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Abstract

In this two-part paper, a stable and efficient nodally-integrated reproducing kernel particle method (RKPM) approach for
solving the governing equations of generalized thermomechanical theories is developed. Part I investigated quadrature in
the weak form using classical thermoelasticity as a model problem, and a stabilized and corrected nodal integration was
proposed. In this sequel, these methods are developed for generalized thermoelasticity and generalized finite-strain plasticity
theories of the hyperbolic type, which are more amenable to explicit time integration than the classical theories. Generalized
thermomechanical models yield finite propagation of temperature, with a so-called second sound speed. Since this speed is
not well characterized for common engineering materials and environments, equating the elastic wave speed with the second
sound speed is investigated to obtain results close to classical thermoelasticity, which also yields a uniform critical time
step. Implementation of the proposed nodally integrated RKPM for explicit analysis of finite-strain thermoplasticity is also
described in detail. Several benchmark problems are solved to demonstrate the effectiveness of the proposed approach for

thermomechanical analysis.
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1 Introduction

Part I of this paper began with investigating nodal quadrature
of the Galerkin weak form in meshfree methods for ther-
moelasticity. It was shown that severe oscillations, orders
of magnitude greater than the solution itself, were present
when nodal integration was employed. This is in contrast
to pure elasticity where oscillations are typically smaller
than the magnitude of the true solution. This instability was
also shown to be explosive in nature, yielding meaningless
results for nodal integration. A naturally stabilized nodal inte-
gration (NSNI) [27] was then proposed which was shown
to be effective at precluding this instability. In particular,
this method provides a highly efficient solution without tun-
able parameters typical of stabilization approaches. The nth
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order variational consistency conditions were then derived
for the two-field problem, and an efficient correction was
proposed resulting in a variationally consistent naturally sta-
bilized nodal integration (VC-NSNI). Importantly, as shown
in [55], satisfaction of the variational consistency conditions
is necessary to ensure convergence of the numerical solution,
whereas traditional approaches cannot meet these conditions.

This next part focuses on the development of this stabilized
and corrected nodal quadrature in RKPM for generalized
thermoelasticity, and generalized finite-strain thermoplastic-
ity. Particular emphasis is given to explicit analysis.

As discussed in Part I, the need for solving partially- or
fully-coupled systems may arise due to many physical phe-
nomena. Sub-classes of these problems also involve a large
degree of material deformation, flow, and failure. Here, the
traditional mesh-based methods suffer from mesh-distortion
under large deformations, and are ineffective in dealing
with material failure and associated topological changes in
the domain present in related applications such as addi-
tive (e.g. 3-D printing—topological changes) and subtractive
(e.g., machining—both) manufacturing techniques where
coupling between the displacement and temperature can be
present. Meshfree methods such as RKPM on the other hand,
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which are point-based and do not require a mesh, are quite
adept at handling these phenomena [11,13].

In Part I, the classical thermoelasticity theory [22] was
discussed. While the equation of motion is a hyperbolic equa-
tion, the energy equation is parabolic. This provides a finite
propagation speed for displacements but an infinite prop-
agation speed for the temperature, which is non-physical:
for instance, this violates the theory of special relativity by
propagating information faster than light. As an alternative to
the classical equations, generalized thermoelasticity theories
[24,39] have been developed, in which the energy equation
is of the hyperbolic type. These theories are referred to as
thermoelasticity with a so-called second sound. Part I of this
work dealt with the classical theory; Part II will deal with
these generalized theories, as well as finite-strain plasticity of
the parabolic and hyperbolic types [9,20,52]. The numerical
motivation for the use of these theories is of course, to pro-
vide efficient explicit analysis, where the time step is directly
proportional to the nodal spacing rather than its square.

There are several generalized thermoelasticity theories.
One popular theory is the Lord and Shulman (L-S) theory
[39], based on a modified Fourier Law of heat conduction
using a relaxation time. Another well-established general-
ized thermoelasticity theory is the Green and Lindsay (G-L)
theory [24] based on an entropy production inequality. This
theory uses two relaxation times, in the Duhamel-Neumann
law and the entropy density. In both theories, the energy
equation becomes hyperbolic, and thus the temperature prop-
agation has a finite velocity.

Numerical solutions based on the L-S theory have been
reported using the finite element method (FEM) [44]. The
boundary element method (BEM) [10,51] also provides good
results in thermoelastic problems using both the G-L the-
ory and L-S theory. Thermoelasticity theories with a second
sound have been studied in various problems, such as a layer
of isotropic homogeneous material [5], thermal shock prob-
lems with a crack [1,30,40,47,48,58], and rotating disks [33].

For finite strain thermoplasticity, FEM methods have been
developed for simulating large deformation problems, such
as necking processes [3,7,50,56], modelling of welding [37],
ballistic penetration of metallic targets [8], and orthogonal
high-speed machining [41]. Other mesh-based methods also
have been used to simulate the necking process, for exam-
ple, the mixed finite element method [50] and the updated
enhanced assumed strain finite element formalism [2]. Of
course, these finite element-based methods suffer from mesh
distortion issues under large deformations, and are ineffec-
tive at dealing with material flow and separation [11,36].

Recently, meshfree approximations have been used to
study the generalized thermoelasticity theories. Various
methods have been used, for example, the Meshless local
Petrov-Galerkin method [29] as well as methods using radial
basis functions [57]. Meshfree methods have also been
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developed for finite-strain thermoplasticity. Simulations have
included ductile fracture [49] and friction drilling [43,54].
Based on variational thermomechanical constitutive updates
and the optimal transportation meshfree (OTM) method [34],
the hot OTM method (HOTM) [53] has been developed for
modeling external heating and cooling behavior. The HOTM
method has mostly been applied to laser cladding technology
[23]. Yet, virtually none of these meshfree approaches to ther-
momechanical equations discussed consider any advanced
domain integration techniques other than [43,54], regardless
of the use of classical or generalized equations. For a review
of existing techniques and an in-depth discussion on mesh-
free quadrature including [43,54], see Part I of this paper.
In this work, the methods developed in the prequel are
developed for generalized thermoelasticity, and generalized
thermoplasticity. Namely, the variationally consistent natu-
rally stabilized nodal integration (VC-NSNI) technique is
extended to both of these problems. For generalized ther-
moelasticity, the extension of these two methods is straight-
forward. Strains and temperature gradients are expanded with
implicit gradient approximations for stabilization as before,
and the correction remains the same. In finite-strain thermo-
plasticity, the Cauchy stress and associated variation on strain
are instead expanded to stabilize the results. Finally, since the
propagation speed of temperature is not well-characterized
for most engineering materials, and in most settings (typi-
cally this is reported near absolute zero for special materials
such as superfluids), equating the second sound speed to the
first is investigated. This yields a critical time step in explicit
analysis that is the same as in pure solid mechanics prob-
lems, but meanwhile very small relaxation times such that
the solution is close to the classical theory, which is widely
accepted as a good model for thermomechanical problems.
The remainder of this paper is organized as follows. The
general governing equations of the coupled thermomechan-
ical theory are discussed in Sect. 2. In Sect. 3 classical
and generalized thermoelasticity are introduced as special
cases, with the RKPM discretization of the weak form given.
Section 4 develops thermoplasticity as another more gen-
eral case, with the Lagrangian RKPM discretization given
along with associated explicit algorithms. In Sect. 5 the
time-step criteria is discussed. Benchmarks are then solved
for generalized thermoelasticity and classical and general-
ized thermoplasticity in Sect. 6, where equating the first and
second sound speed is also investigated. Final concluding
remarks for this two-part paper are given in Sect. 7.

2 Governing equations of the coupled
thermal-mechanical theory

In this section, we review the general governing equations for
all of the aforementioned thermomechanical theories. Ulti-
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mately, they consist of the balance of energy, and the balance
of momentum. The subsequent assumptions used in these
equations yield both thermoelasticity and thermoplasticity.

2.1 Dissipation inequality and balance of energy

For the thermomechanical problem, the dissipation inequal-
ity can be written as

1 1
—0:e—¢é4+60n——q-V6=>0 (1
o po

where ( ' ) denotes a material time rate of change (herein
( N ) will denote the second-order material time derivative;
all terms are Lagrangian), p is the density, o is the Cauchy
stress, ¢ is the rate of deformation, ¢ is the time rate of change
of the internal energy, & = T — Ty is the temperature change
and herein is treated as a primary unknown; 7 is the absolute
temperature, 7y is the reference temperature, 1, is the entropy,
and ¢ the heat flux.

Equation (1) can be decomposed into conductive thermal
Qcon, and thermomechanical Qhermech, parts as:

1 . .
Qthermech :;0' ce—e+0n=>0 (2a)

1
Qecon=——¢q -V6 >0. (2b)
po

From the fact that the density p and the absolute temperature
change 0 are always positive, using (2b) one can deduce that

q-Vo <0. 3)

This is Fourier’s inequality which states that heat flows from a
hot region to a cold region. This can be assured by Duhamel’s
law of heat conduction

q=—k(F,0)- Vo “)

where F is the deformation gradient and the thermal con-
ductivity tensor k is positive-definite. Assuming an isotropic
material, one obtains Fourier’s law of heat conduction k =
Ik with isotropic scalar conductivity k.

Next, we introduce the balance of energy

pe+V-q=0:6+0 5)
where Q is the heat source, and here we assume the
Helmholtz free energy ¢ contains elastic and plastic entropy

[50]:

p=e—0n—n") (6)

where n, n?, and n° = n—n?’ are the total entropy, the plastic
entropy, and the elastic entropy, respectively.
Substitution of (5) and (6) into (2a) yields

V.q+060=0. )

This is the balance of energy for both thermoelasiticty and
thermal plasticity.

2.2 Governing equations of the coupled
thermal-mechanical theory

The balance of energy in the current configuration Q* with
boundary I'* over time interval ]0, ¢ 7l can thus be obtained
as

Ve q+60n=0 onQ"x]0,1s[ 8

where V, is the Del operator associated with current con-
figuration with coordinates x. For small-strain linear elastic
problems, V, is simply Del and there is no distinction
between the current configuration and the reference config-
uration, and in this case we denote the domain as 2.

The conservation of momentum in the current configura-
tion can be expressed as:

pit =Vy-0+b onQ"x]0,17[ )

where ii = 0%u / 912 is the acceleration; u is the displacement
field and herein is treated as a primary unknown, o is the
Cauchy stress tensor, and b is the prescribed body force.
Again for small-strain linear elastic problems, in the above
Ve =Vand Q¥ = Q.

The boundary conditions in the current configuration are:

u=g on F; x10, 1 7[ (10a)
o-n=nh onI'y  x]0, /[ (10b)
0=0 onT'F x]0, /] (10c)
n-q=-—4q on F; x10, 1 7[ (10d)

where g, n, h, 0, g denote prescribed displacement, outward
unit normal to the surface, prescribed traction, prescribed
temperature difference, and prescribed heat flux, respec-
tively, with Tgx UT) = I'7 Uy = Fand I'; NIy =
I'7 NI'; = @. For small-strain linear thermoelastic prob-
lems, we drop the super-scripts on the boundary terms as
there is no distinction between the boundary of the reference
configuration and current configuration.

To complete the problem, the constitutive laws for g and
o need to be specified. In turn, these dictate the nature of
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the coupling between the displacement # and temperature
change 6.

3 Generalized thermoelasticity

Assuming the free energy function ¢ (e, 0) and the entropy
n°(e, 0) for small strain thermoelasticity, the following equa-
tions are obtained (see “Appendix A” for assumptions) for
thermoelasticity over the domain €2 and time interval 10, ¢ ¢[:

V.o +b=npi (11)
~V.-q—pcyf+ Q—BTHV - =0 (12)

where ¢, is the specific heat capacity, and 8 = o (31 + 2u)
is the thermal stress modulus; « is the thermal expansion
coefficient, A and p are Lamé’s first and second constants.

3.1 Classical thermoelasticity

To outline the differences in the generalized and classical
thermoelastic theories, here we review the basic assumptions
in isotropic thermoelasticity. For the constitutive laws, the
heat flux in (4) takes the form

q=—kVo (13)

which is the Fourier law. For the stress, the Duhamel-
Neumann law is adopted:

og=C:e— pol (14)

where C and ¢ are the isotropic forth-order elastic tensor, and
infinitesimal strain tensor, respectively, and I is the second-
order identity tensor. Employing (14) in the momentum
equation (11) and the Fourier law (13) in the energy equation
(12), the classical equations of thermoelasticity employed in
Part I of this paper are obtained.

3.2 Lord and Shulman’s theory

Lord and Shulman (denoted as L-S) introduced a relaxation
time #( in the classical Fourier law (13) of heat conduction
as follows [39]:

q + tog = —kV6. (15)
The classical Duhamel-Neumann law (14) is still considered.
Employing (14) in (11) and the modified Fourier diffusion
law (15) in the energy equation (12), the following governing

equations of the Lord and Shulman theory can be written as

V.- (C:e(m)— pol) + b = pu, (16a)
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—topcpd — toBToV - i +V - kVO — pcp0

+(Q+10) — BTyV -t = 0. (16b)

If 1o = 0, then classical isotropic thermoelasticity is recov-
ered.

The corresponding finite temperature propagation speed
of L-S theory, c11s, can be obtained as

k
cTLs = . )
fopcp

3.3 Green and Lindsay’s theory

Based on an entropy production inequality, Green and Lind-
say’s theory (denoted as G-L) considers two relaxation times
[24].

The first relaxation time #; enters into the Duhamel—
Neumann law (14):

o =C:e(u)— B0 +n6)L (18)

A second relaxation time #, is considered in the following
entropy density function:

Ccph

= o+ L6 +
n=mot+ 0+

é+lﬁv-u (19)
P

where 7 is the reference entropy density.

The Duhamel-Neumann law with relaxation time (18) and
the entropy density function (19) are introduced in the equa-
tion of motion (11) and in the energy equation (12) to yield:

V- (C:e(m)— B0 + 1))+ b = pii, (20a)
—tapcpf +V - kVO — pc,0 + Q — BTyV - = 0. (20b)
Note that if ; = 7, = 0, then the classical governing equa-
tions are recovered.

The corresponding temperature propagation speed in the
G-L theory, cTGL, is given as

| k
CT,GL = . (21)
hpcp

3.4 Unified generalized thermoelasticity

For convenience, the classical, G-L, and L-S theories can be
expressed as a generalized thermoelasticity formulation as
follows:

V- (C:e(m)— B0 +10)l)+ b = pii,
— (to + ) pcpd — 0BTV - ii + V - kVO — pc 0

(22a)
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+(Q+100)— BTV i =0. (22b)
In the above, when all relaxation times are zero (fop = t; =
tp = 0), classical thermoelasticity is recovered. The G-L
theory can be obtained with 7o = 0, and the L-S theory can
be obtained by setting #; = t» = 0. In following sections, the
governing equations for generalized thermoelasticity (22) are
employed to make the derivations concise.

Now, to distinguish between a fully coupled and a partially
coupled problem, the following thermoelasticity coupling
parameter is introduced for convenience:

BTy

§=_——"°9 (23)
pc(h +2u)

When § = 0 the system is the uncoupled (or partially cou-
pled). On the other hand, if § is non-zero value, it is the fully
coupled case. In practice, one may select the former case
when § &~ 0. It can be noted that this depends on the ratio
of material constants at hand, and may differ for e.g., many
metals § &~ 0, and several composites and plastics § > 1.

3.5 Weak form of generalized thermoelasticity

RKPM employs the weak forms of the governing equations.
Using the weighted residual method, applying integration-
by-parts and the divergence theorem, the weak forms can be
derived as: findu € Uy, Uy = {u |u € H',u = gonTgx

10,74[}and0 € ©7,07 = {0 |6 € H', 60 =6 on T7x]10, 1£[}
suchthatforallv € Up,Up = {v|ve H',v =00nTgx]0, 1£[}

and S € ©g, O ={S|Se H', S =00nT7x]0,/[} the
following equations hold:

/,ov-iidQ—}—/ Vi : C: ViudQ
Q Q

— / BY - v(O +110)dQ
Q

=/ v-bdQ—i—/ v - hdrl, (24a)
Q 'y
—f(z0+t2)pc,,sé'dsz—f 10BToSV - iidQ
Q Q
+ / kVS - VOdQ
Q
+/ pc,,SédQ—i—/ BToSY - udQ
Q Q
- / S0 + 100)d2 + / Sqdr, (24b)
Q I

q

where V* denotes the symmetric part of the gradient.
Asnoted in Part I, both “energy” terms contain gradients of

the primary unknown, V6 and Vu, in (24a) and (24b), respec-

tively. Thus, when discretized by meshfree shape functions,

it is easy to show that an oscillatory mode with a wavelength
of twice the nodal spacing, in both displacement and temper-
ature, will not contribute to these terms when away from the
influence of the boundary, and this mode can potentially grow
virtually unrestricted [27]. In Part I, it was further demon-
strated that in thermoelasticity, these modes do in fact grow
unrestricted, and are explosive in nature yielding meaning-
less results without a stabilized nodal integration. It was also
shown that these oscillations were many orders of magnitude
worse than pure elasticity.

3.6 Galerkin form
The Galerkin approximation of (24) asks to find " € U ¢

U; and 6" € @? C ®1T, such that for all v" ¢ VI UO1
and S" € @’5 C @6 the following equations hold:

/ v - ihdQ —i—/ vl C: viuhdQ
Q Q

—/ BY - "0 + 16" dQ
Q

=/ vh-bdQ+/ v" - hdl, (25a)
Q 'y
—/(t0+t2)pc,,shéhdsz—/ 10BToS"V - ii"dQ
Q Q
+f kvs".veha
Q
+/ pcpshéhdsz+/ BToS"V - i"d
Q Q
:/ Sh(Q+toQ)d§2+/ Shgdr. (25b)
Q r

q

3.7 Reproducing kernel approximation

In this section, the reproducing kernel (RK) approximation
for the linear problem is briefly reviewed, along with it’s
implicit gradient counterpart used in the stabilization. For
more details, see Part 1.

Let a domain @ = Q U T be discretized by a set of NP
nodes S = {x;|x; € S_Z}]IV:P1 with associated set of node
numbers ' = {I|x; € S}. The nth order reproducing kernel
(RK) approximation u” (x) of a function u(x) is

W'(x) =) Wxu (26)
IeN

where {W;(x)};en is the set of RK shape functions, and
{ur}sen are the associated coefficients. The shape functions
are composed of a kernel function ®,(x — x ;) with normal-
ized support a and a correction function [15,38]:

W (x) = HO)TM(x) "H(x —x1)Du(x —x7). 27)
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where H(0)TM (x)~'H(x — x) is the correction function;
H is a column vector of complete nth order monomials, and
M is the moment matrix defined as follows:

M(x) = ZH(x—xI)H(x—xI)cha(x—x]). (28)
IeN

Due to the correction function, the RK approximation can be
shown to satisfy the following reproducing conditions:

> W (0)H (x)) = H(x) (29)
IeN

Note that because of the product rule, taking direct deriva-
tives of (27) becomes increasingly expensive as the order of
differentiation increases. In NSNI, the gradients of gradients
are necessary due to the Taylor series expansion involved.
Thus, the following implicit gradient approximation to a gra-
dient term u(x),; = 0u/dx; is introduced to alleviate the
computational burden [19,35]:

w(x),i Y W xu; (30)
IeN

where \IJIVZ. is the implicit gradient shape function which takes
the form:

W) =[H ™M) "Hx —x)@u(x —x;) (31

where M is the same moment matrix in (28), and H iv is a
column vector of the form:

HY =[0,---,0,—1,0, -~

1

,017 (32)

where —1 is (i + 1) entry. Similar to the RK approxima-
tion (27), here [H "M (x)"'H(x — x;) is a correction
function. It can be shown that due to this correction, the
implicit gradient approximation satisfies the following gra-
dient reproducing conditions:

> W) H ) = H(x).; . (33)
IeN

Comparing (29) to (33), it can be seen that the implicit
gradient possesses the same key properties in gradient
approximations, while much less computationally demand-
ing. For more details, consult Part I, or see [11].

3.8 Matrix forms
Naturally stabilized nodal integration, and variationally con-
sistent integration introduced in Part I are both straight-

forwardly applied to the present generalized thermoelastic
problem. The natural stabilization follows the exact same
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derivation and formulation, since no new terms are intro-
duced into the bilinear forms of the generalized formulation
(24).

Similarly, the present formulation only introduced addi-
tional time-dependent terms. Meanwhile, the variational
consistency conditions are based on the steady problem.
Therefore it is easy to show that the variational consistency
conditions for the generalized formulation remain the same,
and the test function gradient correction from Part I thus
also remains the same. That is, the integration constraints,
and associated correction for (25) are identical. We refer the
interested reader to Part I of this paper for the details of test
and trial function construction, and related corrections and
stabilization.

Proceeding to introduce the RK approximation (26) with
associated NSNI stabilization and VC correction from Part I
into the nodally-integrated Galerkin equation (25), one
obtains the following matrix form:

s ] e e )+ LS5 e ) 6)
My, Mgy | | 0 Cou Cop | |0 0 Koo | |0

ext
= {gext } (34)

where u and 0 are the row vectors of the unknowns {u; }],V :Pl

and {0 }],V :P] , respectively, and for a homogeneous media in
two dimensions:

NP
M, =Y pN(x)™NGxL) WL
L=1
NP
Moy = Y —t0Tof¥ (x 1) TITB" (x )W,
L=1
NP
Mgy = Z —pcp(to +12)W(x)TW(x) Wy
L=1
NP
Cup =Y —nBB“(x)TI¥(x )W,
L=1
NP
Cou=Y_ Tof(¥(x)TITB (x, )W,
L=1
NP
C@@ = Z,OCP‘I’(XL)T\I’(XL)WL
L=1
NP
Ky = Y (B“(x.)TDB" (x /)W,
L=1
NP 2
+ 303 B (x)TDBYY (x )My,

L=1i=1

(35a)

(35b)

(35¢)

(35d)

(35¢)

(35f)

(352



Computational Mechanics

NP
Ky =—) BB“(x.)TTW(x )W, (35h)
L=1
NP
Koo = Y k(B (x.)TB’ (x )Wy
L=1
NP 2
+ Y Y kB (x)TB]Y (x )My (35i)
L=1i=1
NP NBPu
F*'= % "N(x;)TbWL + > N(xk)ThLi (35))
L=1 K=1
NP NBPO
Q™M= "Wx)TOWL+ Y Wxx)TgLy (35K
L=1 K=1

where I = [l 1 O]T, D is the matrix corresponding to the
tensor C, Wy, is the integration weight of node L, and LY and
L% denote the Kth weight of one of the NBPu and N B P60
integration points on the natural boundary, respectively. The
definition of the terms N, ¥, B*, BY, B“, B, B!", and B!V
can be found in Part .

Compared to classical thermoelasticity, there are three
additional terms in (35b), (35¢), and (35d), which emanate
from the relaxation times introduced. Therefore the gener-
alized formulation can easily be introduced into existing
classical thermoelasticity codes, provided time integration
is taken care of.

The final semi-discrete linear time-dependent system (34)
can be written in compact form as

Md (1) + Cd(r) + Kd(r) = F(1) (36)
where

M,, 0 0 Cup Kuu Kuo
M == = K =

|:M0u Mee]’ ¢ [CHu Coo]’ [ 0 Kee}

(37)

and

u Fext
d:[o], F:[Qext]. (38)

In this work, time integration is carried out using the
Newmark method [31]. For the explicit version (central dif-
ference), since there are off-diagonal terms in the mass-type
and damping-type matrices in (37), one can lump the mass
and replace the velocity approximation terms with their pre-
dictors. In the numerical examples, it is shown that this has
little effect on accuracy. The specific algorithms are omitted
here due to their relative simplicity in the elastic case.
Later, it will be shown that the relaxation times in the
generalized theories can be chosen such that critical time

step for explicit time integration is the same as pure small-
strain linear elasticity, thus avoiding the parabolic O(Ar?)
time step restriction, also resulting in solutions close to the
classical theory.

4 Thermoplasticity
4.1 Finite-strain formulation

A non-linear analysis generally involves either the total
Lagrangian or the updated Lagrangian formulation [6]. In
the total Lagrangian description, strain and stress measures
are defined with respect to the undeformed or reference
geometry. As opposed to the total Lagrangian description,
an updated Lagrangian analysis uses the current configura-
tion. In this work, the updated Lagrangian scheme will be
employed since it is applicable to extreme deformation prob-
lems where meshfree methods are adept.

Consider a body initially occupying a region QX with
boundary I'" and particle positions X (material coordinates),
deformed to a configuration occupying a region Q¥ with
boundary I'* and particle positions x. If the deformation is
one-to-one x is defined by a mapping function x = ¢ (X, 1)
which is a function of the original particle position X as well
as time 7. The displacement u in the current configuration is
defined by the difference between its current coordinates in
Q*, and initial material coordinates in X:

u=x-—-X. (39
4.2 Governing equations

For thermoplasticity, we decompose the free energy function
into an elastic energy ¢¢, a plastic energy ¢? due to work
hardening, and thermal energy ¢ following [46]:

¢ = ¢°(F°,0) + ¢” (v, 0) + ¢° (©6) (40)

where F¢ is the elastic deformation gradient, and v is
the hardening variable. The entropy for large strain can be
expressed as:

77_np:_@:_a(<;se+¢”+<;5") @l
30 30

and

n=n" —cyb (42)

where ¢, = 327‘50 is the specific heat capacity.
Assuming the free energy function (40) and the entropy
(41), the following equations are obtained (see “Appendix

@ Springer



Computational Mechanics

B” for assumptions) for thermoplasticity
pcpé:—V-q—f-Q—I—xu')p (43)

where x € [0, 1] is the Taylor-Quinney coefficient, and
wP = dev(o) : &7 is the plastic power; dev(o) = o —
trace(o )1 is the deviatoric portion of the Cauchy stress, and
&P is the rate of plastic strain.

The classical Fourier heat flux is employed in this work
with the scalar (isotropic) thermal conductivity denoted k:

q = —kVo. (44)

Substituting (44) into (43), the following energy equation is
obtained:

pcpd =V -kVO + Q + xw?. (45)

Obviously, the above equation implies an infinite speed for
propagation of temperature information. To remedy the fact
that this is physically unacceptable, and to facilitate effi-
cient explicit calculations, a thermal sound speed can be
introduced into the finite-strain problem. Here, we consider
Cattaneo heat conduction [9] (or so-called relativistic heat
conduction, which can also be attributed to Vernotte [52]
and Chester [20]), which is directly analogous to the modi-
fied Fourier law (15):

T4 +q =kV0, (46)

where 7 is the relaxation time.
Using (46), we obtain a hyperbolic energy equation as

pepth + pcpd =V -kVO + Q + 10 + xi? 47)

where O comes from Cattaneo conduction. Note that if T =
0, then the parabolic energy equation (45) is recovered.

For the Cauchy stress, o, the Duhamel-Neumann law is
adopted:

c=C:(e—e"—¢% (48)

where ¢, e?, and €/ = @01 are the total, plastic, and thermal
strains, respectively (¢ — e” — &% is the elastic strain).

Finally, the governing equations of the conservation of
linear momentum and the hyperbolic energy equation in the
current configuration can be written as

pii = Vy -0 +b inQ*x]0, [ (49a)
pcpTh + pcpd = Vi -kVy + Q + 70 + xw?
in Q*x]0, 1/[ (49b)
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where as before, V, is the Del operator associated with cur-
rent coordinates x. As can be seen, the coupling between
the two fields arises from the thermal strains and possible
dependence of the yield function on temperature (temper-
ature to mechanical), and the plastic power (mechanical to
temperature).

4.3 Weak form of thermoplasticity

RKPM employs the weak forms of the governing equations
(49). Applying the weighted residual method, integration-
by-parts, and the divergence theorem, the weak forms are
derived as: find u € Ugf ,and 0 € @’}, such that for all
v € Uy, and S € Of the following equations hold:

/ pv-iidQ+/ Viv:odQ

=/ v-bdQ—i—f v-hdl,
x r

X
h

/ pc,,rsé'dsz+f pc,,sédsz+f kVeS - V042
X QX X

(50a)

=/ qu')de—i—/ S(Q—i—tQ)dQ—i—/ Sqdr.
X Qx

3

(50b)

where V3 is the symmetric part of Vi, Uy = {u | u €
H'.u = g on I'yx]0,1[}, ©F = {6 | 6 € H',6 =
fonT%x]0,1/[},Uf ={v|ve H v= 0onT% %10, 7]},
and ©F = {S|Se H!, S =00nT%x]0,1/[}.

4.4 Galerkin approximation
The Galerkin approximation of (50) asks to find " € U" c

Ug,‘ and 0" ¢ 6}} C O, such that for all v € V! Uy
and §” € @g C Oy the following equations hold:

/ pv" - itdQ —i—/ Vi adQ
o Qo

=/ vh~bds2+/ v" - hdl, (51a)
X 1'*/):
/ pcptShéth—i-/ pcpS"éhdQ
QX QX
+/ kVyS" . v,.0"dQ
QX
=/ ShXIbde+/ Sh(Q+tQ)dQ+/ shgdr.
QF Qx Fj;
(51b)
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4.5 Finite-strain RK formulation
4.5.1 Lagrangian RK approximation

The Lagrangian reproducing kernel approximation is con-
structed with reference to the material configuration X.
Following procedures analogous to Sect. 3.7, the shape func-
tions are obtained as [14,15]:

Wi(X)=HTOM '(X)H(X — X)¢a(X — X1)  (52)

where X is the nodal coordinate in the material configura-
tion.

For the Lagrangian approximation, the displacement and
temperature change are constructed (in 2-D as before) as:

NP NP
W'(X) =Y NiXu;, 0"X)=) W,(X)6;  (53)

=1 1=1
where
=[]
and the test functions are approximated as
NP NP
V(X) =) NXv, SN =) w,(X)S  (55)
=1 =1

where {W; (X )}]IV :Pl are the Lagrangian RK shape functions
(52),and uy, 07, vy, and S; are the nodal coefficients in the
Galerkin equation.

4.5.2 Stabilized non-conforming nodal integration (SNNI)

While the formulation of the VC correction technique is
straight-forward, the actual coding for large-scale three-
dimensional nonlinear codes is somewhat non-trivial. An
alternative is to use SCNI [16] which uses conforming
cells to satisfy the VC constraints. The main idea of SCNI
is to replace the nodal gradient by a smoothed gradient
constructed via a Voronoi diagram, as shown in Fig. 1,
to avoid instability from DNI and inherently satisfy the
first-order VC conditions. However, this implementation is
also somewhat non-trivial in three-dimensions due to data
structures and book-keeping needed. Instead, the stabilized
non-conforming nodal integration (SNNI) [25,26] is adopted
here, which utilizes non-conforming cells with a sphere or
brick shape as shown in Fig. 1.

In SNNI, a direct gradient Vy is replaced with a smoothed
gradient Vy, constructed as:

- 1 1
WOl = 25 [ Vxoan= = [ oitdr 6
L L L

L

where X is the nodal point, Qf is the smoothing domain
associated with each node in the material configuration with
boundary I'X, WZ‘ = |§~2f | is the smoothing weight of the
nodal domain, and 7% is the unit normal to the nodal smooth-
ing domain. Here, the gradient at a nodal location (as in nodal
integration) is smoothed over its representative nodal domain
and then the domain integral is converted to a surface integral
using the divergence theorem. While relaxation of the con-
forming condition on the smoothing cells results in loss of
variational consistency, so long as the domain is sufficiently
uniform, optimal convergence can be achieved [4]. In this
work, we utilize semi-uniform discretizations in the numer-
ical examples. The VC corrections should be implemented
if accuracy is desired across all types of discretizations, as
shown in Part L.

When SNNI is applied to nodal gradient terms, the fol-
lowing approximations result (all smoothed quantities and
related variables are denoted with a tilde ( ~) herein):

NP NP
- ~ ~ ~ 0
Ew' (X)) =) Bi(Xpu;, VO"(X1)=) B (X0)0
I=1 I=1
NP NP p
~ =u =~ ol
EOM(X) =) Bi(Xpvr, VS'(Xp) =) Bi(X0)S
I=1 1=1
(57)
where
bE, 0
. 0
B[(XL) = ~0 lZ21 P
by, bf;
(58)

~0 ~ ~
B;(X1) = [bY,, b51T,
- 1

bE = —/ v, iaXar
il Wg 1:{ i

In the updated Lagrangian formulation, the spatial gradi-
ents are required, and here are computed using the smoothed
gradient approximation [18]:

~ X ~

Ve @u'(Xp) = S=(X0) - (Vx @ u' (K1)
~Fx) T (Wxeu (X)),

- X ~ (59

V(K1) = S—(X1) - (Vx0(X1))

~F(X) T (%XQ(XL)) ;

@ Springer
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Fig.1 Smoothing cells:
conforming nodal integration
with SCNI and non-conforming
nodal integration with SNNI

SCNI

where the smoothed deformation gradient F is computed as:

NP
F(Xp)=T+) VxW(Xp)®uj. (60)
I=1

For the inverse of the deformation gradient F - , the mapping
must exist between the undeformed and deformed configu-
ration. For material seperation where the mapping does not
exist everywhere, the semi-Lagrangian formulation can be
introduced [26]. In this work, the Lagrangian approximation
(52) is employed since the deformations are not severe in the
chosen benchmarks.

Finally, we note for nodal quadrature of the Updated
Lagrangian formulation, nodal weights in the current con-
figuration also employ F and are computed as W} =
det(f’ ) Wg‘ where WLX is the weight in the undeformed con-
figuration.

4.6 Naturally stabilized nodal integration in
thermoplasticity

In this section, the nodal stabilization given in Part I is
extended to nonlinear problems. Most of the procedures are a
straightforward analogy, so particular emphasis is only given
to key differences. Here as in the rest of the text, two dimen-
sions are considered without loss of generality.

4.6.1 Stabilization of the mechanical field
To start, the variation on strains in nodal domains are

expanded about the current nodal position x 7, using a Taylor
series expansion truncated to first order [27]:

2
e(@") ~e (") + ) {(xi —xL)eL(v") ;). 1)
i=1

where &7 (v") = e(@"(x)) and ( ); = 9( )/dx; . Now,
rather than the strain, the Cauchy stress is instead expanded:
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o RKPM node
O Smoothing zone

o) ~ oL@+ {(x —xroL@") ;). (62)

i=1

where aL(uh) = a(uh(xL)). As in Part I, we have consid-
ered the linear (n = 1) case and only retain first-order terms.
Substituting (61) and (62) into (51a) with nodal quadrature
and employing the smoothed (56) and implicit (30) gradient
approximations, the following smoothed naturally stabilized
nodal quadrature version of the bilinear form is obtained as:

asy (vh,uh>=a’5‘ <vh,uh>+afv <vh,uh> (63)

where ag (-, -) is the SNNI quadrature version of the bilinear
form using strain smoothing:

NP
a (v, u") = ;éL(uh) LG LW (64)

where ¢ denotes the Cauchy stress computed using the
smoothed strain, and the stabilization term a]’f, (-, ) is

NP 2

af (v ) = 303 60" 16 M, (65)

L=1i=1

where & Llf(vh) is the smoothed implicit gradient approxima-
tion of e (v") 7 6Llf(uh) is the approximation to o) 7
using éL;(uh) and

M3, = / (xi — x1;)? dSQ, (66)
oF

which are the second moments of inertia of each integra-
tion zone in the current configuration. For the Lagrangian
formulation, to avoid recomputing the spatial moments in
(66), these are pre-computed just as other quantities, and are
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approximated at the current time step by:
MZ,‘ %det(F(X[))/X(Xi—XLl-)de' (67)
QL

The smoothed nodal terms in (64) are constructed using
SNNI as in (57). Additional terms containing the derivatives
of strains are approximated by smoothed implicit gradients
(in contrast to Part I) as

NP NP
&) = ZB‘;EV(xL)”I’ e = ZB';;V(XL)UI,
=1 I1=1
v
5 \Ilm(x) vO
u —
B (x) = U E))

\I’v 5(0) Wi (x)
(68)

where the spatial derivatives W 7ij are mapped as in (59) from

~X
W= 7 / (WAt + wlik)dr. (69)

The above averaging enforces the mathematical property of
true second-order derivatives ‘-IJIVI = \Illvjl

Note that in this formulation, no direct derivatives are
involved, which is computationally efficient. Further details
and enhanced algorithms for smoothed Lagrangian natural
stabilization will be presented in a forthcoming paper.

Finally, the stress updates in this paper follow the Hughes-
Winget algorithm [32] in order to maintain objectivity, while
the updates of the derivative of stresses in (62) use the strains
in (68) following the procedure given in the Appendix of
[27].

4.6.2 Stabilization of temperature field
Following the procedures for the displacement field, expand-

ing the temperature gradient in nodal domains is proposed in
this work to achieve stabilization of the temperature field:

2
Vel + > A = xL) (Vi) ;) (70)
i=1

V0" (x) ~

where Vxéf = V,0"(x1;). The test function gradient fol-
lows the same form:

2
Ve S"(x) & Vi ST+ (i = x20) (Ve SP) 7) (71)
i=1

where Vy S! = V8" (x ).

Employing (70) and (71) in (51b) with nodal quadrature
and employing the smoothed (56) and implicit (30) gradi-
ent approximations, the following stabilized bilinear form is
obtained for the temperature field:
aty < Sh ot >=at < sh o > vaf < sh e > (72)
where ay < -, > is the SNNI quadrature version of the
bilinear form using gradient smoothing (56):

NP

a5 (s".6") = > k(Visp) - (VxbfI M, (73)
L=1
and the stabilization term for temperature ay, (-, -) is com-
puted as
NP 2
a%, (s”, 9h> = 30 k(TS - (V0 My (74)
L=1i=1

where %S h- and @Gh denote the smoothed implicit approx-
imations to VS’Z and V@h -, respectively.

The nodal gradlents in the SNNI term are computed using
(57). For the stabilization terms in (74), smoothed implicit
gradients are utilized as follows:

NP NP
98t = Y BT ns. G0l = Y BT
I=1 I=1 (75)

Note that the weights W} and second moments of inertia
M7 ; are the same as in Sect. 4.6.1.

4.7 Semi-discrete matrix equations

Herein, we consider the explicit formulation for thermoplas-
ticity. First, the semi-discrete form using SNNI and NSNI
can be stated as:

M, a, (1) ZfSXt(I) - fzim(t)
Mpyay (1) + Cyvo(t) :ng[(t) + fgiss(t)

(76a)

mt(t) (76b)
where we have adopted the notationa, = i, v, = u,d, = u,
ag=60,v9p=60,and dy = 0; u and 0 are the row vectors of
{ur} 9/ :P , and {01}?' :PI, respectively, and the matrix entries of
the above are

NP

My =Y p(X)TW (X)W, (X)W
L=1

(77a)
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NP

Morj =y tp(X1)ep(X )W (X )Wy (X)W
L=1
NP

Cors =Y p(X0)ep(X L)W (X)W (X)W}
L=1

. NP ~
i = 3 (B X TEEX WS

L=1

(77b)

(77¢)

2
+y By (xL»TZ(XL),;(xL)Mz,-) (77d)
i=1

NBPu NP
55 = 3 WxohXOLY + Y W (X)b(X )W}

K=1 L=1

(77e)

) NP . _
=" (B X)X V0 (X)W

L=1

2
+> k(XL)(BYY (xL))T@QZ;M{,) (77f)
i=1

NBPO

5= Wixk)g(X L)Ly
K=1

NP
+ Y WX )(Q(XL) + T QX)W
L=1
) NP
f51° =Y Wi (X ) xb? (X)W
L=1

(772)
(77h)

with

- [10
1= :
[0 1} (78)

YX(Xp) =[611(X1), 622X 1), 612(X )17,

b and h are the matrix forms of b and k, respectively, and
L% and Lé;( denote the Kth weight of one of the NBPu
and N BP6 integration points on the natural boundaries
for the displacement and temperature change in the current
configuration, respectively, As described in Sect. 4.6, the
stress gradient X (X ) ; is not computed directly but instead
approximated.

4.8 Fully discrete matrix equations for explicit
hyperbolic analysis

In this section, we introduce the fully discrete matrix equa-
tions for explicit hyperbolic analysis following the Newmark
method with the central difference scheme [31]. For the
parabolic version, the heat equation just follows the forward
Euler algorithm on temperature. First, denote the approxi-
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mation of displacement variables at time #, as a], ~ a,(t,),
Vi~ vy, (ty), and dj, &~ dy, (t,).

The approximate temperature changes and their rates at
ty are a; ~ ag(ty), vy ~ Vg(ty), and dj ~ dg(t,). Then
the following algorithm is obtained for the central difference
method at time #,,41:

Predictor phase Compute predicted quantities ( )

ditl = d 4+ AV AthaZ, (79a)
il = v g %a;’, (79b)
dit = df + AV + Athag, (79¢)
Vit = v 4 %ag. (79d)

Note that in the central difference method, some of the pre-
dicted values are the corrected values such that d”+! = d"+!
and dg+l = flg“. This makes the internal force-type terms
possible to compute exactly at any given time step and are
thus moved to the right-hand side.

Solve the governing equations Solve for the accelerations
and their temperature counterparts from the Governing equa-
tions.

For the hyperbolic version, to keep the method explicit,
the following “mass” matrices are lumped using the row-sum
method, and the predictor for the velocity-type temperature
terms are employed and moved to the right-hand side:

M all —fext _ gint (80a)
Méag+l _gext + fgiss _ fént _ C(_}{,gH»] ) (80b)

Since the mass matrices are lumped (80) is simply a set of
row equations and needs no solver. Also note, the coupling
between mechanical fields and temperature is given by the
source term w? in the energy equation in f giss, the temper-
ature strain in the Cauchy stress o in Lm, and the possible

effect of the temperature on the yield stress in plasticity in

int
ri

Corrector phase Compute corrected quantities:

d"+! =d"*! (o correction), (81a)
il gty %azﬂ’ (81b)
dg+1 =(Al'9’+1 (no correction), (81c)
vt =gott 4 %ag“. (81d)
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Hence, the algorithm follows the typical explicit scheme for
pure solid mechanics, with no special treatments. Therefore
existing explicit solids codes can benefit from the present
approach if thermomechanical coupling is desired. In addi-
tion, when the second sound speed is equated with the first
(see the Sects. 5 and 6), the time step requirement also
remains the same.

5 Time-step criteria

In this section we examine the time-step criteria for the G-L
theory using the explicit Newmark Method (the extension to
L-S is straightforward), and compare it to the classical theory
with the explicit generalized trapezoidal rule (forward Euler)
method with lumped mass, as has been used in the past for
explicit thermomechanical analysis (e.g., see [43]). We note
that the coupled system for the generalized theory (80) is not
solved in a matrix fashion monolithically, so we examine the
limitation on the time step due to the temperature field alone.

There are three main methods typically considered in sta-
bility analysis: (1) modal analysis, (2) the Von Neumann
Method, and (3) the energy method. Here we use modal anal-
ysis based on linear finite elements (as a proxy for a linear
meshfree discretization, with nodal spacing Ax, which is
conservative for nodal integration methods [17]) to examine
the critical time step, Az.;. We solve the following problem
to determine the maximum magnitude of the element eigen-
values, which governs the time step:

(K¢ =AM, =0, i=1,2 (82)

where ¢, is an eigenvector and A, is the associated eigenvalue,
and for the element eigenvalue problem:

e hpcpl® 10 e_ k1 —1
M¢ = o1l K =%, | (83)

2 e

where /¢ the is length of an element. For simplicity, damping
is neglected here, since this does not effect the time step
estimate with the standard selection of y = 1/2, which is
needed for second order accuracy [31].
Following standard procedures, one can obtain two solu-
tions:
4k

and L= —— (84)

A =0, .
npcp(l9)?

Since At = 2/+4/max(}) in the central difference method
[31], the critical time step of the hyperbolic heat equation
using lumped mass is:

At < Al = 2 _ ,/tzpcp ¢ = r (85)
=TT Umax(h) k " eroL’

where ct,gL is the temperature propagation speed for the G-
L theory (21). So, the critical time step of the hyperbolic
heat equation is At o [, and mimics the requirement for
pure solid mechanics problems. That is, the critical time step
is exactly the time it takes for a wave to pass through one
element. This time, it is the second sound speed. Therefore
for efficiency, relaxation times can be based on equating the
second sound speed with the first. This seems to be also a
practical solution, since this data is generally unavailable for
most materials, and this also results in very small relaxation
times yielding results close to the classical theory.

L-S follows a similar derivation, with the critical time step
governed by the associated wave speed with

e

At < At = (86)

CTLS

For comparison, using forward Euler with lumped element
“heat mass” matrix C¢ (the explicit generalized trapezoidal
rule), the critical time step of the classic parabolic theory can
be determined using eigenvalue strategies as in (82):

(K¢ — x{’ce)(/,f =0, i=12 (87)

where ¢f’ is an eigenvector and Af is the associated eigen-
value, and for the element eigenvalue problem:

e PCHICT10 e_f 1 -1
C_2[01 K_ze—ll' (88)

Stability for the Forward Euler algorithm is Az, = 2/max(})
[31]. Thus, the critical time step governed by the associated
wave speed with

2 (9%pcy
max() 2k

At < Aty = (89)

Based on (85), (86) and (89), the time step for parabolic
equation will always be smaller than the hyperbolic equation
asl® — 0.

6 Numerical examples

In this section numerical examples are presented to demon-
strate the accuracy of stability of the proposed method. For
generalized thermoelasticity, four different integration meth-
ods are used for comparison to demonstrate the necessity
of both stabilization and variationally consistent integration.
Three benchmarks of thermoelasticity and a thermoplastic
benchmark are solved, and the results are compared with
numerical methods such as FEM and BEM, and experimen-
tal data when available.
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Table 1 Parameters for
A2
numerical examples in k P ‘v P 2
generalized thermoelasticity Value 1.7 % 103 7.82 x 1073 4.61 x 10° 3.34 x 10° 1.99 x 10°
unless otherwise stated
Unit kg x cm/K/s? kg/cm3 cm?/K/s? kg/cm/K/s2 kg/cm/s2
Fig.2 Time histories for the 27 08¢
first Danilovskaya problem with . ==-BEM: =0 —--BEM: 6=0
the G-L theory —FEM: 6=0 0.7 | —FEM: =0
151 ——VC-NSNI: =0 —VC-NSNI: §=0
= -BEM: é=1 06k~ -BEM: =1
""" VC-NSNI: §=1 7| **- VC-NSNI: 6=1
1t
0.5
= 0.5 ' 041
0.3f
0
0.2}
-0.5 .
0.1} i |
£
-1 . 0 a3
0 1 2 3 0 1 2 3

|

(a) Displacement

6.1 Generalized thermoelasticity

In this section the accuracy of stability of the proposed
method in generalized thermoelasticity is studied. The fol-
lowing numerical integration methods are employed in this
section:

—_—

Direct nodal integration (denoted DNI)

2. Variationally consistent integration with direct nodal
integration (denoted VC-DNI)

Naturally stabilized nodal integration (denoted NSNI)
4. Variationally consistent integration with naturally stabi-
lized nodal integration (denoted VC-NSNI)

et

Unless otherwise stated, for the RK approximation, linear
basis with cubic B-spline kernels with a normalized sup-
port size of 2 are employed in all problems, using a uniform
node distribution with a nodal spacing of Ax = 0.001.
The implicit and unconditionally stable backward difference
method [44] is employed with a time step of At = 0.001
to discretize the time domain in all examples in this section.
The transformation method [15] is used for the imposition of
essential boundary conditions. The solutions are presented
in terms of the dimensionless variables
A
a 6o a
- K - K - K
Io = C_l—zto, = Ez_ztl’ = d_ztz’

*+ 2M)u
apdo

y= =

’

(90)
where a = «/cgpcp sk =k/pcp, and ¢y = /(A +2u)/p.
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(b) Temperature change

We consider a linear elastic half-space y > 0 subjected to
a uniform sudden temperature change on its boundary plane,
free of traction. This initial boundary value problem is the
first Danilovskaya’s problem [21]. The boundary conditions
in this problem are given as

0(0,1) = 6o,
o(0,1) = 0.

1a)
91b)

The above problem can be treated as one-dimensional
coupled and uncoupled generalized thermoelasticity. Unless
otherwise stated, all material properties used in the studies
are given in Table 1, and for the L-S theory, the relaxation
time 7y = 2 s is used, and for the G-L theory, the relaxation
times 71 and 7, are 2.25 s. The full inertial dynamic represen-
tation of the problem is employed.

6.1.1 Stability and accuracy study

The stability and accuracy of the proposed VC-NSNI method
is first studied. Later, the need for both VC and NSNI tech-
niques will be examined and confirmed.

Consider the G-L theory. Figure 2 shows that the compar-
ison of RKPM with BEM [10] and FEM [44] for the coupled
(6 = 1) and uncoupled (§ = 0) cases. The results are clearly
stable, and both the displacement and temperature change
are very close to the BEM and FEM solutions.

Interesting features of this problem include the fact that
the peak of displacement in the coupled model is smaller and
flatter than uncoupled model. For the temperature change, the
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Fig.3 Time histories for the 04r 0.8
first Danilovskaya problem with ——VC-NSNI: 6=0 ——VC-NSNI: 6=0
the L-S theory —--BEM: 4=0 0.7 | ==-BEM: =0
0.3 VC-NSNI: §=1 B . VC-NSNI: =1
= -BEM: =1 -- . 5=
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(a) Displacement
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Fig.4 Node distribution with transition in one dimension

coupled results have smaller magnitude, and show a longer
delay before the large rise in temperature.

Figure 3 shows the comparison of RKPM with BEM [10]
for the coupled (§ = 1) and uncoupled (6 = 0) cases for the
L-S theory. Both displacement and temperature change are
stable, and also close to reference results. The temperature
change profile is similar to the G-L theory. For the displace-
ment, peaks are easily seen in both the coupled and uncoupled
cases, and the transition is well-captured.

In summary, the results using RKPM with VC-NSNI are
stable for both the G-L and L-S theories, and are close to the
available reference solutions.

6.1.2 Node distribution study

A non-uniform discretization is now considered to demon-
strate the accuracy of the present approach, and necessity
for stabilization and variationally consistent integration.
Largely, uniform discretizations (as in the previous exam-
ple) are special cases where high accuracy can be obtained
in meshfree methods regardless of the quadrature technique
(excluding pure nodal integration which is unstable).

Consider a transition (Ax = 0.005, Ax = 0.01) in nodal
spacing, as shown in Fig. 4. In [28] it was shown that this
type of spatial discretization is very challenging for nodal
integration in meshfree methods for dynamic problems, so it
is selected.

DNI, VC-DNI, NSNI, and VC-NSNI are employed for
domain integration. Since the G-L and L-S theories do not
have exact solutions, VC-NSNI with a uniform node distri-

t
(b) Temperature change

bution (Ax = 0.005) is employed as reference (denoted as
Reference).

The time histories for displacement and temperature for
the G-L and L-S theories are shown in Figs. 5, 6, 7, 8. Here
it is seen that DNI provides quite spurious behavior in all
cases, particularly in displacements. Meanwhile, NSNI and
VCI can provide more accuracy in both displacement and
temperature compared to DNI. However, each alone can not
achieve the accuracy of the reference solution. While NSNI
seems to provide fairly acceptable results, there are still some
discrepancies later in time (f > 2). Only when the combined
VC-NSNI is employed solutions can be obtained that are
very close to the reference solutions for all fields and all
cases.

6.1.3 Relaxation time study

In the explicit numerical time integration scheme, the crit-
ical time step of the hyperbolic equation is of linear order
of the nodal spacing, Ax, or the length of an element in
FEM. In contrast, parabolic equations require a time step
that is proportional to the square of the nodal spacing,
and explicit methods are widely considered to be imprac-
tical since spatially refined solutions are always desired for
accuracy.

To use a larger time step and obtain solutions close to the
classical thermoelasticity theory, we have found that one can
select relaxation times in the G-L and L-S theories by setting
the thermal wave speed equal to the solid elastic wave speed
c¢s. Further impetus is provided by the fact that this second
sound speed is generally available for most materials, and this
also yields a single critical time step for uniformly solving
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the coupled equations monolithically in time. Here we select
the relaxations times using the following:

A4+2u k , k
Csy = =CT,GL= N — 2=,
' P npcp (A +2p)cp
Cs = =CT,LS =

A+20
o fopcp’

The above selection of relaxation times yields the single crit-
ical time step At = Ax/cs.

For the problem at hand, the material properties result
in the relaxation times 1, = 1.05 x 107125 and 1y =
1.05 x 107!2s for the G-L and L-S theories, respectively.
For the G-L theory with a second relaxation time #;, we
set the two relaxation times equal to each other as | = 1;.
Time histories for classical and generalized thermoelasticity
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(d) VC-NSNI

for the displacement and temperature change are shown in
Figs. 9 and 10. It can be seen from the figures that when
the relaxation times are defined using the elastic wave speed,
the results are indistinguishable from the classical results for
both the coupled and uncoupled cases, and both the G-L and
L-S theories. By setting both sound speeds equal, the relax-
ation times are small enough such that the classical theory is
nearly recovered. However here, results close to the classical
theory are obtained without a severe time step restriction.

6.2 Thermoplasticity: necking of an isotropic bar

The necking of an isotropic bar including thermal effects is
used as a benchmark for thermoplasticity. For saving com-
putational cost, we use a half bar (with symmetry condition)
to perform the simulation. The dimensions of the half-bar
shown in Fig. 11 are Ly = 5.334cm, ap = 0.6298 cm, and
a; = 0.6413 cm.
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Fig.6 Time histories of 151
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The properties of the bar are density p = 7, 800kg/m>?,  where
Young’s modulus £ = 206.9 GPa, Poisson’s ratio v =
0.29, heat capacity ¢, = 460 m?/(s’K), thermal conduc- o00) =o°(1 — wo) ©5)
tivity k = 45m - kg/(s’K), thermal expansion coefficient o ~
a=107K 1, Taylor-Quinney factor x = 0.9, initial tem- Oy ©) =0y (1 = wp) (95b)
perature Ty = 293 K, and the yield stress is ay(0) =ay(l — wpb) (95¢)

K(ep) = 0) +aye, + (07° — a))(1 — eP1or) (93)

where e, is the equivalent plastic strain, o, = 0.12924
GPa, 60 = 0.45GPa, 67° = 0.715GPa, and §; = 16.93.

When the thermal effect is considered, the yield stress can
be modified as

K (p,0) = 0y (0) +ay(0), + (0,°(0)
— o)1 — 1) 94)

and here wy = 0.002, and w;, = 0.002.

Linear basis, a normalized support of 2.0, and a cubic B-
spline kernel are used to construct the RK approximation.
Figure 12 shows the RKPM discretization with 5,771 nodes.
We found for this simulation SNNI suffices for both stability
and accuracy, which can likely be attributed to the coarseness
and uniformity of the discretization [12,45]. For non-uniform
particles or finer nodal spacing, VC-NSNI should be used as
demonstrated in the previous examples.

We first consider the classical parabolic energy Eq. (44).
Figure 13 depicts the deformation with the equivalent plastic
strain values at 26% elongation. The elongation rate is set to
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Fig.7 Displacement time 0.4y
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3 m/s with the time step A7 = 1 x 1078 s. The maximum
value of the equivalent plastic strain in this study is close to
the numerical results by other methods [27,46].

Figure 14 shows the evolution of the radius at the center of
the bar and the force-displacement relationship, along with
experimental data. It can be seen that RKPM agrees with
the reference FEM results (denoted as Seitz et al.) [46], and
the experimental data in [42]. For the reduction in radius,
RKPM is in better agreement with experimental data than
the reference.

For the temperature field, no experimental data is avail-
able, so the computational results from [46] are employed as
areference. Figure 15a shows that the thermal response in the
necking region by the proposed nodally integrated RKPM is
in agreement with the reference result.

To release the time step restriction of the parabolic
equation, we now consider the hyperbolic energy equation

@ Springer

(denoted as RKPM-Hyperbolic) with Cattaneo heat conduc-
tion (46).

As before, we set the thermal wave speed equal to the
elastic wave speed to yield a single critical time step of lin-
ear order in the nodal spacing (using linear one-dimensional
finite elements as a reference):

cs =vVE/p=crc=k/tcpp —

k
T=— =47282 x 10"
Ec,,

(96)

where ct,c = \/k/(tpcp) is the wave speed for Cattaneo heat
conduction. Thus the critical time step is Afer = Ax/cTc =
Ax /cg. For general considerations, one should consider the
p-wave and shear wave velocity for a sharper estimate.
Figure 15b shows the RKPM response using the parabolic
and hyperbolic formulations. Both agree with the reference
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Fig. 10 Time histories for the 0.25¢ 0.7r
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Fig. 11 Depiction of tension test with force f and dimensions indicated

Fig. 12 RKPM discretization

solution, as well as each other. The parabolic and hyperbolic
results are virtually indistinguishable.

This example, that uses properties of a real material, seems
to indicate that the strategy of setting the thermal sound speed
to the solid sound speed is a reasonable approach to achieve
explicit analysis with a less restrictive (and uniform) critical
time step, meanwhile achieving results similar to the classical
theory. In addition, since the data for second sound speeds is
not generally available for most materials in typical engineer-
ing environments, this is also one way to select the relaxation
times for the hyperbolic formulation such that the classical
results are achieved for all intents and purposes.
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(b) Temperature change

strain_eq
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Fig. 13 Final elongation with equivalent plastic strain values

7 Conclusions

In this two-part paper, a stable, accurate, and efficient nodally
integrated RKPM approach for thermomechanical problems
has been presented. First, the instability in pure nodal quadra-
ture was investigated using thermoelasticity as a model
problem. It was shown that this results in node-to-node oscil-
lations typical of nodal integration of meshfree methods in
solid mechanics problems, yet the magnitude of the oscil-
lations is several orders of magnitude higher. A naturally
stabilized nodal integration (NSNI) was then proposed to
stabilize the solution in an efficient manner. This approach
of using implicit gradient expansions, has previously been
shown to provide accelerated computations, with a 10-20
times CPU speed-up over stress-point type methods. The
method was clearly shown to provide stability in both clas-
sical and generalized thermoelasticity theories. However, it
was also shown that pure NSNI is insufficient for accept-
able accuracy in both theories. Therefore, the variational
consistency (VC) conditions for nth order exactness and
convergence for the two-field problem were derived, and
a uniform correction on test function gradients for both
fields was adopted. This correction is performed node-by-
node with small symmetric systems of equations, and hence
increases the computational cost minimally. It should be
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(a) Comparison of RKPM thermal response in the
necking problem with results from [46].

noted that this approach alone does not provide stability, since
it does not address the issue with the trial functions admit-
ting spurious modes. Nevertheless, the combined VC-NSNI
method was shown to provide both stability and accuracy
in classical and generalized thermoelasticity. These tech-
niques were also shown to be essentially uncoupled, so that
no additional issues arise with the implementation of the
two combined. These methods were then extended to ther-
moplasticity. Good agreement with analytical and numerical
reference solutions was achieved, as well as agreement with
experimental data.

For efficient explicit analysis, hyperbolic theories for both
thermoelasticity and thermoplasticity were investigated. In
these models, rather than an infinite propagation of tem-
perature information, a so-called second sound exists, and
the use of these theories is well justified from a physical
standpoint. Yet, this second sound speed is not well charac-
terized for most engineering materials in most temperature
environments. Therefore, equating the second sound speed

6 2 4 6
Elongation (mm)

(b) Temperatures for the classical theory and the hy-
perbolic theory equating sound speeds.

with the first was investigated. The basis of this approach is
the fact that the critical time step for both the equation of
motion and generalized thermomechanical models are gov-
erned by the nodal spacing and the first and second sound
speeds, respectively. While purely a numerical approach for
selecting the associated relaxation times in the generalized
equations, it was shown that this approach yields results very
close to the classical theory since the resulting relation times
are extremely small, at least for the problems tested herein.
Therefore, since the classical thermomechanical theories are
well-accepted in terms of their predictive capabilities, this
provides an approach to solve coupled thermomechanical
problems without a severe time step restriction.

Now that a stable and effective thermomechanical RKPM
has been established, future work will entail applying this
method to coupled problems where finite elements encounter
great difficulty, e.g., additive manufacturing where topo-
logical changes in the domain are present, and subtractive
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manufacturing such as machining with material failure and
separation.
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Appendix A: Small-strain thermoelasticity

With n? = 0, the Helmholtz free energy function (6) for
thermoelasticity can be written as

¢ =e—0n cH)

For small-strain thermoelasticity, the free energy function is
a function of strain and the temperature ¢ (¢, ) with

e+ 0.

9o, 3¢,
$(e,0) = 5et T 30 (98)

With the assumption (97) and (98), the dissipation inequality
(2a) becomes

1 a9 . 99 .
Qthermech = (=0 — —) : €+ (n + )6 > 0. (99)
P o€ a0

Which yields the constitutive relations

L)
__% 100
n 30 (100)
and
o=p2 (101)
e

Assuming ¢ = 0 and 8 = 6 in the reference state, (101)
becomes

o=D:e—f0, D : (e —ab),
oro = 2udev(e) + Ktr(e) — 3a (0 — 0g)1

or o=
(102)

where a contains the thermal expansion coefficients, K is
bulk modulus and

D 99 (103a)
= —, a
'0832
9%¢
=D:a=— ) 103b
B o ryey: ( )

Also, the entropy for small strain can be expressed as
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[ _ 9] e 29
n(e,0) = 50 — a6 ‘0 3690 o - € 52

(9 o)
(104)

where |p means that the quantity is evaluated at the ref-
erence state. With (100), (102), (103), and (6 — 6)/0
(6 — 60) /6o, and The specific heat capacity is ¢, = 9%

QX

90% the entropy (104) can be written as

0 — 6o
0

3Ka
n(e, 0) =no + tr(e) + p, (105a)

6
tr(&) + —cp.

. 3Ka
n(e,0) =
Bo

(105b)

Substitution of (105b) and 8 = 3K« into (7) with
Fourier’s law (14) yields

0 .
c,,9—09 +0Btr(8) = kV - VO + Q. (106)

With the assumption 6 = 6, the energy equation becomes
pcpb + 6pBtr(é) = kV - VO + Q (107)

which is the same as (12).

Appendix B: Finite-strain thermoplasticity

First, taking time derivative of the Helmholtz free energy
function one obtains
b=é—0n—0n+0n" +0n0P. (108)

With the assumption (108) and (40), the dissipation inequal-
ity (2a) becomes

Q -2 e) Fa=i—n") +p220
thermech = 0 SFC F n—= o Y
a¢e F¢ dpP
. FP —_ on? > 0.
papeFr FN T e vton

(109)

where F = F°F?; F¢ is the deformation gradient; F¢ and
F? are the elastic and plastic part of the deformation gradient,
respectively. Since F, F , 0, and 6 are arbitrary values, we
obtain the constitutive relations of

ap OF°

99
_ _ P — 2 110
oF oF " " (o

where P is the first Piola-Kirchhoff stress.



Computational Mechanics

Here we define (109) into two parts

0¢p¢ F¢ . AP . AP .
_ - . 4 — . P
Dmech—P_aFer-F +:08UU—Z~D +,08UU,
(111a)
Diher =607 (111b)

where ¥ = 2Ce% is the Mandel stress tensor; C = FT F
denotes the right Cauchy-Green tensor and C* is the elastic
part, and D? = sym(F” FP~") is the symetric part of the
plastic velocity gradient. Substitution (108), (42), and (111)

into (7) with the Fourier’s law (4) yields

(P : F_Dmech)
200

pcpd =kV - V60 + Q + Diech + 6
(112)

where the last term is the elasto-plastic heating.

The simplification can be written with a dissipation factor
x and Dpech — 6 d%‘“g“h replaced with the total plastic power
WP

P F) T i, (113)

pcpf =kV-VO+Q+6 5

In applications of metal thermoplasticity, the plastic dissipa-
tion is much greater than thermoelastic heating. Therefore,
we rewrite the energy equation neglecting the thermoelastic
heating

pcpd =kV -V + Q + xw?

which is (43).
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