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1 Historical Technical Background

The Meshfree Explicit Galerkin Analysis (MEGA) program is a state of the art
nonlinear computational solid mechanics program for research purposes. The
origins trace back to the time Edouard Yreux and Mike Hillman worked under
J.S. Chen at UCSD (the pioneer of meshfree methods), with discussions of
writing a program based on the advancements in Galerkin meshfree methods at
the time, which, until recently, were not implemented into a commercial code.
As of today, MEGA is a code for the research group of Mike Hillman and has
been used in several projects.

2 Introduction

The MEGA program is an explicit dynamic finite-deformation meshfree code
with nonlinear hypo-elastic-plastic constitutive models. It is written using FOR-
TAN90 and OpenMP (shared memory) and is thus amenable to large single-node
calculations. A thermo-mechanical version (with hyper-elastic, visco-plastic,
thermo-visco-elastic materials) is available but is not described here for brevity.
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3 Background

3.1 Governing Equations for small deformations

First, small deformations are employed here to introduce some basic concepts.
The boundary value problem for infinitesimal deformations is given below

∇ · σ + b = 0 in Ω (1a)

σ · n = h on ∂Ωh (1b)

u = g on ∂Ωg. (1c)

Here u is the displacement field, σ = C : ∇su is the Cauchy stress tensor, where
C is the elasticity tensor and ∇su = 1/2(∇⊗ u+ u⊗∇) is the strain tensor.

3.2 Weak form for small deformations

The weak form of the BVP seeks u ∈ Ug, Ug = {u|u ∈ H1(Ω),u = g on ∂Ωg}
such that for all v ∈ V0, V0 = {v|v ∈ H1(Ω),v = 0 on ∂Ωg} the following
equation holds:

a(v,u)Ω = (v, b)Ω + (v,h)∂Ωh
(2)

where

a(v,u)Ω =

∫
Ω

∇sv : C : ∇su dΩ (3a)

(v, b)Ω =

∫
Ω

v · b dΩ (3b)

(v,h)∂Ωh
=

∫
∂Ωh

v · h dΓ (3c)

The Galerkin approximation seeks u ∈ Uh such that for all v ∈ V h

a(vh,uh)Ω = (vh, b)Ω + (vh,h)∂Ωh
(4)

where Uh ∈ Ug and V h ∈ V0.

3.3 Reproducing Kernel Approximation

Let a domain Ω̄ = Ω∪∂Ω be discretized by a set ofNp nodesN = {x1, · · · , xNP
|xI ∈

Ω̄} with corresponding node numbers Z = {I|xI ∈ Z}. The nth order repro-
ducing kernel (RK) approximation uh(x) of a function u(x) is [5, 12]:

uh(x) =
∑
I∈Z

ΨI(x)uI (5)

where {ΨI(x)}I∈Z is the set of RK shape functions, and {uI}I∈Z are the asso-
ciated coefficients. In the solution of PDEs, the coefficients are those of the test
and trial functions.
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The shape functions are constructed by the product of a kernel function
Φa(x− xI) and a correction function C(x;x− xI):

ΨI(x) = Φa(x− xI)C(x;x− xI). (6)

The correction function is composed of bases and associated coefficients, which
allows the exact reproduction of the bases contained within. The function can
be written as a column vector H(x − xI) consisting of complete nth order
monomials and a column vector of coefficients b(x):

C(x;x− xI) = H(x− xI)
T
b(x). (7)

The coefficients b(x) are obtained by enforcing the following monomial repro-
ducing conditions: ∑

I∈Z
ΨI(x)H(x− xI) = H(0). (8)

Employing (14)-(16), the RK shape functions are constructed as:

ΨI(x) = H(0)M(x)−1H(x− xI)Φa(x− xI) (9)

where
M(x) =

∑
I∈Z

H(x− xI)H(x− xI)
TΦa(x− xI) (10)

and is called the moment matrix. The MLS approximation can be viewed as
a subset of the RK approximation, as the construction of uh(x) by (18) with
monomial bases co-insides with the construction of the MLS approximation.

4 Large Deformation Formulation

Galerkin meshfree methods offer a path forward to compute solutions to ex-
tremely large deformation problems where the traditional finite element ap-
proach is generally ineffective [3]. A meshfree discretization is simply a point-
cloud of nodes and surface information, and constructs shape functions directly
in Cartesian coordinates. Thus, a meshfree approach and does not rely on a
mesh to construct approximation functions. Correspondingly, these methods of-
fer great advantages in extremely large deformation problems where Lagrangian
finite elements become distorted or entangled. This is made possibly by the fact
that node connectivity and shape functions can be continually reconstructed,
rather than being dictated by a Lagrangian element topology. The Meshfree Ex-
plicit Galerkin Analysis (MEGA) code is an explicit, large-strain nonlinear dy-
namic code based on the Reproducing Kernel Particle Method (RKPM) [5, 12].
The reproducing kernel approximation is employed for test and trial functions
resulting in a Bubnov-Galerkin formulation discretization in space under the
Updated Lagrangian formulation [1]. In order to handle extreme deformations
where the mapping between undeformed configuration and current configura-
tion is no longer one-to-one (for instance when free surface formation occurs,
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as in simulation of extreme events), a semi-Lagrangian RKPM discretization
[8] is employed which constructs the meshfree approximations in the current
configuration, all calculations are performed in the current configuration.

Nodal integration is employed for (spatial) domain integration; meaning that
the meshfree particles (or nodes) are used as the integration points themselves.
Thus, the meshfree particles serve as Lagrangian material points, allowing nat-
ural treatment of path-dependent material models. A stain-smoothing method
called Stabilized Non-conforming Nodal Integration (SNNI) [8] is adopted in
MEGA in order to remedy the instability inherent in nodal integration, and
to provide improved solution accuracy over direct nodal integration. Naturally
Stabilized Nodal Integration [9] is further introduced under the stain-smoothing
framework, which provides additional coercivity in nodal integration.

With the spatial discretization in hand, time-space calculations are per-
formed using the Newmark-Beta time integration scheme [10] with the central
difference method. To make the algorithm fully explicit, a lumped mass matrix
is utilized, along with mass-proportional damping, resulting in row equations.

5 Spatial Discretization

5.1 Updated Lagrangian Scheme

Let ΩX denote the the initial configuration of the body with material coordi-
nates X and boundary ∂ΩX , and let Ωx denote the the current configuration
of the body with current coordinates x and boundary ∂Ωx at time t. The
updated Lagrangian equation of motion can be derived using the principle of
virtual power in the current configuration [1, 2]:∫

Ωx

∇xδv : σdx−
∫
Ωx

δv · bρdx−
∫
∂Ωh

x

δv · hdx+

∫
Ωx

δv · v̇ρdx = 0. (11)

where δ is the variational operator, ∇x is the left gradient with respect to the
current coordinates x, v is the material velocity, σ is the Cauchy stress, b is
the prescribed body force in the current configuration, ρ is the density in the
current configuration, (̇) denotes differentiation with respect to time, and h is
the prescribed traction on boundary of the body in the current configuration
∂Ωh

x.

5.2 Semi-Lagrangian Reproducing Kernel Approximation

Let the domain Ω̄x = Ωx ∪ ∂Ωx be discretized by a set of Np nodes N =
{x1, · · · ,xNP

|xI ∈ Ω̄x} with corresponding node numbers Z = {I|xI ∈ N}.
In the semi-Lagrangian scheme [8], the nodal locations in the current configu-
ration follow the motion of the body, i.e., xI = x(XI , t) where XI are nodal
locations in the undeformed configuration, but shape functions are constructed
with respect to distance measures in the current configuration.
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In conjunction with the Updated Lagrangian Scheme, this avoids any map-
ping between the current and undeformed configuration, which is invalid in the
presence of extremely large deformations. A typical example is when free surface
formulation or closure occurs and the mapping is no longer one-to-one.

Thus the employment of these two formulations enables MEGA to simulate
problems such as natural and man-made disasters.

The nth order semi-Lagrangian reproducing kernel (RK) approximation of
the displacement field d(x, t) is constructed as [8]:

dh(x, t) =
∑
I∈Z

ΨI(x)dI(t) (12)

where {ΨI(x)}I∈Z is the set of RK shape functions, and {dI(t)}I∈Z are the
associated coefficients. It is important to note, that in general the RK shape
function lacks the Kronecker delta property (ΨI(xJ) ̸= δIJ), and thus the coef-
ficients are not the actual values of displacements at the nodes, and are termed
generalized displacements. This also results in difficulty in imposing boundary
conditions. In MEGA, the boundary singular kernel technique [6] is adopted
where nodal coefficients on the boundary take on the value of their associated
field variables, and essential boundary conditions are enforced directly at the
nodes.

The shape functions are constructed by the product of a kernel function
Φa(x− xI) and a correction function C(x;x− xI):

ΨI(x) = Φa(x− xI)C(x;x− xI) (13)

where
C(x;x− xI) = H(x− xI)

T
b(x). (14)

In the above, H(x − xI) is a column vector consisting of complete nth order
monomials, and b(x) is a column vector of coefficients. For example, for d = 2
and n = 2:

H(x− xI) = [1, x, y, x2, xy, y2]T . (15)

The kernel function Φa(x − xI) defines the locality of the approximation, and
also the smoothness. For instance, a C2 cubic B-spline kernel gives C2 continuity
of the approximation. In MEGA, a variety of kernel function are available
with different levels of smoothness. The coefficients b(x) enforce the monomial
reproducing conditions: ∑

I∈Z
ΨI(x)H(xI) = H(x). (16)

or equivalently, ∑
I∈Z

ΨI(x)H(x− xI) = H(0). (17)

With the coefficients obtained from (16), the RK shape functions are constructed
as:

ΨI(x) = H(0)M(x)−1H(x− xI)Φa(x− xI). (18)
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where
M(x) =

∑
I∈Z

H(x− xI)H(x− xI)
TΦa(x− xI). (19)

In (19), the moment matrix needs to be invertable in order to be able to con-
struct the RK shape functions (18). This requires a minimum number of nodes
(with non coplanar locations) covering a given point x, which can be difficult to
achieve in simulation of extremely large deformations, particularly in fragment-
impact problems. To remedy this situation, MEGA employs the quasi-linear
RK approximation [13], which guarantees that the moment matrix is never sin-
gular. In this approach, when insufficient neighbor coverage is encountered, the
order of the approximation reduces.

5.3 Discretization

For discretization of (11), the displacements are approximated by (12), and
velocities v and accelerations a are obtained straightforwardly from (12):

vh(x, t) =
∑
I∈Z

ΨI(x)ḋI(t) (20a)

ah(x, t) =
∑
I∈Z

ΨI(x)d̈I(t) (20b)

After substituting (12) and (20) into (11), and employing the arbitrary nature
of the virtual coefficients, we have the following semi-discrete matrix form:

Ma = fext − f int (21)

where a is the column vector of generalized accelerations {d̈I}I∈Z , M , fext,
and f int are the mass matrix, external force, and internal force, respectively:

MIJ = I3

∫
Ωx

ΨI(x)ΨJ(x)ρdx (22a)

fext
I =

∫
Ωx

ΨI(x)b(x)ρdx+

∫
∂Ωh

x

ΨI(x)t(x)dx (22b)

f int
I =

∫
Ωx

BT
I (x)Σ(x)dx (22c)

where I3 is a 3 × 3 identity matrix, b(x) and t(x) are the vector forms of the
body force and prescribed tractions, respectively, BT (x) is the strain-gradient
matrix, and Σ(x) is the matrix form of the Cauchy stress.

6 Numerical Quadrature in MEGA

RKPM shape functions are rational, and can form complicated overlapping
support structures that are difficult to integrate accurately. Because of this, the
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rate of convergence of the solution can be heavily influenced by the choice of
domain integration.

High-order Gaussian quadrature can yield convergent results, yet is compu-
tationally prohibitive. On the other hand, nodal integration is highly efficient
and keeps the desirable characteristics of meshfree methods on the discrete level
with quadrature, but can yield non-convergent results and solution instabil-
ity [7]. The former is due to under-integration, while the latter is caused by
severely underestimating the energy for saw-tooth modes by using nodes as
sampling points. Advanced nodal integration methods that address these issues
are implemented in MEGA.

6.1 Stabilized Nodal Integration

A stabilized Conforming Nodal Integration (SCNI) [7] has been introduced in
to remedy rank instability in direct nodal integration, and also provide optimal
convergence for linearly complete shape functions. In this method, gradients
are smoothed over conforming nodal representative domains which partition
the domain, so that they are not evaluated directly at the nodes thus avoiding
rank instability. Nodal integration is then performed with the smoothed nodal
gradients in hand.

The smoothing is also performed in such a way that the first order variational
consistency condition (for Galerkin linear exactness) is satisfied. This is the
requirement to satisfy the following divergence equality with the set of test
functions and the chosen numerical integration [7]:∫ ˆ

Ωx

∇xΨI(x) dΩ =

∫ ˆ

∂Ωx

ΨI(x)n(x) dΓ ∀I (23)

where “ˆ” denotes numerical integration, and ΨI(x) is a shape function with
first order completeness used in the Galerkin equation.

SCNI considers gradient smoothing with divergence in each nodal represen-
tative domain by

∇̃xΨI(xL) =
1

|ΩL|

∫
ΩL

∇xΨI(x) dΩ =
1

|ΩL|

∫
∂ΩL

ΨI(x)n(x) dΓ. (24)

Here |ΩL| =
∫
ΩL

dΩ and ΩL is the representative domain of node L. The
conforming nodal domains can be generated by, for example, Voronoi diagrams.
When the gradient approximation (24) is employed in the Galerkin equation in
conjuction with first-order complete approximations, the integration constraint
(23) is satisfied, and exactness in linear problems (passing the linear patch
test) is attained, along with optimal convergence rates associated with linear
completeness.

The formation of conforming strain smoothing domains in SCNI can be cum-
bersome in problems subjected to topological change in geometry, and stabilized
non-conforming nodal integration (SNNI) [8] has been introduced as a simplifica-
tion of SCNI. Gradient smoothing schemes by non-conforming cells constructed
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by considering box domains surrounding the node can be constructed, and cor-
rected [4]. In MEGA, the smoothing cells are constructed to be conforming in
the initial configuration.

To satisfy linear completeness, it is sufficient to take single point integration
on each boundary face in the smoothed methods (24) so that the smoothed
gradients meet the gradient partition of nullity and the first order gradient
reproducing condition, if the approximation is first order complete [4]. Thus
in MEGA, since linear basis is most often employed, single-point integration is
chosen which can maintain linear completeness in the gradient approximation.

The energy of sawtooth modes may still be under-sampled in smoothed
nodal integration methods when the surface area to volume ratio of the domain
is relatively small, or when the discretization is sufficiently fine. To this end, a
Naturally Stabilized Nodal Integration (NSNI) [9] is implemented into MEGA
under the strain-smoothing framework, which provides additional coercivitey in
nodal integration and precludes these sawtooth modes.

7 Constitutive modeling

The MEGA code has small deformation elasticity, and finite-strain plasticity
models. The elastic model is only valid for small deformations and has not yet
been generalized to large strains and rotations, e.g., viz the Neo-Hookean model.
Plasticity models in MEGA include J2 (Von-Mises) plasticity with isotropic
hardening and isotropic damage (e.g., for metals), and Drucker-Prager plasticity
with tension cut-off and isotropic damage (e.g., for geomaterials).

7.1 Objective Stress update

MEGA employs the Jaumann rate of the Cauchy stress σ̊ to maintain objectivity
in constitutive modeling (c.f. [2] for a summary):

σ̊ = CJ : D

σ̊ = σ̇ − Ω · σ − σ · ΩT
(25)

where Ω is the spin tensor, CJ is the material response tensor in relation to the
Jaumann rate, and D is the rate of deformation tensor. For the time step from
tn to tn+1, Hughes and Winget [11] showed that the above can be integrated
in time in an incrementally objective way (preserving further objectivity in a
discrete sense) by first defining an incremental deformation gradient G with
respect to to the configuration xn+1/2 = 1/2

(
xn + xn+1

)
:

Gij =
∂∆di

∂x
n+1/2
j

(26)

where ∆d = dn+1 − dn is the increment of displacement. The gradient (26) is
computed using the smoothed shape functions in Section 6.

8



The symmetric part of the gradientG is then employed for the strain measure
in calculating the elastic trial stress in plasticity. With the trial stress σn+1

trial in
hand, the true Cauchy stress σn+1 at time n + 1 is obtained via iteration on
the plasticity equations, and the internal force fn+1

int is then formed with nodal
integration:

fn+1
int =

∑
I∈Z

B̃T (xI)Σ
n+1(xI)VI (27)

where B̃T and Σn+1 are Voigt notation vectors containing the smoothed spatial
gradients and stresses σn+1, respectively, and VI is the nodal volume in the
current configuration. The contribution to the internal force by NSNI follows
analogously and further details can be found in [9].

8 Time integration

Time integration on the semi-discrete form (21) is accomplished using the Newmark-
β algorithm with the explicit central difference scheme (β = 0 and γ = 1/2 -
c.f. [10] for a summary of common time integration methods). First, to make
the algorithm fully explicit, the mass in (21) is lumped into a lumped-mass
matrix M l using the row-sum technique:

M l
IJ = 0, I ̸= J

M l
JJ =

∑
I∈Z

MIJ no sum on J otherwise (28)

To consider damping in the explicit dynamic context, Rayleigh damping is
adopted with purely a mass-proportional damping matrix C:

C = αM l (29)

where α is an empirically determined coefficient of damping, or can be related to
the undamped frequency of vibration and the damping ratio for linear problems.

The predictor-corrector algorithm in a-form is employed; given the quantities
at the previous timestep n, for time n+ 1, the predictors are first computed:

d̃n+1 = dn +∆tvn +
∆t2

2
an

ṽn+1 = vn +
∆t

2
an

(30)

Based on the predictors, the shape functions, stresses, and internal forces are
updated as described in Sections 5.2 and 7. With the mass lumping and mass-
proportional damping in hand, the explicit central difference formulas yield the
generalized accelerations at each node:

an+1
I =

1

MII +
1
2CII∆t2

{fn+1
ext I − fn+1

int I −CII ṽn+1} (31)
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where MII and CII are the the scalar mass and damping coefficient associated
with node I from mass lumping (28) and damping equation (29), respectively.
The correctors are then calculated as

dn+1 = d̃n+1

vn+1 = ṽn+1 +
∆t

2
an+1

(32)

which begins the process again with n ← n + 1 in (31)-(32) for the next time
step via the predictors (30).
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