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Abstract
In this two-part paper, a stable and efficient nodally-integrated reproducing kernel particle method (RKPM) is introduced
for solving the governing equations of generalized thermomechanical theories. Part I investigates quadrature in the weak
form using coupled and uncoupled classical thermoelasticity as model problems. It is first shown that nodal integration
of these equations results in spurious oscillations in the solution many orders of magnitude greater than pure elasticity.
A naturally stabilized nodal integration is then proposed for the coupled equations. The variational consistency conditions
for nth order exactness and convergence in the two-field problem are then derived, and a uniform correction on the test
function approximations is proposed to achieve these conditions. Several benchmark problems are solved to demonstrate
the effectiveness of the proposed method. In the sequel, these methods are developed for generalized thermoelasticity and
generalized finite-strain thermoplasticity theories of the hyperbolic type that are amenable to efficient explicit time integration.

Keywords Meshfree · Thermoelasticity · Nodal integration · Naturally stabilized nodal integration · Variationally consistent
integration · Coupled problems

1 Introduction

The interaction between temperature, stress, and deformation
is an important consideration in many engineering problems.
The need for solving these partially- or fully-coupled systems
may arise due to the presence of fracture, bending, contact,
and friction, among other phenomena. Certain sub-classes
of these problems such as additive and subtractive manufac-
turing also involve a large degree of material deformation,
flow, and failure, with associated topological changes in the
domain. Here, the use of mesh-based methods for analysis
is obviously non-trivial. On the other hand, meshfree meth-
ods are adept at handling these phenomena, yet an effective
solution technique requires careful treatment of quadrature,
which is essentially an open-problem for meshfree thermo-
mechanical analysis. In addition, the time step restriction
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for the associated classical parabolic type of energy equa-
tion is too restrictive for explicit analysis, which is often
used for meshfree methods in extreme-deformation prob-
lems. The subject of this two-part paper is to address these
issues and propose a stable and efficient meshfree technique
for thermomechanical problems under the reproducing ker-
nel particle method (RKPM) framework [12,39,40], which
possesses nth-order accuracy and associated optimal conver-
gence rates in smooth problems [40].

In this first part, efficient and stable quadrature of the
Galerkin weak form for thermomechanical analysis is devel-
oped using classical thermoelasticity as a model problem. In
the sequel, these approaches are extended to generalized ther-
moelasticity and generalized finite-strain plasticity theories
of the hyperbolic type.

Due to the limitations of closed-form solutions to the
classical thermoelastic equations e.g., [5,18,19,56], numer-
ical techniques are of course desired for more complex
geometries and boundary conditions, in other words, appli-
cations. Numerical approaches to the classical theory have
been developed over the past several decades, including finite
element-based approaches [6,7,32,33,48] and boundary ele-
ment methods [8,29,55,57].

Meshfree methods [10] have also been developed for both
coupled and uncoupled thermoelasticity. The element-free
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Galerkin (EFG) method has been used to solve the prob-
lem of shape optimization in linear thermoelastic solids [4].
The meshless local Petrov-GalerkinMLPGmethod has been
employed for problems with orthotropic material properties
[54], using various trial approximations [17,50,67]. Later,
direct MLPG [23] was developed for thermoelasticity.

In these approaches, EFG uses quadrature points based
on background cells which necessitates very high order
(and thus expensive) quadrature for acceptable accuracy
[11,14,20,66]. For MLPG, integration is performed over
local meshfree nodal domains, employing several quadra-
ture points per cell, which is also expensive [24]. In addition,
as recently shown in [66], even high-order quadrature is
not variationally consistent (VC) [11], and it is theoretically
impossible to converge at optimal rates and achieve the level
of accuracy offered by the trial functions employed in the
Galerkin solution with traditional quadrature. In [66], this
analytical result was unequivocally demonstrated, offering
new insight into the importance of alternative integration
approaches in meshfree methods.

In contrast to classical approaches, nodal integration
methods generally employ one quadrature point per node,
and can greatly accelerate meshfree computations. They are
also favored due to their relative simplicity, and their ability
to preserve the mesh-free characteristics of the method on
the quadrature level. Yet pure nodal integration, known as
direct nodal integration (DNI) in the literature, exhibits poor
solution accuracy and spatial instability in the form of oscil-
lations [24]. The instability arises due to a zero gradient at
nodal points for modes with a wavelength of twice the nodal
spacing [2,3,14], severely under-sampling the strain energy
density. Thus small-wavelength modes are admitted in the
solution with little to no resistance, and can hence either sev-
erally pollute the solution or grow unbounded.

To circumvent this issue, several stabilized nodal integra-
tion methods have been proposed. In [2] a residual-based
method was developed that supplements the Galerkin formu-
lation with second-order gradient terms, which are non-zero
at nodes. This method however necessitates the computation
of high-order meshfree gradients which are expensive, and
it is not clear how to straightforwardly generalize a residual
approach to non-linear solidmechanics. Stress points [22,51]
can eliminate the instability by sampling the internal energy
at locations away from the nodes, but this can significantly
increase the computational cost. A highly efficient stabilized
conforming nodal integration (SCNI) has been proposed
[14], which stabilizes the solution by employing strain-
smoothing, and further provides first-order variational con-
sistency (Galerkin exactness). A modified SCNI (MSCNI)
has been developed [9,49] to alleviate some remaining insta-
bilities in SCNI when the discretization is sufficiently fine
or the surface to volume ratio is small. Additional integra-
tion points are added in the nodal subdomain to sample the

solution away from the nodes, similar to stress points. Taylor
series expansions on strains [24,38,44,45] (which originates
from the finite element method [41]) and related methods
[63,64] can also stabilize the solution, and avoid the expense
of sampling/stress points. In order to reduce the computa-
tional cost of meshfree gradients of strain in this method,
a naturally stabilized nodal integration (NSNI) has been
proposed [24] which employs implicit gradients (originat-
ing from synchronized derivatives [35] and the reproducing
kernel hierarchical partition of unity method [36,37]). This
approach has been shown to accelerate computations by an
order of magnitude over sampling point-type methods [24].

In order to correct the accuracy of nodal integration
methods, several additional/combined approaches have been
developed. In [14] it was shown that a condition exists on
the numerical integration and test function in order to obtain
first-order Galerkin exactness. This can be achieved using
the SCNI technique via conforming strain smoothing. Later,
the condition was generalized to the concept of variational
consistency [11], or the conditions for arbitrary nth order
exactness, where a correction was proposed to uniformly
correct any choice of quadrature including nodal integration.
The corrected integration methods using this approach are
herein given a prefix as “VC-”, e.g., VC-NSNI. SCNI has
been extended under various frameworks to achieve higher-
order varitional consistency, such as quadratically consistent
integration [21], and reproducing kernel gradient smoothing
[60].

So far, only the strain-gradient methods in [63,64] have
been applied to thermomechanical analysis [65]. Staggered
time integration was employed to overcome the time step
restriction in the energy equation, and momentum smooth-
ing was used for stabilization, both of which complicate the
overall solution algorithm. In addition, the nodal integration
employed violates the critical condition of variational consis-
tency. The only other related methods are for the tangential
problem of porous media. In [62], MSCNI was developed
for poromechanics. To avoid the limitation of conforming
cells in extreme deformation problems, a non-conforming
version was proposed in [42,53], but the relaxation of the
conforming condition in strain-smoothing results in a loss of
variational consistency and thus convergence [11]. To greatly
reduce the computational cost of MSCNI, and circumvent
the limitations of non-conforming methods, VC-NSNI was
recently proposed for porous media simulation [61]. There
the VC conditions for first order exactness were derived, yet
an approximate lower-order condition was instead corrected
for.

In this work, a nodally-integrated RKPM is developed
for thermomechanical analysis. In Part I of this series, the
VC conditions for arbitrary-order accuracy in the Galerkin
solution of the coupled problem of thermoelasticity are
derived. It is shown that the conditions here require additional
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restrictions on the test functions compared to pure elastic-
ity. A variationally consistent correction is then proposed to
exactly satisfy the constraints up to nth order. To stabilize the
meshfree solution, a naturally stabilized nodal integration is
further proposed.Here it is shown that for thermoelastic prob-
lems, the solution instability in DNI results in oscillations
many orders of magnitude greater than in pure elasticity,
yielding meaningless results. The combined method VC-
NSNI is then applied to several quasi-static and dynamic
thermoelastic benchmark problems where stability and high
accuracy in RKPM are achieved using the proposed nodal
integration. Part II of this work extends these methods to
generalized thermoelasticity theories and generalized finite-
strain thermoplasticity, both of the hyperbolic type, in order
to facilitate accelerated computations in explicit dynamics
and a uniform time integration on displacement and temper-
ature variables.

The remainder of this paper is organized as follows.
The equations of thermoelasticity are given in Sect. 2. In
Sect. 3 the reproducing kernel approximation is reviewed.
Section 4 explores the challenges and instabilities in direct
nodal integration for thermoelasticity. In Sects. 5–7 NSNI,
variationally consistent integration (VCI), and VC-NSNI
are introduced for thermoelasticity. Numerical implementa-
tion details are given in Sect. 8, with the matrix forms and
Newmark algorithm for the thermoelastic equations. Sev-
eral static, quasi-static, and dynamic benchmarks problems
are solved in Sect. 9, with the proposed thermomechanical
RKPM results compared with analytical solutions, and solu-
tions by other numerical methods. Concluding remarks are
then given in Sect. 10.

2 Governing equations and weak
formulation

2.1 Strong form of thermoelasticity

2.1.1 Equations of motion and energy conservation

Consider a domain �×]0, t f [ with boundary ∂�×]0, t f [.
The governing equations for linear thermoelasticity on the
domain are [47]:

∇ · σ + b = ρ ü (1)

−∇ · q − ρcp θ̇ + Q−βT0∇ · u̇ = 0 (2)

where ∇ is the Del operator, σ is the Cauchy stress tensor,
b is a prescribed body force, ρ is the density, ü ≡ ∂2u/∂t2

is the acceleration; u is the displacement field and herein
is treated as a primary unknown, q is the heat flux, cp is
the specific heat capacity, θ ≡ T − T0 is the temperature
difference and is treated as a primary unknown; T is the

absolute temperature, T0 is the reference temperature and
θ̇ ≡ ∂θ/∂t ; Q is a prescribed heat source, β = ᾱ(3λ + 2μ)

is the thermal stress modulus; ᾱ is the thermal expansion
coefficient, λ and μ are Lamé’s first and second constants;
and u̇ ≡ ∂u/∂t is the velocity.

Equation (1) is the conservation of linear momentum and
(2) is the energy equation, or first law of thermodynamics
(under specific assumptions). Thenature of couplingbetween
the two primary fields of displacement u and temperature
difference θ is dictated by the prescribed constitutive laws
for σ and q.

Note that for the linear thermoelasticity, a small increment
of the temperature difference compared with the reference
temperature is assumed [47], that is

|θ |
T0

� 1. (3)

The boundary conditions associated with (1) and (2) are

u = g on ∂�g × ]
0, t f

[
(4a)

σ · n = h on ∂�h × ]
0, t f

[
(4b)

θ = θ̄ on ∂�T × ]
0, t f

[
(4c)

q · n = q̄ on ∂�q × ]
0, t f

[
(4d)

where g, n, h, θ̄ , and q̄ denote the prescribed displacement,
outward unit normal to the boundary, prescribed traction,
prescribed temperature difference, and prescribed heat flux,
respectively, with ∂�g ∪ ∂�h = ∂�T ∪ ∂�q = ∂� and
∂�g ∩ ∂�h = ∂�T ∩ ∂�q = ∅.

The complete problem in time is specified with the initial
conditions at time t = 0 for u(x, t) and θ(x, t). Here we
consider:

u(x, 0) = u0(x), u̇(x, 0) = v0(x), θ(x, 0) = θ0(x). (5)

To complete the problem in space, the constitutive laws need
to be prescribed. Without loss of generality, we consider a
homogeneous isotropic media.

Classical isotropic thermoelasticity considers theDuhamel-
Neumann law, which yields the relation between stress,
strain, and temperature change. Herein, we consider the law
with no prestrain:

σ = C : ε(u) − βθI (6)

where ε(u) ≡ 1
2 (∇u+(∇u)ᵀ) is the strain tensor,C denotes

the isotropic forth-order elasticity tensor, and I denotes the
second-order identity tensor.
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For the heat flux, the classical Fourier law is employed
with isotropic heat conduction:

q = −k∇θ (7)

where k is the thermal conductivity. The reason for the speci-
ficity of these definitions will be clear in the sequel, where
alternative relations are employed.

Employing (6) and (7), the governing equations (1) and
(2) can be expressed directly in terms of the displacement u
and temperature change θ :

∇ · (C : ε(u) − βθI) + b = ρ ü, (8a)

∇ · k∇θ − ρcp θ̇ + Q − βT0∇ · u̇ = 0. (8b)

2.2 Coupling parameter and dimensionless
variables

2.2.1 Coupling parameter

Todistinguishbetween a fully coupled andapartially coupled
(also called uncoupled) problem, the following thermoelastic
parameter is introduced for convenience:

δ = β2T0
ρcp(λ + 2μ)

. (9)

When δ = 0 the system is uncoupled. On the other hand, if δ

is a non-zero value, it is the fully coupled case. Here the case
where a fully coupled thermomechanical analysis should be
considered is clear: only when the material constants yield
δ ≈ 0, an uncoupled system can be used. This is often the
case with metals.

In this paper, the coupled and uncoupled thermoelastic
equations are studied; we use δ = 1 and δ = 0, respectively,
with all parameters given except T0, which is calculated using
(9):

T0 = δρcp(λ + 2μ)

β2 . (10)

2.2.2 Dimensionless variables

The solutions in this manuscript are interpreted in terms of
the following dimensionless variables:

ȳ = y

a
, θ̄ = θ

T0
, t̄ = κ

a2
t, σ̄ = σ

βT0
, ū = (λ + 2μ)

aβT0
u, (11)

wherea = κ/(csρcp);κ = k/(ρcp), and cs = √
(λ + 2μ)/ρ.

2.3 Weak form of thermoelasticity

Galerkin meshfree methods such as RKPM employ weak
forms of the governing equations (8). Starting from the
weighted residual approach, applying integration-by-parts
and the divergence theorem these can be derived as: find
u ∈ Ug , and θ ∈ �T , such that for all v ∈ U0, and S ∈ �0,
the following equations hold:

∫

�

ρv · üd� +
∫

�

ε(v) : C : ε(u)d� −
∫

�

β∇ · vθd�

=
∫

�

v · bd� +
∫

∂�h

v · hd
, (12a)

∫

�

k∇S · ∇θd� +
∫

�

ρcpSθ̇d� −
∫

�

βT0S∇ · u̇d�

=
∫

�

SQd� +
∫

∂�q

Sq̄d
, (12b)

with

Ug ={u | u ∈ H1, u = g on ∂�g×]0, t f [}, (13a)

U0 ={v | v ∈ H1, v = 0 on ∂�g×]0, t f [}, (13b)

�T ={θ | θ ∈ H1, θ = θ̄ on ∂�T×]0, t f [}, (13c)

�0 ={S | S ∈ H1, S = 0 on ∂�T×]0, t f [}. (13d)

In (12), both bilinear “stiffness” integrals contain gradients of
the primary unknown,∇u and∇θ , in (12a) and (12b), respec-
tively. Thus, when discretized by meshfree shape functions,
it is easy to show that an oscillatory mode in both the dis-
placement and temperature with a wavelength of twice the
nodal spacing will not contribute to these terms away from
the boundary, and thismode can potentially growunrestricted
[24].

Note that meshfree approximations generally do not meet
the requirements (13) and need special techniques to impose
essential boundary conditions. Here we employ the transfor-
mationmethod [13] with consistent weak forms [28] to attain
Galerkin exactness in VC methods. The details are omitted
for clarity of presentation of the proposed formulation; for
details see [13,28].

2.4 Galerkin form of thermoelasticity

The Galerkin statement of the problem (12) is: find uh ∈ Uh
g ,

and θh ∈ �h
T , such that for all vh ∈ Uh

0 , and Sh ∈ �h
0, the

following equations hold:

∫

�
ρvh · ühd� +

∫

�
ε(vh) : C : ε(uh)d� −

∫

�
β∇ · vhθhd�

=
∫

�
vh · bd� +

∫

∂�h

vh · hd
, (14a)
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∫

�
k∇Sh · ∇θhd� +

∫

�
ρcpS

h θ̇hd� −
∫

�
βT0S

h∇ · u̇hd�

=
∫

�
SQd� +

∫

∂�q
Shq̄d
, (14b)

with Uh
g ⊂ Ug , �h

T ⊂ �T , Uh
0 ⊂ U0, and �h

0 ⊂ �0. The
above necessitates quadrature, which motivates the current
work. Gaussian integration sufficient for acceptable accu-
racy is prohibitively expensive, whereas nodal integration is
extremely unstable, as will be seen.

3 Reproducing Kernel approximation

In this section, the reproducing kernel approximation is
briefly reviewed. An overview of the implicit gradient is fur-
ther given, which significantly lowers the computational cost
of computing gradient terms in the stabilized formulation.

Let a domain �̄ = � ∪ ∂� be discretized by a set of
N P nodes S = {xI |xI ∈ �̄}N P

I=1 with set of node numbers
N = {I |xI ∈ S}. The nth order reproducing kernel (RK)
approximation uh(x) of a function u(x) is [12,39,40]:

uh(x) =
∑

I∈N
�I (x)uI (15)

where {�I (x)}I∈N is the set of RK shape functions, and
{uI }I∈N are the associated coefficients.Note that the summa-
tion in (15) is only carried out over non-zero shape functions
local to x in practice, naturally defining connectivity.

The shape functions in (15) are constructed by the product
of a kernel function �a(x − x I ) with normalized support a
and a correction function C(x; x − x I ):

�I (x) = �a(x − x I )C(x; x − x I ). (16)

The correction function here is composed of a linear combi-
nation of nth order complete monomials, which allows the
exact reproduction of these monomials. In matrix form the
correction can be expressed as:

C(x; x − x I ) = H(x − x I )
ᵀb(x). (17)

where H(x − x I ) is a column vector of the monomials:

H(x − x I ) =
[
1, x1−xI1, x2−xI2, x3−xI3, (x1 − xI1)

2 ,

. . . , (x3 − xI3)
n]ᵀ (18)

and b(x) is a column vector of coefficients to be determined
from the following nth order discrete reproducing conditions:

∑

I∈N
�I (x)H(x I ) = H(x) or

∑

I∈N
�I (x)H(x − x I ) = H(0) (19)

which leads to b(x) of the following form:

b(x) = M(x)−1H(0) (20)

where the moment matrix M is defended as follows:

M(x) =
∑

I∈N
H(x − x I )H(x − x I )

ᵀ�a(x − x I ). (21)

Employing (20), the RK shape functions are constructed
as:

�I (x) = H(0)ᵀM(x)−1H(x − x I )�a(x − x I ). (22)

The shape function gradient necessary in the weak form can
be computed straightforwardly based on the product rule:

∇�I (x) = H(0)ᵀ∇(M(x)−1)H(x − x I )�a(x − x I )

+ H(0)ᵀM(x)−1∇H(x − x I )�a(x − x I )

+ H(0)M(x)−1H(x − x I )∇�a(x − x I )

(23)

where

∇(M(x)−1) = −M(x)−1∇M(x)M(x)−1. (24)

However, the computational cost of computing this gradi-
ent is non-trivial (cf. [30]). Therefore a so-called implicit
gradient (which originated from the synchronized derivative
[35]) has been developed [16,43] to save computational cost.
This approximation preserves the essential properties of the
explicit gradient, that is, the gradient reproducing properties
of (23) (see (19) for reference)

N P∑

I=1

∇�I (x)H(x I ) = ∇H(x) (25)

are satisfied by the implicit gradient reproducing kernel shape
function.

Starting from the analogy of (16), the implicit gradient
shape function is constructed as [16,35]

��
I i (x) = �a(x − x I )C

�
i (x; x − x I ), (26)

where i = 1, . . . , d where d is the dimension of the problem.
A correction function is introduced composed of a linear
combination of monomials:

C�
i (x; x − x I ) = H(x − x I )

ᵀb�
i (x). (27)
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The implicit gradient is then obtained by enforcing the gra-
dient reproducing conditions (25) on (26) and solving for
b�
i (x):

��
I i (x) = [

H�
i

]ᵀM(x)−1H(x − x I )�a(x − x I ) (28)

where M(x) is the same moment matrix in (21), and H�
i is

a column vector of the form:

H�
i = [0, . . . , 0,−1, 0, . . . , 0]ᵀ (29)

where −1 is (i + 1)th entry. Compared to (23) it is easily
seen that the implicit gradient (28) is much more compu-
tationally efficient. In fact, comparing (28) to (22), it costs
virtually nothing since most of the terms already need to be
computed in (22)—the last three terms are the exact same.
Meanwhile, both possess the key property of satisfying the
gradient reproducing conditions. Depending on the dimen-
sion of the problem d, the implicit gradient can reduce cost
by a factor on the order of 2d+1 over the explicit gradient in
the shape function construction [24]. In the later sections, the
implicit gradient will be utilized to reduce the computational
cost of the proposed nodal integration technique.

4 Instability in nodal integration

In meshfree methods, direct nodal integration (or DNI) is
well known to provide unstable results in solid mechanics
[2,14,15,24,64]. Here, we examine the stability of DNI in
thermomechanical analysis using quasi-static classical ther-
moelasticity (neglecting inertial terms in (12)) as a model
problem.

Consider a linear elastic half-space y ≥ 0 subjected to a
sudden temperature change and free traction on its boundary.
This can be treated as a one-dimensional problem, either cou-
pled or uncoupled depending on the constants. The material
properties employed in this study are shown in Table 1.

For constructing the RK shape function, linear basis,
cubic B-spline kernel, uniform node distribution with spac-
ing �x = 0.001, and a normalized support size of 2 are
used. The analytical solution for this problem can be found
in [7]. The implicit and unconditionally stable backward dif-
ference method [48] with the time step �t = 0.001s is used
to discretize the time domain in this example.

Figure 1 shows the dimensionless results along the y-axis
at time t̄ = 2 for the coupled (δ = 1) and uncoupled (δ = 0)
cases. It can be seen that DNI yields highly unstable temper-
ature and displacement responses. It should be emphasized
that these oscillations are many orders of magnitude (more
than 30 here) worse than those observed in pure elasticity
(see [2,22,64] for a few examples, these instabilities in elas-
ticity typically result in oscillations with amplitude on the

order of the solution itself, or less). Hence here, stabilization
is absolutely necessary to obtain any meaningful solution at
all. It can also be seen that this severe instability occurs in
both the coupled and uncoupled cases.

The time histories at ȳ = 1 shown in Fig. 2 depict the
evolution of displacement and temperature difference over
time. Here it can be seen that this instability is “explosive” in
nature: the results appear to grow exponentially, which again
is not the case in pure elasticity. As before, this occurs for
both the coupled and uncoupled cases.

As explained in the introduction, DNI also provides poor
accuracy. However, without stability, it is difficult to evaluate
how the poor accuracy might manefest in this class of prob-
lems. Later, this issue will be revisited, where it is shown
that stabilization alone (e.g., NSNI introduced in the next
section) is insufficient to ensure acceptable accuracy, which
motivates the introduction of variationally consistent NSNI
(VC-NSNI), to attain both stability and accuracy in the solu-
tion of thermomechanical problems.

5 Naturally stabilized nodal integration

As shown in the previous section, theDNI quadrature scheme
can lead to severe numerical instabilities and does not
appear to be a viable scheme for thermomechanical problems
whatsoever. To eliminate the spurious oscillatory modes of
direct nodal integration, naturally stabilized nodal integration
(NSNI) [24] has been introduced. However, this technique
has not been developed for thermomechanical problems.
Without loss of generality, two-dimensional formulations
are presented in the following sections which can be easily
extended or contracted to 3-d or 1-d.

5.1 Stabilization of the displacement field

To start, the strains in nodal domains�L are expanded about
the nodal position xL using a Taylor series expansion trun-
cated to first order [24]:

ε(uh) ≈ εL(uh) +
2∑

i=1

{(xi − xLi )εL(uh),i } (30)

where εL(uh) ≡ ε(uh(xL)). The strain of the test function
is also defined the same as (30), that is

ε(vh) ≈ εL(vh) +
2∑

i=1

{(xi − xLi )εL(vh),i }. (31)

Here, we have considered the linear (n = 1) case and only
retain first-order terms. Higher order cases of NSNI can be
obtained straightforwardly following [44].
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Table 1 Parameters for stability
study

k ρ cp β λ + 2μ

Value 1.7 × 103 7.82 × 10−3 4.61 × 106 3.34 × 104 1.99 × 109

Unit kg × cm/K/s3 kg/cm3 cm2/K/s3 kg/cm/K/s2 kg/cm/s2

Fig. 1 Coupled and uncoupled
results along ȳ at t̄ = 2 for the
quasi-static DNI test

(a) (b)

(c) (d)

Substituting (30) and (31) into (14a) for each of the strains
in the nodal domains and employing the implicit gradient
approximation (28), the following naturally stabilized nodal
quadrature version of the elastic bilinear form is obtained as:

aDN

〈
vh, uh

〉
= aD

〈
vh, uh

〉
+ aN

〈
vh, uh

〉
(32)

where aD 〈·, ·〉 is the DNI quadrature version of the bilinear
form:

aD
〈
vh, uh

〉
=

N P∑

L=1

εL(vh) : C : εL(uh)WL (33)

where WL is the integration weight associated with node L
(the representative nodal area in 2-d), and the stabilization
term aN 〈·, ·〉 is

aN
〈
vh, uh

〉
=

N P∑

L=1

2∑

i=1

ε̂Li (v
h) : C : ε̂Li (uh)MLi (34)

where ε̂Li (·) is the implicit gradient approximationofεL(·),i ,
and

MLi =
∫

�L

(xi − xLi )
2 d�, (35)

123



Computational Mechanics

Fig. 2 Coupled and uncoupled
time history of results at ȳ = 1
for the quasi-static DNI test

(a) (b)

(c) (d)

which are the second moments of inertia of each integration
zone. Note that the following (in 2-D, see [24] for more
details on this assumption) has been utilized to obtain (34):

∫

�L

(x1 − xL1) dx1 = 0, or
∫

�L

(x2 − xL2) dx2 = 0.

(36)

The assumption (36) is satisfied when the node is located at
the centroid of the quadrature domain �L in at least one of
the two Cartesian coordinates.

Using Voigt notation (for such terms throughout the
manuscript), the standard nodal strain terms in (33) are con-
structed as:

εL(uh) =
N P∑

I=1

Bu
I (xL)uI , εL(vh) =

N P∑

I=1

Bu
I (xL)v I , (37)

with

Bu
I (x) =

⎡

⎣
�I ,1(x) 0

0 �I ,2(x)

�I ,2(x) �I ,1(x)

⎤

⎦ . (38)

and the additional terms the containing derivatives of strains
are approximated by implicit gradients (28) as

ε̂Li (uh) =
N P∑

I=1

Bu�
I i (xL)uI

ε̂Li (v
h) =

N P∑

I=1

Bu�
I i (xL)v I

Bu�
I i (x) =

⎡

⎣
��̄

I i1(x) 0
0 ��̄

I i2(x)

��̄
I i2(x) ��̄

I i1(x)

⎤

⎦ (39)
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where ��̄
I i j = 1

2 {��
I i, j + ��

I j,i } since ��
I i, j �= ��

I j,i .

5.2 Stabilization of temperature field

Following the stabilization of the displacement field, expand-
ing the temperature gradient in nodal domains �L about xL
is proposed in this work to achieve stabilization of the tem-
perature field:

∇θh(x) ≈ ∇θhL +
2∑

i=1

{(xi − xi I )(∇θhL),i } (40)

where ∇θhL ≡ ∇θh(xL). The test function gradient follows
the same form:

∇Sh(x) ≈ ∇ShL +
2∑

i=1

{(xi − xi I )(∇ShL),i } (41)

where ∇ShL ≡ ∇Sh(xL). Note that for the temperature field,
stabilization also entails second-order derivatives, which are
expensive to compute in meshfree approximations. Here,
implicit gradients will again be introduced to approximate
the derivatives of the temperature gradients.

Taking Eqs. (35) and (36) into consideration, and employ-
ing (40) and (41) in (14b), the following stabilized bilinear
form is obtained for the temperature field:

āDN < Sh, θh >= āD < Sh, θh > +āN < Sh, θh > (42)

where āD < ·, · > is the DNI quadrature version of the
bilinear form:

āN
〈
Sh, θh

〉
=

N P∑

L=1

k(∇ShL) · (∇θhL)WL (43)

and the stabilization term for temperature āN 〈·, ·〉 is com-
puted as

āN
〈
Sh, θh

〉
=

N P∑

L=1

2∑

i=1

k(∇̂ShLi ) · (∇̂θhLi )MLi . (44)

where ∇̂ShLi and ∇̂θhLi denote the implicit derivative in the
i th direction of ∇ShL and ∇θhL , respectively.

For the nodal gradients in the DNI term, we have:

∇θhL =
N P∑

I=1

Bθ
I (xL)θI , ∇ShL =

N P∑

I=1

Bθ
I (xL)SI , (45)

where

Bθ
I (x) = [

�I ,1(x) �I ,2(x)
]ᵀ

. (46)

For the stabilization terms in (44), implicit gradients are uti-
lized as follows:

∇̂θhLi =
N P∑

I=1

Bθ�
I i (xL)θI

∇̂ShLi =
N P∑

I=1

Bθ�
I i (xL)SI

Bθ�
I i (x) = [

��̄
I i1(x) ��̄

I i2(x)
]ᵀ

.

(47)

Note that theweightsWL and secondmoments of inertiaMLi

are the same as in Sect. 5.1.

6 Variational consistency conditions

In this section, the variational consistency conditions are
derived for thermoelasticity. The key difference between the
original derivation in [11] is the presence of two fields.

Following the concept in [11], consider a static thermoe-
lasticity problem where the displacement solution is a linear
combination of complete monomials up to order n:

u =
∑

|α|≤n

cαxα ≡
∑

|α|≤n

uα ≡ u[n]
(48)

where α is a multi-index equipped with standard notation.
In [11], the conditions to obtain this type of solution was

purely a function of the single field. Here we note that,
unlike the pure elastic case, the associated boundary con-
ditions now also need to consider the temperature change
since, e.g., the prescribed traction will need to depend on
σ = C : ε(u) − βθI. In addition, the temperature change
needs to be considered an independent variable. As such, an
mth order temperature solution is assumed:

θ =
∑

|γ |≤m

dγ x
γ ≡

∑

|γ |≤m

θγ ≡ θ [m]
(49)

where γ is also a multi-index. With (48) and (49) in hand,
the manufactured source term and boundary conditions con-
sistent with these two fields can now be obtained as:

b = −∇ · σ [nm] in � (50a)

h = σ [nm] · n on ∂�h (50b)

g = u[n] on ∂�g (50c)

Q = −∇ · k∇θ [m] in � (50d)

q̄ = −k∇θ [m] · n on ∂�q (50e)

θ̄ = θ [m] on ∂�T . (50f)
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where

σ [nm] = C : ε(u[n]) − βθ [m]
I (51)

is the stress associated with both fields.
For the Galerkin form, approximations for both solid dis-

placement and temperature fields are as follows

uh =
N P∑

I=1

Nu
I uI , θh =

N P∑

I=1

�̄I θI (52)

where

Nu
I =

[
�I 0
0 �I

]
, (53)

and the test functions are

vh =
N P∑

I=1

N̂
u
I v I , Sh =

N P∑

I=1

�̃I SI (54)

where

N̂
u
I =

[
�̂I 0
0 �̂I

]
, (55)

in which �, �̄, �̂, and �̃ are the RK shape functions for
solid displacement and temperature fields, respectively, and
uI , θI , v I , and SI are the nodal coefficients.

Now, in order to obtain Galerkin exactness (passing the
patch test and obtaining the exact solutions (48) and (49)),
the integration constraints should be satisfied. The meaning
of integration constraints is that the numerical integration
has to be consistent with the test functions in order to obtain
exactness in the Galerkin approximation. Therefore here, the
possibility that approximations to the test and trial functions
differ is considered. Note that the integration constraints are
tightly tied with Galerkin orthogonality [52], and are nec-
essary for obtaining the standard error estimate for smooth
problems [66].

In order to arrive at the integration constraints, weak
forms employed in the Galerkin equation must attest to the
strong forms [11]. A few options are the Lagrange multiplier
method, Nitsche’s method, or the newly proposed consis-
tent weak forms [28]. Here we consider the consistent weak
forms of (12)—the details are omitted here for clarity. The
derivation follows the appendices of [28] straightforwardly.

Since the test functions are arbitrary, one governing equa-
tion can be considered at a time. Therefore, one should expect
two independent constraints for each test function approxi-
mation.

First, consider the equation of motion. Following [11], the
approximations (52) and (54) are substituted into the consis-
tent versions of (14a) and (14b). Then, using the notation
xα
I ≡ xα1

I1 · xα2
I2 · . . . · xαd

I d , the exact nodal solutions u
[n]
I and

θ
[m]
I are then employed alongwith the consistency conditions
(19) yielding uh = u[n] and θh = θ [m]. Using the prescribed
conditions in (50), and employing numerical integration, the
following integration constraints on the test function for the
displacement field are obtained:

〈
∇�̂I · σ [αγ ]〉

�
= −

〈
�̂I∇ · σ [αγ ]〉

�
+

〈
�̂Iσ

[αγ ] · n
〉

∂�

∀I , |α| = 0, 1, . . . , n, |γ | = 0, 1, . . . ,m (56)

where 〈·〉� and 〈·〉∂� denote the quadrature forms of the
domain integral and the boundary integral, respectively, and
σ [αγ ] = C : ε(uα) − βθγ

I. In the above, it can be seen
that the integration constraint is the same as pure elasticity in
terms of stress [11]. However here, the stress is a function of
both displacement and temperature. Therefore the definition
of σ [αγ ] must be used to further elucidate the constraints:
〈
∇s�̂I : C : ∇s xα

〉

�
= −

〈
�̂I∇ · C : ∇s xα

〉

�

+
〈
�̂IC : ∇s xα · n

〉

∂�
∀I , |α| = 0, 1, . . . , n

(57a)
〈
∇s�̂I · βxγ

I

〉

�
= −

〈
�̂I∇ · βxγ

I

〉

�
+

〈
�̂I βx

γ
I · n

〉

∂�

∀I , |γ | = 0, 1, . . . ,m (57b)

where ∇s(·) = 1
2 (∇ ⊗ (·) + (·) ⊗ ∇).

Remark 1 The above convey a relation between the dis-
placement test functions, quadrature, and both orders of
monomials of the solution n and m. This is due to the fact
that the stress in the momentum equation contains both the
displacement and the temperature difference.

Now, if C and β are constant, the constraint can be sim-
plified as:

〈
∇s�̂I · ∇sxα

〉

�
= −

〈
�̂I∇ · ∇sxα

〉

�
+

〈
�̂I∇sxα · n

〉

∂�

∀I , |α| = 0, 1, . . . , n (58a)
〈
∇s�̂I · xγ

I

〉

�
= −

〈
�̂I∇ · xγ

I

〉

�
+

〈
�̂I x

γ
I · n

〉

∂�

∀I , |γ | = 0, 1, . . . ,m. (58b)

Now considering the static energy equation, the integra-
tion constraints on the test function of the temperature field
can be obtained following the previous procedure and assum-
ing constant k:

〈
∇�̃I · ∇xγ

〉

�
= −

〈
�̃I∇2xγ

〉

�
+

〈
�̃I∇xγ · n

〉

∂�

∀I , |γ | = 0, 1, . . . ,m (59)

where ∇2 ≡ ∇ · ∇.
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Remark 2 Here it can be seen that this integration constraint
only depends on the variable m, rather than a dependence on
both n and m in the displacement constraint (57a). This is
due to the independence of u and θ in the energy equation in
the static case.

To take an example of the specific constraints, consider
linear fields of both temperature and displacement with n =
m = 1. The following conditions on the displacement test
function �̂I can be straightforwardly obtained by taking the
various cases of α and γ up to length one in (57a). In two
dimensions, this yields:

〈
�̂I , j

〉

�
=

〈
�̂I n j

〉

∂�
, j = 1, 2 ∀I (60a)

〈
�̂I ,2x1

〉

�
=

〈
�̂I x1n2

〉

∂�
∀I (60b)

〈
�̂I ,1x2

〉

�
=

〈
�̂I x2n1

〉

∂�
∀I (60c)

〈
�̂I ,1x1

〉

�
= −

〈
�̂I

〉

�
+

〈
�̂I x1n1

〉

∂�
∀I (60d)

〈
�̂I ,2x2

〉

�
= −

〈
�̂I

〉

�
+

〈
�̂I x2n2

〉

∂�
∀I . (60e)

And in three dimensions, one obtains:

〈
�̂I , j

〉

�
=

〈
�̂I n j

〉

∂�
, j = 1, 2, 3 ∀I (61a)

〈
�̂I , j x1

〉

�
=

〈
�̂I x1n j

〉

∂�
, j = 2, 3 ∀I (61b)

〈
�̂I , j x2

〉

�
=

〈
�̂I x2n j

〉

∂�
, j = 1, 3 ∀I (61c)

〈
�̂I , j x3

〉

�
=

〈
�̂I x3n j

〉

∂�
, j = 1, 2 ∀I (61d)

〈
�̂I ,1x1

〉

�
= −

〈
�̂I

〉

�
+

〈
�̂I x1n1

〉

∂�
∀I (61e)

〈
�̂I ,2x2

〉

�
= −

〈
�̂I

〉

�
+

〈
�̂I x2n2

〉

∂�
∀I (61f)

〈
�̂I ,3x3

〉

�
= −

〈
�̂I

〉

�
+

〈
�̂I x3n3

〉

∂�
∀I . (61g)

For the energy equation, the constraint on the test func-
tion for temperature change �̃I can be shown to have the
following form using |γ | = 0, 1:

〈
∇�̃I

〉

�
=

〈
�̃I n

〉

∂�
∀I . (62)

Remark 3 Satisfaction of the constraints associated with the
displacement test function implies (62) as seen in (60a) and
(61a). Therefore, if a single test function is used for both
fields, then the displacement constraint can be employed for
satisfaction of variational consistency uniformly up to order
m = n.

Remark 4 In thermoelasticity, the linear constraints are less
trivial than in elasticity. However as will be seen, the correc-
tions can still be constructed in a simple manner.

Remark 5 It can be shown that the use of naturally stabilized
nodal integration results in the same constraints as derived
herein for the linear case. Therefore, the techniques in the
following section can be straightforwardly applied for n = 1.
The derivation follows [24]—if a linear field is assumed in
(48) and (49), gradients are constant, and the derivative of
gradients in NSNI stabilization terms are zero and drop out
of the variational consistency conditions.

Remark 6 Here, as in all other works based on variationally
consistent integration, we have only considered a monomial
distribution of a solution distributed in space, constant in
time. Therefore dynamic terms are not considered. Never-
theless, as shown in [27], it was clearly demonstrated via
numerical examples that satisfaction of these static con-
ditions significantly improves the response in a dynamic
setting. In addition, itwas shown in [52,66] that this condition
is necessary in order to obtain the standard error estimates
(optimal rates for smooth problems) and restore Galerkin
orthogonality.

7 Variationally consistent integration for
thermoelasticity

Satisfaction of (60) and (62) can be achieved by modifying
the shape function gradient of the test function in the follow-
ing from [25]:

∇�c
I (x) = ∇�I (x) + RI (x)

{
ζI1
ζI2

}

+ RI (x) · (x1 − xI1)

{
ζI3
ζI4

}

+ RI (x) · (x2 − xI2)

{
ζI5
ζI6

}
(63)

where

RI (x) =
{
1, if x ∈ supp(�I )

0, if x /∈ supp(�I )
(64)

where supp(�I ) denotes the support of �I . Substitution of
(63) into (60) results in two systems of equations:

AI ζ
c1
I = rc1I (65a)

AI ζ
c2
I = rc2I (65b)

where
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AI = 〈
P(x − x I )Pᵀ(x − x I )RI (x)

〉
�

(66a)

P(x) = {1, x1, x2}ᵀ (66b)

ζ c1
I = {ζI1, ζI3, ζI5}ᵀ (66c)

ζ c2
I = {ζI2, ζI4, ζI6}ᵀ (66d)

rc1I =
{
r1I1, r

2
I1, r

3
I1

}ᵀ
(66e)

rc2I =
{
r1I2, r

2
I2, r

3
I2

}ᵀ
(66f)

and

r1I1 = 〈�I n1〉∂� − 〈
�I ,1

〉
�

(67a)

r1I2 = 〈�I n2〉∂� − 〈
�I ,2

〉
�

(67b)

r2I1 = 〈�I n1 (x1 − xI1)〉∂� − 〈�I 〉� − 〈
�I ,1 (x1 − xI1)

〉
�

(67c)

r2I2 = 〈�I n2 (x1 − xI1)〉∂� − 〈
�I ,2 (x1 − xI1)

〉
�

(67d)

r3I1 = 〈�I n1 (x2 − xI2)〉∂� − 〈
�I ,1 (x2 − xI2)

〉
�

(67e)

r3I2 = 〈�I n2 (x2 − xI2)〉∂� − 〈�I 〉� − 〈
�I ,2 (x2 − xI2)

〉
�

.

(67f)

Due to the locality of RI (x), and dependence on the nodal
index I , the residuals (67) and correction terms (66) are rela-
tively computationally inexpensive. In [24,26] it was shown
that the VC correction of nodal integration only slightly
increases computational cost, and is far more effective than
several other types of nodal integration in terms of CPU time
for a given level of error achieved, and vice versa.

8 Space discretization and time integration
scheme

8.1 Approximations

As previously mentioned, the VC scheme can be uniformly
applied to both sets of test functions. Here, we also use the
same set of trial functions for both fields. As a result, the
approximation of displacement and temperature change are
constructed as:

uh(x) =
N P∑

I=1

N I (x)uI ≡ N(x)u,

θh(x) =
N P∑

I=1

�I (x)θI ≡ �(x)θ

(68)

where

N I (x) =
[
�I (x) 0

0 �I (x)

]
, (69)

and the test functions are approximated as

vh(x) =
N P∑

I=1

N I (x)v I ≡ N(x)v,

Sh(x) =
N P∑

I=1

�I (x)SI ≡ �(x)S

(70)

where {�I }N P
I=1 are the RK shape functions (22), and uI , θI ,

v I , and SI are the nodal coefficients in the Galerkin equation.
Note that all approximations and assembly operations are
carried out local to any integration point x, that is, only over
indices which are associated with non-zero shape functions
at the location.

For the gradients, the assumed strain-type approach is
adopted herein following [11], where the trial function terms
are computed in a straightforward manner:

ε(uh(x)) =
N P∑

I=1

Bu
I (x)uI ≡ Bu(x)u,

∇θh(x) =
N P∑

I=1

Bθ
I (x)θI ≡ Bθ (x)θ

(71)

where

Bu
I (x) =

⎡

⎣
�I ,1(x) 0

0 �I ,2(x)

�I ,2(x) �I ,1(x)

⎤

⎦ ,

Bθ
I (x) = [�I ,1(x),�I ,2(x)]ᵀ.

(72)

and the test function terms are corrected using (63):

ε(vh (x)) =
N P∑

I=1

Buc
I (x)v I ≡ Buc(x)v, ∇Sh (x) =

N P∑

I=1

Bθc
I (x)SI ≡ Bθc(x)S

(73)

where

Buc
I (x) =

⎡

⎣
�c

I ,1(x) 0
0 �c

I ,2(x)

�c
I ,2(x) �I ,1(x)

⎤

⎦ ,

Bθc
I (x) = [�c

I ,1(x),�c
I ,2(x)]ᵀ.

(74)

Remark 7 Since the the VC conditions (57a) and (59) do
not include natural boundary conditions, and the test func-
tion gradient correction (63)-(67) does not appear in the
weak Galerkin enforcement of boundary conditions (14),
the approach is easily applicable to complex engineering
problems without special considerations. Similarly, NSNI
methods expand gradient terms only in bilinear forms. There-
fore, NSNI also need not be considered in any boundary
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conditions. For examples of the use of these approaches in
more complex applications, see [1] or [61].

8.2 Semi-discrete matrix form

For the matrix forms, let the following subscript notation be
adopted: u denotes the mechanical field, and θ denotes the
thermal field. Introducing (68), (70), (71), and (73) into the
Galerkin equation (14), and employing the naturally stabi-
lized nodal integration technique introduced in Sect. 5, the
matrix system in 2D is obtained as:

[
Muu 0
0 0

] [
ü
θ̈

]
+

[
0 0
Cθu Cθθ

] {
u̇
θ̇

}
+

[
Kuu Kuθ

0 Kθθ

]{
u
θ

}

=
{
Fext

Qext

}
(75)

where u and θ are the row vectors of {uI }N P
I=1 and {θI }N P

I=1,
respectively, and for a homogeneous media as presented in
the examples:

Muu =
N P∑

L=1

ρN(xL)ᵀN(xL)WL (76a)

Cθu =
N P∑

L=1

T0β(�(xL))ᵀIᵀBu(xL)WL (76b)

Cθθ =
N P∑

L=1

ρcp�(xL)ᵀ�(xL)WL (76c)

Kuu =
N P∑

L=1

(Buc(xL))ᵀDBu(xL)WL

+
N P∑

L=1

2∑

i=1

(Bu�
i (xL))ᵀDBu�

i (xL)MLi (76d)

Kuθ = −
N P∑

L=1

β(Buc(xL))ᵀI�(xL)WL (76e)

Kθθ =
N P∑

L=1

k(Bθc(xL))ᵀBθ (xL)WL

+
N P∑

L=1

2∑

i=1

k(Bθ�
i (xL))ᵀBθ�

i (xL)MLi (76f)

Fext =
N P∑

L=1

N(xL)ᵀbWL +
N BPu∑

K=1

N(xK )ᵀhLu
K (76g)

Qext =
N P∑

L=1

�(xL)ᵀQWL +
N BPθ∑

K=1

�(xK )ᵀq̄ Lθ
K (76h)

where I = [
1 1 0

]ᵀ
, D is the matrix corresponding to the

tensorC,b andh are thematrix formsof band h, respectively,

Lu
K and Lθ

K denote the K th weight of one of the N BPu and
N BPθ integration points on the natural boundaries for the
displacement and temperature change, respectively, andBu�

i
andBθ�

i are the globalmatrices in (39) and (47), respectively.
The final semi-discrete linear time-dependent system (75)

can be written in compact form as

Md̈(t) + Cḋ(t) + Kd(t) = F(t) (77)

where

M =
[
Muu 0
0 0

]
, C =

[
0 0
Cθu Cθθ

]
,

K =
[
Kuu Kuθ

0 Kθθ

]
(78)

and

d =
[
u
θ

]
, F =

[
Fext

Qext

]
. (79)

8.3 Time integration

In this research, the semi-discrete equations are advanced
in time using the Newmark method, which consists of the
following equations [31]:

Man+1 + Cvn+1 + Kdn+1 = Fn+1 (80a)

dn+1 = dn + �tvn + �t2

2
[(1 − 2β̄)an + 2β̄an+1] (80b)

vn+1 = vn + �t[(1 − γ )an + γ an+1] (80c)

where dn , vn , and an are the approximations of d(tn), ḋ(tn),
and d̈(tn), respectively, and β̄ and γ are the Newmark param-
eters.

9 Numerical examples

In this section numerical examples are presented to demon-
strate the accuracy and stability of the proposed method. The
following five numerical integration methods are tested for
comparison:

1. Direct nodal integration (denoted DNI)
2. Variationally consistent integration with direct nodal inte-

gration (denoted VC-DNI)
3. Naturally stabilized nodal integration (denoted NSNI)
4. Variationally consistent integration with naturally stabi-

lized nodal integration (denoted VC-NSNI)
5. Gaussian integration (denoted GI) with high order rules
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Fig. 3 Non-uniform node
distribution in one dimension

Thermoelastic benchmarks are solved, and the solution by
these approaches are compared with exact solutions and
results from numerical methods in the literature.

Unless otherwise stated, for the RK approximation, linear
basis with cubic B-spline kernels with a normalized sup-
port size of 2 are employed in all problems, using a uniform
node distribution with a nodal spacing of �x = 0.001. The
five point Gaussian quadrature rule is used for GI with cell
boundaries coincident with the nodal positions. The implicit
and unconditionally stable backward difference method [48]
is employed with a time step of �t = 0.001 to discretize the
time domain in all examples. The transformationmethod [12]
is used for the imposition of essential boundary conditions.
The solutions are presented in terms of the dimensionless
variables given in (11), and unless otherwise stated the mate-
rial properties used are given in Table 1.

Aside from the patch test, we will consider a linear elas-
tic half-space y ≥ (0) subjected to either a time-dependent
temperature change or heat flux on its boundary plane, free
of traction. The following initial boundary value problems
based on these conditions can be obtained: (a) the first
Danilovskaya problem [18], (b) the second Danilovskaya
problem [19], and (c) the Sternberg and Chakravorty prob-
lem [56]. These problems can be treated as one-dimensional,
and can yield either coupled or uncoupled thermoelasticity.

9.1 Patch test for thermoelasticity

In this example, a one-dimensional patch test is performed
to verify the exactness of the proposed VCI approach. The
steady equations of energy and equilibrium on a domain� =
]0, 1[ can be cast as

(
E

1 − ν2

)
∂2u

∂x2
− β

∂θ

∂x
+ b = 0 in �, (81a)

k
∂2θ

∂x2
+ Q = 0 in �. (81b)

The boundary conditions considered here are

u(0) = 0, u(1) = g, (82a)

θ(0) = 0, θ(1) = g. (82b)

Linear solutions in both fields can be obtained using the fol-
lowing prescribed values:

b = β, Q = 0, g = 1, (83)

Table 2 L2 norm of error for various methods in a 1-D static thermoe-
lastic patch test

DNI VC-DNI NSNI VC-NSNI

u 0.2174 1.4418E−14 0.0035 1.6187E−13

θ 0.2113 1.2204E−14 0.0035 5.6947E−15

which yields the exact solution of this problem for the two
fields as

u = x, θ = x . (84)

The discretized steady equations (81) yield the following
matrix form:

[
Kuu Kuθ

0 Kθθ

] {
u
θ

}
=

{
Fext

Qext

}
. (85)

It is important to note that for uniform discretizations,
good accuracy or even exact solutions can be obtained by var-
ious integration methods, but in non-uniform discretizations,
most methods fail the patch test. Therefore, the non-uniform
discretization of the one dimensional domain shown in Fig. 3
is employed in the study.

The dimensionless parameters E = 1, ν = 0.3, and β =
0.05 are used in the patch test. As shown in Table 2, VC-
DNI and the VC-NSNI pass the patch test (with machine
precision) as expected. It can be seen that VC-DNI yields
acceptable results for static thermoelasticity, but as will be
seen in the next section, not for quasi-static and dynamic
thermoelasticity. It is also notable that NSNI can drastically
reduce the error without VC corrections. However, it will
also be seen later that these treatments are still necessary to
obtain good accuracy across all problems tested.

9.2 Quasi-static benchmarks: the first Danilovskaya
problem

In this subsection, we study the quasi-static case of the
first Danilovskaya problem under various discretizations and
quadrature schemes. The first Danilovskaya problem [18]
concerns a linear elastic half-space subjected to a uniform
sudden temperature change on its boundary, with free trac-
tion. The boundary conditions in this problem are given as

θ(0, t) = θ0, (86a)

σ(0, t) = 0. (86b)

123



Computational Mechanics

The quasi-static problem neglects inertial effects, and the
semi-discretized equations are

Cḋ(t) + Kd(t) = F(t). (87)

9.2.1 Stability study

First, the stability of the proposed methods is studied. Uni-
form discretizations are employed, where spatial stability is
more problematic in nodal integration [24,49].

The spatial distributions of temperature change and dis-
placement at t̄ = 2 are presented in Figs. 4 and 5,
respectively. It can be seen that DNI provides wildly unstable
results, as before. The node-to-node oscillations are typical
of instability in nodal integration, yet here it is again seen
these are orders of magnitude higher than pure elasticity.

The VC test function correction of DNI fails to provide
any additional stability to the solution. This can be explained
easily. The source of the instability is the calculation ofmesh-
free gradients of the trial functions, not the test functions [24].
Therefore, the stability of the solution will not be affected
by the selection of the test function. In [27] it was shown
that while VC corrections can provide additional stability in
non-uniform discretizations, they fail to provide it in uni-
form discretizations. Therefore additional stability must be
provided by other means for the solution to be stable across
all types of discretizations. Taking another point of view, in
uniform discretizations the residuals of the integration con-
straints are generally very low [11,14,66]. Meanwhile, the
VC corrections are driven by the residual, so little to no mod-
ification to the overall numerical method is made in this case.

Finally, both NSNI and VC-NSNI provide both stable
and accurate results, with solutions comparable to the more
expensive high-order Gaussian quadrature. Here the analyt-
ical solution is available for both the coupled and uncoupled
cases.

Figures 6 and 7 show the time histories of temperature
change anddisplacement at ȳ = 1, respectively,where explo-
sive growth over time is seen inDNI for both fields. Also seen
in the figures, NSNI provides stable solutions, in both pure
NSNI, and VC-NSNI. The VC correction here also does not
provide much, which is expected as previously discussed.

As we have seen, Gauss integration was considered in this
study. Here stable and accurate results were obtained, yet
this method needs at least five-point quadrature to converge
[11], which in turn is computationally demanding. On the
other hand, the proposedRKPMformulationusingVC-NSNI
can provide comparable accuracy and stability with just one-
point integration.

9.2.2 Accuracy study

A non-uniform discretization is now considered to demon-
strate the accuracy of the present approach. Largely, uniform
discretizations are special cases where high accuracy can be
obtained in meshfree methods regardless of the quadrature
technique (excluding pure nodal integration which is unsta-
ble).

Here, since DNI provides completely unstable results,
while Gauss integration is prohibitively expensive, only
NSNI and VC techniques are considered.

Unlike in a uniform discretization, Figs. 8 and 9 show that
while pure NSNI can still provide stable results, it fails to
provide good accuracy. There are large errors in the solution
of NSNI, clearly observed in Fig. 8a. The inaccuracy in the
spatial distributions of the fields alsomanifest in the time his-
tories shown in Figs. 10 and 11 .On the other hand,VC-NSNI
provides both stability and high accuracy in the solution, in
both spatial distributions and time histories. Thus, nodally
integrated RKPM using VC-NSNI is the best candidate for
integration in thermoelasticity considering all the methods
tested, and VC-NSNI will be generally employed for the
remainder of the examples.

9.2.3 Convergence study

To study the convergence of the solution under refinement
of the nodal spacing �x , NSNI under a uniform nodal
distribution is selected since it provides both stable and
accurate results in this setting. Four NSNI discretizations
of �x = 0.1, 0.05, 0.025, and 0.01 are selected, and the
results are shown in Fig. 12. Clearly, the error for both fields
converge, in both the coupled and uncoupled cases.

9.3 Dynamic benchmarks

The next examples consider inertial dynamic terms, where
the full equation (77) is used to study dynamic thermoelastic-
ity. VC-NSNI is employed to test the accuracy and stability
of the RKPM solution.

9.3.1 First Danilovskaya problem: dynamic case

The first Danilovskaya problem has analytical solutions for
the dynamic uncoupled case (δ = 0), but not the coupled
case (δ = 1). As such, results from the DMLPG method in
[23], and FEM in [34] are used for verification of the present
VC-NSNI solution.

The time histories at ȳ = 1 for the temperature change
and displacement are shown in Figs. 13 and 14 , respectively.
For the uncoupled case, the RKPM solution matches well
with the analytical solution with almost no error. The dra-
matic shift in displacement at t̄ = 1 is well-captured, with
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Fig. 4 Temperature changes
along ȳ at t̄ = 2 for the first
Danilovskaya problem in a
quasi-static uniform
discretization with various
methods

(a) (b)

(c) (d)

(e)
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Fig. 5 Displacements along ȳ at
t̄ = 2 for the first Danilovskaya
problem in a quasi-static
uniform discretization with
various methods

(a) (b)

(c) (d)

(e)
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Fig. 6 Time histories of
temperature change at ȳ = 1 for
the first Danilovskaya problem
in a quasi-static uniform
discretization with various
methods

(a) (b)

(c) (d)

(e)
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Fig. 7 Time histories of
displacement at ȳ = 1 for the
first Danilovskaya problem in a
quasi-static uniform
discretization with various
methods

(a) (b)

(c) (d)

(e)
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Fig. 8 Temperature change
along ȳ at t̄ = 2 for the first
Danilovskaya problem in a
quasi-static nonuniform
discretization and various
methods

(a) (b)

Fig. 9 Displacement along ȳ at
t̄ = 2 for the first Danilovskaya
problem in a quasi-static
nonuniform discretization and
various methods

(a) (b)

Fig. 10 Time histories of
temperature change at ȳ = 1 for
the first Danilovskaya problem
in a quasi-static nonuniform
discretization and various
methods

(a) (b)
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Fig. 11 Time histories of
displacement at ȳ = 1 for the
first Danilovskaya problem in a
quasi-static nonuniform
discretization and various
methods

(a) (b)

Fig. 12 Convergence study
along ȳ at t̄ = 2 for the first
Danilovskaya problem in a
quasi-static uniform
discretization with NSNI

(a) (b)

(c) (d)
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Fig. 13 Temperature time
history for the first Danilovskaya
problem, dynamic

(a) (b)

Fig. 14 Displacement time
history for the first Danilovskaya
problem, dynamic

(a) (b)

Fig. 15 Stress time history for
the first Danilovskaya problem,
dynamic

(a) (b)
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Fig. 16 Time histories for the
second Danilovskaya problem

(a) (b)

no oscillations despite the weak discontinuity in time. For
the coupled case, the present method agrees well with the
reference numerical solutions from the literature. Moreover,
RKPM can also capture the transition point well in this case,
more so than the other numerical methods.

Time histories for the stresses at ȳ = 1 for the coupled
and uncoupled cases are shown in Fig. 15. To explain the dis-
continuous response: the suddenly applied temperature can
be modeled as a complementary error function, so the propa-
gation of the stress wave is discontinuous. The derivation of
the stress wave front and jump discontinuity can be found in
[58]. For the uncoupled case, it can be seen that the solution
matches well with the analytical solution, with no observ-
able oscillation. For the coupled case this is also true, yet
here the other numerical methods do oscillate in time across
the discontinuity, and MLPG also smears the wave front.

9.3.2 The second Danilovskaya problem

Next we consider a heat flux condition on the boundary
ȳ = 0, which is the second Danilovskaya problem [19],
an extended version of the first Danilovskaya problem. The
boundary conditions are

{
σ(0, t) = 0
kT,y = b̄(T − T∞)

(88)

where b̄ is the boundary-layer conductance and T∞ the ambi-
ent temperature. Based on [59], these conditions can be
expressed as:

q(y, t̄) = m(1 − θ(ȳ, t̄)) on ȳ = 0 (89)

where

m = ρκ b̄

(λ + 2μ)k
. (90)

A parameter of m = 0.5 is used in this study to select the
free variable b̄. The temperature difference and displacement
at ȳ = 1 are shown in Fig. 16. Both of the coupled and
uncoupled results obtained by VC-NSNI are in agreement
with analytical solutions. Although the results of temperature
change are slightly smaller than analytical solutions after
t̄ = 1.5, they still seem acceptable since they match the
general trend.

9.3.3 The Sternberg and Chakravorty problem

The third benchmark considered uses a ramp-type heating, a
more realistic boundary condition, on the boundary ȳ = 0,
which is the Sternberg and Chakravorty problem [56]. The
boundary conditions are

θ̃ (ȳ, t) =
{

θ̃/θ 0 ≤ θ̃ ≤ θ

1 θ̃ ≥ θ
. (91)

We consider θ̃ = 0.25 and the coupled case with δ = 1.
Figure 17 shows the time histories of temperature change
and displacement at ȳ = 1 obtained from the proposed
nodally integrated RKPM technique, and analytical solution
[46], where the results agree well. Similar to the previous
benchmark, there are small differences between numerical
and analytical results for the temperature difference after
t̄ = 1.5, yet the RKPM results are still close, and the trend
agrees well.
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Fig. 17 Time histories for the
Sternberg and Chakravorty
problem in the coupled case,
δ = 1

(a) (b)

10 Conclusions

In part I of this paper, a stable, efficient, and accurate nodally
integrated RKPM formulation has been developed for cou-
pled and uncoupled thermoelasticity. It was first shown that
nodal integration is highly unstable, yielding oscillations in
the solution orders of magnitude higher than in pure elastic-
ity. They grow seemingly unbounded and completely destroy
the results. Thus it appears in this problem, stabilization of
nodal integration is absolutely necessary.

To eliminate the spurious low energy modes that cause
the oscillations, the NSNI scheme has been developed for
the two-field problem. Analogous to the gradient expansion
of the strain in solid mechanics, stabilization is introduced
into the temperature gradient for a two-field NSNI.

To improve the poor accuracy induced by nodal inte-
gration, VCI is introduced by first deriving the variational
consistency conditions for the two-field problem of thermoe-
lasticity. Here it was found that there are three integration
constraints due to the two governing equations and the cou-
pling between them. This is in contrast to pure elasticity
which has only one constraint. A uniform correction was
then proposed for the test function gradients.

The patch test, first and second Danilovskaya problems,
and the Sternberg and Chakravorty problem have been stud-
ied. The combined approach of VC-NSNI yields a stable,
accurate and efficient RKPM solution to the coupled and
uncoupled static, quasi-static, and dynamic benchmark prob-
lems. Thiswas systematically shown through comparisons of
RKPM results with analytical solutions, and solutions using
other existing numerical methods.

In the sequel, these methods will be extended to general-
ized thermoelasticity, which provides a finite speed for the
propagation of temperature, and thus a much less restric-
tive critical time step in explicit calculations. In addition,

these techniques are developed for hyperbolic thermoplas-
ticity, which also provides amenable conditions for explicit
dynamics.
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