now both (15) and (16)
an be employed without committing a variational crime.

Applying integration by parts to a(·, ·) in (37) yields:

(v, ∇2u + s)∂Ω + (v, n · ∇u − t)∂Ωt + (v, u − g)∂Ωg = 0 (38)

here it is immediately apparent that the strong form of the problem can be recovered, hence (W2
C ) ⇔ (S).

The weak from (W2
C ) is the same one identified in Ref. [15], and can be also derived from a variational viewpoint.

ere, the key difference between this work and that in [15], is that the weak form is employed with (15) and (16)
s to rectify the deficiencies of the standard use of these approximations. We also note that employing (37) alone
oes not guarantee stability [16].

The corresponding Galerkin approximation seeks uh
∈ S such that for all vh

∈ S, S ⊂ H 1 the following holds

a(vh, uh)Ω − (vh, n · ∇uh)∂Ωg − (n · ∇vh, uh)∂Ωg = (vh, s)Ω + (vh, t)∂Ωt − (n · ∇vh, g)∂Ωg (39)

here vh is again constructed from (15) and uh is constructed from (16). It is easy to see that when a
ubnov–Galerkin approximation is employed, (39) leads to a symmetric system matrix.

With the complete relaxation on test and trial functions, this weak formulation (W2
C ) can be considered a

onsistent way to employ both the conditions vh
= 0 on ∂Ωg and uh

= g on ∂Ωg strongly at nodes.

emark 4. Rather than satisfying Galerkin orthogonality, by employing (22), the Galerkin discretization of the
onsistent weak form (W2

C ) satisfies the following:

a
(
vh, uh

− u
)
Ω

=
(
n · ∇vh, uh

− g
)
∂Ωg

+
(
vh, n · ∇(uh

− g)
)
∂Ωg

. (40)

ote that if uh
= g on ∂Ωg , then the standard orthogonality relation is recovered.

emark 5. The relation (40) leads to the insight that a Galerkin discretization of (W2
C ) minimizes the error in the

orm induced by a(·, ·) augmented by the “work” of the error on the essential boundary:

Π(W2
C )

(
uh)

=
1
2

a
(
uh

− u, uh
− u

)
Ω

− (uh
− u, n · ∇(uh

− u))∂Ωg . (41)

That is, (W2
C ) can be obtained by minimization of the above potential with respect to uh . This illuminates the

possibility of balancing errors on the domain and boundary, following [29], although the numerical examples in
Section 5 indicate that this is likely not necessary since optimal rates are obtained—that is, with (41), the order of
errors due to the imposition of conditions on the domain and boundary may already be balanced. It should also be
noted that an immediate consequence of this property is this proposed weak form also restores the ability to pass
the patch test in strong-type essential boundary condition methods.

Remark 6. The potential associated with (39) can also be stated in a more conventional manner:

Π(W2
C )

(
uh)

=
1
2

a
(
uh, uh)

Ω
− (uh, s)Ω − (uh, t)∂Ωt − (uh

− g, n · ∇uh)∂Ωg (42)

where it can be seen that the last term accounts for the work done by the error on the essential boundary. Thus,
considering the possibility of error on the boundary is yet another way to arrive at a consistent weak form. The
other, is to minimize the error in both the domain and boundary, in terms of appropriate work-conjugates, as in
(41).
16
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Remark 7. This weak form can also be generalized to other boundary value problems, for a discussion, refer to
the Appendix.

Remark 8. The employment of (W2
C ) or (W1

C ) is consistent with the variationally consistent framework proposed
in [28], which requires the weak form attest to the strong form. In contrast, the strong-type of boundary condition
enforcement does not. As a result a VCI method employing either of the consistent weak formulations can pass the
patch test. To demonstrate this, starting from (31) or (37), and following [28], it can be shown using (8) and (4),
that the requirements for obtaining an exact solution u[p] of order p using a consistent weak formulation are the
same as given in [28]:

a⟨vh, u[p]
⟩Ω = −⟨vh, ∇2u[p]

⟩Ω + ⟨vh, n · ∇u[p]
⟩∂Ω . (43)

Now, using integration by parts, with sufficiently high order (e.g. machine precision) quadrature one obtains:

a⟨vh, u[p]
⟩Ω ≈ a(vh, u[p])Ω = −(vh, ∇2u[p])Ω + (vh, n · ∇u[p])∂Ω ≈ −⟨vh, ∇2u[p]

⟩Ω +⟨vh, n · ∇u[p]
⟩∂Ω (44)

and the pass test will be passed with higher order quadrature even if vh
̸= 0 on ∂Ωg (compare to (25)). In addition,

since VCI methods inherently satisfy the requirements in (43), the patch tests can be passed using (31) or (37)
with any order of quadrature. This is also applicable to other variationally consistent methods such as the popular
stabilized conforming nodal integration [30], or the quadratically-consistent method [31].

In summary, two weak forms have been developed, which are consistent with the inability of an approximation
to meet the requirements of the conventional weak form. The first considers the fact that the weight function is
possibly non-zero on the essential boundary, but that the essential boundary conditions still hold strongly. This
results in a non-symmetric stiffness matrix, but is more consistent with meshfree approximations. This weak form
attests to the strong form, and is shown to restore a type of Galerkin orthogonality. The second weak form relaxes the
requirements on both the test and trial functions, and they only need to be constructed to possess square-integrable
derivatives. The particular form taken here results in a symmetric system, at least for the model problem at hand (see
the Appendix for a brief discussion). This weak form attests to the strong form, and is shown to satisfy a different
orthogonality relation, which illuminates that it minimizes the error in the domain in terms of the energy norm, as
well as the error on the boundary in terms of the field variable and its corresponding “flux” (or work-conjugate)
term.

4. Numerical procedures

In this section, the matrix forms for the consistent weak forms are given and boundary condition enforcement
procedures are discussed. As a starting point, let us first define terms common to the weak formulations discussed:
let d denote a column vector of {u I }I∈η, ΨI and B I denote the I th shape function and the column vector of its
derivatives respectively, and let n represent the unit normal to ∂Ωg in column vector form. In two dimensions this
yields:

d =

⎡⎢⎢⎢⎣
d1
d2
...

dN P

⎤⎥⎥⎥⎦ , B I =

[
ΨI,1
ΨI,2

]
, n =

[
n1
n2

]
. (45)

The following final system of matrix equations is also common to all formulations:

K d = f (46)

where the system size is Np×Np. The above system is left statically uncondensed purposefully, as special procedures
are needed to apply boundary conditions in meshfree methods. These techniques are discussed in Section 4.4.

4.1. Conventional weak formulation

Under the conventional weak formulation (9), the scalar entries of K and f in (46) are computed as

K I J =

∫
BT

I (x)B J (x) dΩ , (47a)

Ω

17
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4

f I =

∫
Ω

ΨI (x)s dΩ +

∫
∂Ωt

ΨI (x)t dΓ . (47b)

.2. Consistent weak form I (CFW I)

For the Consistent weak form I (33), the scalar entries of K and f in (46) are computed as

K I J =

∫
Ω

BT
I (x)B J (x) dΩ −

∫
∂Ωg

ΨI (x)nT B J (x) dΓ , (48a)

f I =

∫
Ω

ΨI (x)s dΩ +

∫
∂Ωt

ΨI (x)t dΓ . (48b)

Comparing (48) to (47), it can be seen that only one new term is added to the stiffness matrix of the system. Later,
it will be seen that the addition of this one term results in a drastic increase in solution accuracy and is able to
restore optimal convergence rates. Indeed, the main problem with the inability to construct proper subspaces in the
conventional weak formulation is due to the term in (23), which this weak form corrects for.

4.3. Consistent weak form II (CFW II)

For the discretization of consistent weak form II (39), the scalar entries of K and f in (46) are computed as

K I J =

∫
Ω

BT
I (x)B J (x) dΩ −

∫
∂Ωg

BT
I (x)nΨJ (x) dΓ −

∫
∂Ωg

ΨI (x)nT B J (x) dΓ , (49a)

f I =

∫
Ω

ΨI (x)s dΩ +

∫
∂Ωt

ΨI (x)t dΓ −

∫
∂Ωg

BT
I (x)ng dΓ . (49b)

In the above, it can be seen that compared to (47), both the stiffness matrix and the force vector contain new terms.
For the stiffness matrix, the two additional terms are the transpose of each other, so that only one of these matrices
needs to be constructed for the analysis (or just the upper triangle of the entire system matrix). In addition, since
the original stiffness matrix is symmetric, the resulting system matrix will also be symmetric, and efficient solvers
can be employed with this method.

4.4. Enforcement of boundary conditions

Procedurally, due to the nature of the approximations involved, it is uncommon to employ the formal definitions
of test and trial approximations in (15) and (16) directly in the weak form for meshfree methods. Rather, the full
systems are formed with the RK approximation defined over all nodes (1) leading to (46), and boundary conditions
are applied after. That is to say, the system in (46) represents a statically uncondensed system and cannot be solved
directly.

Instead, two favorable possibilities to enforce boundary conditions on the uncondensed systems are recommended
here: (1) meshfree transformation procedures can be applied—the reader is referred to [17] for more details, where
a simple and convenient row-swap implementation of the transformation method is presented; or (2) straightforward
static condensation with direct enforcement of boundary conditions is possible (equivalent of course to using (15)
and (16) directly in the weak form), provided either singular kernels [17] or shape functions with interpolation
property [21] are introduced for nodes that lie on the essential boundary.

5. Numerical examples

For the following examples, the parameters of the RK approximation and the numerical integration method have
been discussed in Section 2.3.4 in detail, but are briefly recalled here: twenty-by-twenty Gaussian integration per
background cell is employed with cells aligned with uniformly distributed nodes. Cubic B-spline kernels are used
in the RK approximation, with varying nodal spacing denoted h, kernel measures normalized with respect to h
denoted a, and order of bases denoted p.
Three main methods are compared in terms of the transformation method [17]:
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Fig. 10. Norms of error for various methods in the linear patch test. “+VC” denotes methods using VCI.

• The transformation method (denoted as T)
• The transformation method with consistent weak form I (denoted as T+CWF I)
• The transformation method with consistent weak form II (denoted as T+CWF II)

Later, the boundary singular kernel method [17] is employed to complete the study to demonstrate the method
works with other types of strong enforcement, with permutations denoted following the same convention:

• The boundary singular kernel method (denoted as B)
• The boundary singular kernel method with consistent weak form I (denoted as B+CWF I)
• The boundary singular kernel method with consistent weak form II (denoted as B+CWF II)

The error in the L2(Ω ) norm and the H 1(Ω ) semi-norm are assessed, computed using the same quadrature rules as
forming the system matrices.

5.1. Patch test for the 2D Poisson equation

Consider the Poisson problem (8) on the domain Ω̄ = [−1, 1] × [−1, 1] with the pure essential boundary
condition ∂Ωg = ∂Ω . Let the prescribed body force and boundary conditions be consistent with an exact linear
solution u = 0.1x + 0.3y (see (27) for the conditions).

The quadrature study in Section 2.3.4 is carried out, now with all three weak forms, to examine the effect of
quadrature and use of T, T+CWF I, and T+CWF II, and VCI on the solution error in the patch test: an increasing
number of quadrature points N Q is employed with these methods as before.

The error in the L2(Ω ) and H 1(Ω ) semi-norm for the three versions of the transformation method are shown
in Fig. 10. First, it is seen that both the proposed T+CWF I and T+CWF II are able to pass the linear patch test
(with machine precision error) with sufficient quadrature. Again, the transformation method fails to pass the patch
test no matter how high the order of quadrature employed.

The ability to pass the patch test by both T+CWF I and T+CWF II, and failure to pass the patch test by the
transformation method alone, is consistent with the orthogonality relations (23), (34), and (40), where the resulting
projection properties, or lack thereof, indicate which methods should or should not pass the patch tests. Thus the
results of the patch tests are consistent with the discussions in Sections 2 and 3.

It is also seen that the variationally consistent integration technique can now pass the patch tests with any order of
quadrature, provided a consistent weak form is employed (CWF I or CWF II), which is also in agreement with the
discussions in Sections 2 and 3. Thus, in order to effectively use VCI to enhance solution accuracy in strong-type
essential boundary condition enforcement, one must use one of the proposed consistent weak forms.
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Fig. 11. Convergence with various bases in the L2 norm: rates indicated in legend.

5.2. Poisson equation with high-order solution

Now consider the Poisson problem (8), on Ω̄ = [0, 1] × [0, 1], with source term and the pure essential boundary
condition as the same as (29):

g(x, 0) = sin(πx), g(x, 1) = g(0, y) = g(1, y) = 0 on ∂Ωg,

s = 0 in Ω .

he exact solution of this problem is high order:

u = {cosh(πy) − coth(π ) sinh(πy)} sin(πx).

n this study, the effect of the three weak forms is examined in terms of convergence rates with respect to varying
he support sizes a, order of basis functions p, and nodal spacing h. 20 × 20 quadrature is employed in all of the
ollowing studies in order to put aside the issue of quadrature.

.2.1. p-refinement and h-refinement
First consider linear, quadratic, cubic, and quartic bases (denoted with p = 1, p = 2, p = 3, and p = 4,

espectively), with normalized support sizes of a = p + 1. h-refinement is performed for each of the basis, starting
ith an 11 × 11 uniform node distribution. The solution errors in the L2(Ω ) norm and H 1(Ω ) semi-norm of the
arious bases are plotted in Figs. 11–12, showing that T+CWF I and T+CWF II can yield optimal convergence
ates (p + 1 in L2 and p in semi-H 1), while the traditional weak form (T) only yields linear rates (2 in L2 and 1
n semi-H 1), regardless of the order of basis. Therefore the present approach can yield h-refinement with pth order

optimal rates of convergence.
In addition, it can be seen in Figs. 11b 11c, 12b, and 12c, that by increasing p, for any given h (with the

exception of one case), more accuracy can be obtained, yielding the ability to also provide p-refinement. These
wo features of the present approach are in stark contrast to the results in Figs. 11a and 12a, where increasing p
oes not give consistently more accurate results, and in fact moving from p = 1 to p = 2 provides only marginal
mprovement in accuracy, while increasing p from two to three and three to four actually provides worse results.
omparing to Tables 1, 2, and 3, it can be inferred that this is due to the additional error in the representation of
oundary conditions in the test and trial functions, decreasing from p = 1 to p = 2, and increasing from p = 2 to

p = 3.
Finally, it can be noted that both T+CWF I and T+CWF II can provide p-refinement and h-refinement with

pth order optimal rates with nearly the same levels of error, and one may select either based on need or preference
T+CWF I has only one new term, but yields a non-symmetric system, while T+CWF II yields a symmetric system,
ut has three additional terms).
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Fig. 12. Convergence with various bases in the H1 semi-norm: rates indicated in legend.

Fig. 13. Convergence for linear basis (p = 1) with various a in the L2 norm: rates indicated in legend.

5.2.2. Dilation analysis
The effect of varying normalized support sizes in the proposed method is now examined, since as shown

previously, increased support sizes in the RK approximation can yield different behavior on the essential boundary
of the domain for both test and trial functions. In addition, the present test is to show that the previous results
were not a special case—window functions and their measure can have an effect on accuracy and convergence
rates [26], and even super-convergence can be obtained for special values of window functions [32,33]. Thus the
current permutations on a and p will examine the robustness of the formulation under the variety of free parameters
n the RK approximation. For this study, the discretizations and solution technique for the previous example are
mployed, refining h as before, while varying a and p.

First, linear basis (p = 1) is tested. The errors in the L2(Ω ) norm and H 1(Ω ) semi-norm are plotted in Figs. 13
nd 14 respectively, for T, T+CWF I, and T+CWF II. First it can be seen that optimal rates are obtained for all
ases of a, for all methods. Also, when comparing to the results for the transformation alone (T), much lower
evels of error can be obtained with the present approach: nearly an order of magnitude when a is sufficiently large.
he error also decreases monotonically with increasing a—this point will be revisited. Finally, it be seen that little
ifference in the solution error is observed for T+CWF I and T+CWF II, as in the previous cases.

Next, quadratic (p = 2) basis is tested for various values of a; the same error measures are presented in Figs. 15
nd 16. Here it can be seen that the use of T+CWF I and T+CWF II provides a large improvement in performance
ver T alone, regardless of the value of a. The proposed methods provide optimal convergence rates consistently,
21
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Fig. 14. Convergence for linear basis (p = 1) with various a in the H1 semi-norm: rates indicated in legend.

Fig. 15. Convergence for quadratic basis (p = 2) with various a in the L2 norm: rates indicated in legend.

and do not depend on the dilation parameter. Meanwhile, with T alone, consistently worse rates are obtained with
increasing the kernel measure a. Finally, from the figures, it is starkly apparent that the magnitude of error can be
reduced anywhere from one to two orders of magnitude by employing the proposed techniques.

Finally, cubic (p = 3) basis is tested. The same error measures are presented in Figs. 17 and 18 for all cases.
Again, the two proposed methods consistently provide optimal convergence rates regardless of the value of a.
However in this case, it seems that the actual value has little effect on solution accuracy. On the other hand, the
transformation method (T) provides only linear rates, as expected, while the value of a also has little effect. Similar
to the last example, it is apparent from Figs. 17 and 18 that these techniques provide the ability to reduce the
solution error by several orders of magnitude, in this case, by three orders, or 99.9%.

5.2.3. A new concept: a-refinement
From the previous study, it can be noted that increasing the support size tends to yield lower error. This seems

to run counter-intuitive as reported results in the meshfree community seem to indicate an “optimal” dilation
(e.g., see [26]); this contradiction motivates the current study.

Here, a fixed distribution of the nodal spacing h = 1/10 is employed, while varying the normalized support a
for different values of p. Fig. 19 shows the error for linear basis, where it is seen that by increasing a, lower error
22
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Fig. 16. Convergence for quadratic basis (p = 2) with various a in the H1 semi-norm: rates indicated in legend.

Fig. 17. Convergence for cubic basis (p = 3) with various a in the L2 norm: rates indicated in legend.

Fig. 18. Convergence for cubic basis (p = 3) with various a in the H1 semi-norm: rates indicated in legend.
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Fig. 19. Norms of error of various methods with linear basis and various kernel measures a.

can be obtained with T+CWF I and T+CWF II. On the other hand, with T alone, the optimal value appears to be
= 2.5, which likely strikes a balance between approximation accuracy, and error due to the inability to construct

proper spaces required of the weak form.
As shown in Fig. 20, the trends are similar for quadratic basis. However this time, increasing a consistently

ields larger errors for the transformation method. Meanwhile, for both T+CWF I and T+CWF II, the error is
enerally monotonically reduced by increasing a.

Finally, the results for cubic basis are presented in Fig. 21. Here it is seen that the kernel measure has little effect
n solution accuracy, for all three methods. However for the transformation method, increasing the kernel measure
onotonically increases the error. At least, the present method can obtain robust results for any selection of a in

ubic basis.
To conclude, with the transformation method alone, there is an optimal value of a for linear basis. For higher-

rder approximations, increasing the kernel measure seems to always increase the solution error. For the proposed
ethod, increasing a for both linear and quadratic basis very consistently yields lower error. Meanwhile, for cubic

asis, the solution is relatively unaffected. In this work, we term the former effect, the ability to decrease the solution
rror by increasing the kernel measure, a-refinement. Thus with the proposed method, users may have confidence
n consistent behavior of meshfree approximations in the Galerkin solution.

.3. Boundary singular kernel method

The boundary singular kernel method is another strong type of boundary condition enforcement. Singular kernels
or the reproducing kernel shape functions are introduced for essential boundary nodes, which recovers the properties
12)–(13). The imposition of boundary conditions in this method is therefore similar to the finite element method.
owever, since (12)–(13) do not imply the weak Kronecker delta property, values imposed may actually deviate
etween the nodes, just as in the transformation method.

Here we also consider the Poisson equation with high-order solution given in Section 5.2: with the boundary
ingular kernel method (B), boundary singular kernel method with consistent weak form one (B+CWF I), and
oundary singular kernel method with consistent weak form two (B+CWF II). h-refinement is performed as before,
arying p, with a = p + 1 fixed.

Figs. 22 and 23 show the errors in the L2(Ω ) norm and H 1(Ω ) semi-norm, respectively. Here it can be seen
hat for B alone, the convergence rates are far from optimal, as expected from previous results and the previous
iscussions, and are in fact, linear. When CWFs are considered, both B+CWF I and B+CWF II can yield optimal
onvergence rates. That is, they allow h-refinement with pth order rates in the boundary singular kernel method. In
ddition, since accuracy can be increased monotonically with increasing p (again with one case as an exception),
oth B+CWF I and B+CWF II offer the ability to perform p-refinement.
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Fig. 20. Norms of error of various methods with quadratic basis and various kernel measures a.

Fig. 21. Norms of error of various methods with cubic basis and various kernel measures a.

Fig. 22. Convergence with various bases in the L2 norm for the boundary singular kernel method: rates indicated in legend.
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Fig. 23. Convergence with various bases in the H1 semi-norm for the boundary singular kernel method: rates indicated in legend.

. Conclusion

In this work, it has first been shown that traditional strong enforcement of boundary conditions at nodal locations
n meshfree methods is inconsistent with the traditional weak formulation of the problem. That is, without the weak
ronecker delta property, large, non-trivial deviations between the desired conditions on test and trial functions exist
etween nodes. This was shown to result loss of Galerkin orthogonality, and an O(h) error in the L2(∂Ωg) norm,
hich in turn resulted in an O(h) error in the energy norm of the problem at hand. This error was also shown to
e independent of the order of approximation employed. Thus, when solving PDEs, it was expected that this error
ould limit the rate of convergence in the numerical solution.
It was then demonstrated through patch tests, and convergence tests, that indeed this O(h) energy norm error

ppeared in the solution, limiting the rate of convergence in meshfree methods to that of linear basis. Thus, this
nconsistency resulted in a barrier for meshfree approximations, to solutions with linear accuracy in the energy norm
f the problem.

To remedy this deficiency, two new weak forms were introduced. The first accounts for the inconsistency in
he test function construction. Here, the weak form relaxes the requirements on the test functions, to include the
pproximations introduced in the Galerkin equation under the strong-form enforcement framework. This weak form
ttests to the strong form of the problem at hand, and also was shown to restore a type of Galerkin orthogonality.
nly one new term is required in the matrix formulation, however this results in a non-symmetric system matrix

or self-adjoint systems.
The second weak form introduced relaxes the requirements on both the test and trial functions, to include both

pproximations in the strong-form enforcement methods. This weak form also attests to the strong form, and results
n a symmetric system, which is favorable. Interestingly, this method results in an another orthogonality relation
elated to the boundary conditions, and an alternate best approximation property. The latter feature demonstrates
hat the method simultaneously minimizes the error in the energy norm, and the error on the boundary.

In numerical tests, it was first shown that the two proposed methods can restore the ability to pass the patch
est for both high-order quadrature, and any order quadrature when VCI is employed. It was then demonstrated that
pth-order optimal convergence rates under h-refinement could be obtained, which is in stark contrast to the existing
trong-type methods under the conventional weak formulation. In addition, by increasing p for a fixed h, it was
hown that lower error can be obtained, thus providing the ability to perform p-refinement for the first time under
his framework. It was also shown that these results were independent of the particular dilation a chosen, and in
act, lower error can be obtained by increasing a, which was termed a-refinement. Taken together, the proposed
ethod provides the ability to perform p-refinement, h-refinement with pth order rates, and a new capability called
-refinement.

Compared to other existing methods, it is apparent that the present approach is clearly superior to inconsistent

trong enforcement of essential boundary conditions. In fact, this approach appears to remedy deficiencies in any
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strong approach, as evidenced by the examples. Compared to weak-type methods, the present approach does not
involve tunable parameters, nor does it involve additional degrees of freedom or stability conditions. However,
since the present approach includes Nitsche-type terms, it is possible that with the proper selection of the penalty
parameter in Nitsche’s approach, it would be less efficient. However, by comparison, the present approach does not
require computation or user selection of any parameters, and can still ensure optimal convergence.

Finally, it should be noted that in this work, high-order quadrature was employed, which is atypical of a practical
eshfree implementation. In future work, this aspect should be investigated: for instance, what is the lowest order

uadrature required to maintain these high-order properties? And, with methods such as variationally consistent
ntegration, which can greatly reduce the burden of quadrature, what would be the order required? It is noteworthy
hat the present technique is compatible with the variationally consistent approach, in that the weak forms attest
o the strong form of the problem, which is in contrast to traditional strong enforcement of boundary conditions.
astly, this method was tested for the Poisson equation, but can be applied to other boundary value problems as
ell, as described in the Appendix.
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ppendix

Consider the following abstract boundary value problem governing a scalar u:

Lu + s = 0 in Ω (51a)

Bu = t on ∂Ωt (51b)

u = g on ∂Ωg (51c)

where L is scalar differential operator acting in the domain Ω ⊂ Rd , s is a source term, B is a scalar boundary
operator acting on the natural boundary ∂Ωt , t is the prescribed values of Bu on ∂Ωt , g is the prescribed values of
u on the essential boundary ∂Ωg , ∂Ωg ∩ ∂Ωt = ∅ and ∂Ω = ∂Ωg ∪ ∂Ωt .

Consider the weighted residual of the boundary value problem:

(v, Lu + s)Ω = 0. (52)

anipulation yields a bilinear form a(·, ·) which results from the integration by parts formula (v, Lu)Ω =

v, Bu)∂Ω − a(v, u)Ω , and the following problem statement for (W1
C ): find u ∈ H k

g , H k
g = {u|u ∈ H k(Ω ), u =

g on ∂Ωg} such that for all v ∈ H k the following equation holds:

a(v, u)Ω − (v, Bu)∂Ωg = (v, s)Ω + (v, t)∂Ωt (53)

here H k is an adequate Sobolev space. The above is a consistent weighted residual of the boundary value problem
s v = 0 on ∂Ωg is not required to verify it. Note that this procedure does not require the governing equation to
manate from a potential.

To take a concrete example, consider the equations for elasticity:

∇ · σ + b = 0 in Ω (54a)

σ · n = t on ∂∂Ωt (54b)

u = g on ∂Ωg (54c)

here u is the displacement, b is the body force, t is the traction, g is the prescribed displacement, n is the
nit normal to the domain, σ = C : ∇

su is the Cauchy stress tensor; C is the elasticity tensor and ∇
su =
/2(∇ ⊗ u + u ⊗ ∇) is the strain tensor.
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The following form for (W1
C ) can be obtained following the given procedures: find u ∈ Sg , Sg = {u|u ∈

H 1(Ω ), ui = gi on ∂Ωgi } such that for all w ∈ H 1 the following equation holds:

a(w, u)Ω − (w, n · σ (u))∂Ωg = (w, b)Ω + (w, t)∂Ωt (55)

where

a(w, u)Ω =

∫
Ω

∇
sw : C : ∇

su dΩ , (56a)

(w, b)Ω =

∫
Ω

w · b dΩ , (56b)

(w, t)∂Ωt =

∫
∂Ωt

w · t dΓ , (56c)

(w, n · σ (u))∂Ωg =

∫
∂Ωg

w · (n · σ (u)) dΓ . (56d)

For the symmetric weak form of the abstract scalar boundary value problem, consider a more general weighted
residual:

(vΩ , Lu + s)Ω +
(
vg, u − g

)
∂Ωg

= 0. (57)

Choosing vΩ = v and vg = Bv one obtains the following formulation for (W2
C ): find u ∈ H k such that for all

v ∈ H k the following equation holds

a(v, u)Ω − (v, Bu)∂Ωg − (Bv, u)∂Ωg = (w, s)Ω + (v, t)∂Ωt − (Bv, g)∂Ωg (58)

here H k is again an adequate Sobolev space. The above verifies the boundary value problem without the use of
= 0 on ∂Ωg and u = g on ∂Ωg . Note that if L is non-self-adjoint a(·, ·) is not symmetric, and the resulting

alerkin system matrix will not be symmetric.
To take an example, consider the elasticity equations again. The (W2

C ) can be derived as: find u ∈ H 1, such that
or all w ∈ H 1 the following equation holds:

a (w, u)Ω − (w, σ (u) · n)∂Ωg − (σ (w) · n, u)∂Ωg = (w, b)Ω + (w, h)∂Ωh
− (σ (w) · n, g)∂Ωg . (59)

Again, this procedure does not require the governing equation to emanate from a potential, although from the
iscussions in the manuscript, it seems that this is likely always possible to do so if the original governing equation
oes.
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