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Disclaimer 

Copyright © 2019 Center for Extreme Events Research (CEER) / University of 

California San Diego (UCSD). All Rights Reserved. CEER/UCSD reserves the right to 

modify the material contained within this manual without prior notice. The information 

and examples included herein are for illustrative purposes only and are not intended to be 

exhaustive or all-inclusive. CEER/UCSD assumes no liability or responsibility 

whatsoever for any direct or indirect damages or inaccuracies of any type or nature that 

could be deemed to have resulted from the use of this manual. Any reproduction, in 

whole or in part, of this manual is prohibited without the prior written approval of 

CEER/UCSD.  

 

Copyright © 2019, Dr. J.S. Chen, San Diego, US. All rights reserved.  

LICENSE TERMS The free distribution and use of this software in both source and 

binary form is allowed (with or without changes) provided that:  

1. distributions of this source code include the above copyright notice, this list of 

conditions and the following disclaimer;  

2. distributions in binary form include the above copyright notice, this list of 

conditions and the following disclaimer in the documentation and/or other 

associated materials;  

3. the copyright holder's name is not used to endorse products built using this 

software without specific written permission.  

4. the following paper should be cited if any research/publication are based on this 

open-source software: T.-H. Huang, H. Wei, J.-S. Chen and M. Hillman, 

"RKPM2D: Open-Source Implementation of Nodally Integrated Reproducing 

Kernel Particle Method for Solving Partial Differential Equations.," Advances in 

Engineering Software, Submitted, 2019. 

DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in 

respect of any properties, including, but not limited to, correctness and fitness for purpose.  

Issue Date: May, 2019   
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1 Introduction 

In recent years, the Reproducing Kernel Particle Method (RKPM) [1, 2, 3] has been 

recognized as an effective numerical method for solving partial differential equations 

(PDEs). Compared to conventional mesh-based numerical methods such as the Finite 

Element Method (FEM), the reproducing kernel (RK) approximations in RKPM are 

constructed based on a set of scattered points without any mesh connectivity, thus the 

strong tie between the quality of the discretization and the quality of approximation in 

conventional mesh-based methods is relaxed. This “meshfree” feature makes RKPM 

well-suited for solving large deformation and multiphysics problems where FEM suffers 

from mesh-distortion or element entanglement [1, 4, 5]. In addition, RKPM provides 

controllable orders of continuity and completeness, independent from one another, which 

enables effective solutions of PDEs involving high-order smoothness or discontinuities, 

and accordingly, implementation of h- and p-adaptive refinement [6, 7, 8, 9, 10] becomes 

straightforward. Furthermore, the wavelet-like multi-resolution properties can be 

reproduced in RK approximation, making it suitable for multi-resolution and multi-scale 

modeling [6, 7, 8]. Recently, accelerated and convergent RKPM formulations have been 

developed with the employment of variationally consistent and stabilized nodal 

integration techniques, for effective numerical solution of PDEs [11, 12]. With 

abovementioned advantages, RKPM has been successfully applied to a number of 

challenging engineering problems, including thin shells [13, 14], manufacturing 

processes [15, 16, 17], image-based biomechanics [18], geomechanics [19, 20], 

fracture/damage mechanics [21, 22, 23], shock dynamics [24, 25] and 

penetration/fragmentation phenomena [26, 27, 28], to name a few. Interested readers can 

refer to [2, 29] for a comprehensive review of RKPM and its applications. 

A public domain RKPM-based source code is in high demand. Therefore, we present an 

RKPM-based open-source computational software (named RKPM2D) that can 

effectively solve linear PDEs in a 2-D domain with an arbitrary geometry. 
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1.1 Overview, formulation, and code capabilities 

The open-source software, RKPM2D version 1.0, is a two-dimensional RKPM-based 

code developed for the static analysis of linear partial differential problems. The code is 

based on RKPM with the following features:  

 

 User-friendly MATLAB program for straightforward meshfree analysis and 

easy implementation and modification for new functionalities. 

 Subroutine for discretization of two-dimensional domains of arbitrary 

geometry and nodal representative domain creation through Voronoi diagram 

partitioning. 

 A complete meshfree Galerkin equation solver with two types of domain 

integration: stabilized nodal integration, and conventional background Gauss 

integration. 

 Built-in visualization tools for post-processing of the numerical results. 

 

The RKPM2D code is implemented under a MATLAB environment [30] with pre-

processing, solver, and post-processing functions fully integrated, for supporting 

reproducible research and serving as an efficient test platform for further development of 

meshfree methods. Both the MATLAB built-in mesh generator and standard neutral files 

exported by other mesh generators can be used to obtain the point-based domain 

discretization for meshfree analysis. A meshfree Galerkin equation solver for 2-

dimensional elastostatics, and visualization tools for post-processing are provided. 

Nitsche’s method [31, 32] is adopted for imposition of essential boundary conditions. 

Spatial domain integration includes background Gauss integration developed in [33, 34], 

direct nodal integration, and variationally consistent stabilized conforming nodal 

integration (SCNI) [11, 35]. For nodal integration, two different types of stabilized 

techniques are implemented in RKPM2D, Modified Stabilized Conforming Nodal 

Integration (MSCNI) [36] and Naturally Stabilized Nodal Integration (NSNI) [12], in 

addition to the conventional Gauss quadrature scheme. 
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For demonstration purposes, linear elasticity is chosen as the model problem, but slight 

modification of the subroutines can allow one to solve other types of PDEs as well.  For 

instance, extensions of the RKPM open-source software to solve Poisson equations are 

provided in the appendix. 

 

2 Basic Theory 

 

 
Figure 1. Illustration of 2D RK discretization, support coverage and nodal shape function, 

with circular kernel support employed. 

In RKPM, the numerical approximation is constructed based upon a set of scattered 

nodes (also called points) [37]. A domain Ω  is discretized by a set of nodes 

{𝒙1, 𝒙2,…𝒙𝑁𝑃} as shown in Figure 1, where 𝒙𝐼 is the position vector of node 𝐼, and 𝑁𝑃 is 

the total number of nodes. The RK approximation of a function 𝑢 is expressed as 

𝑢(𝒙) ≈ 𝑢ℎ(𝒙) = ∑ 𝛹𝐼(𝒙)𝑢𝐼
𝐼∈𝐺𝒙

 (1) 

where 𝒙 is the spatial coordinates, 𝑢𝐼 is the associated nodal coefficient to be determined, 

and 𝛹𝐼(𝒙) is the reproducing kernel (RK) shape function of node 𝐼 expressed as: 

𝛹𝐼(𝒙) = 𝑯
𝑇(𝟎)𝑴−1(𝒙)𝑯(𝒙 − 𝒙𝐼)𝛷𝑎(𝒙 − 𝒙𝐼) (2) 
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where the basis vector 𝑯(𝒙 − 𝒙𝐼) is defined as  

𝑯𝑇(𝒙 − 𝒙𝑰) = [1, 𝑥1 − 𝑥1𝐼 , 𝑥2 − 𝑥2𝐼 , 𝑥3 − 𝑥3𝐼 , (𝑥1 − 𝑥1𝐼)
2, … , (𝑥3 − 𝑥3𝐼)

𝑛 ] (3) 

and 𝑴(𝒙) is the moment matrix: 

𝑴(𝒙) = ∑ 𝑯(𝒙 − 𝒙𝐼)𝑯
𝑇(𝒙 − 𝒙𝐼)𝛷𝑎(𝒙 − 𝒙𝐼)

𝐼∈𝐺𝒙

 (4) 

The set 𝐺𝒙 = {𝐼|𝛷𝑎(𝒙 − 𝒙𝐼) ≠ 0 }  shown in equation (1) and (4) contains the nodal 

indices of a point 𝒙′𝑠 neighbors, and  𝛷𝑎(𝒙 − 𝒙𝐼) is the kernel function centered at 𝒙𝐼 

with compact support size 𝑎𝐼 defined as 

𝑎𝐼 = �̃�ℎ𝐼 (5) 

In the above equation, �̃�  is the normalized support size, and ℎ𝐼  is the nodal spacing 

associated with nodal point 𝒙𝐼 defined as: 

ℎ𝐼 = 𝑚𝑎𝑥(‖𝒙𝐽 − 𝒙𝐼‖),   ∀𝒙𝐽 ∈ 𝐵𝐼 (6) 

in which the set 𝐵𝐼 is chosen to contain the four nodes that are closest to point 𝒙𝐼 for 2D 

problems. As an example of a kernel function, a 𝐶2 cubic B-spline kernel function can 

be written as: 

𝛷𝑎(𝒙 − 𝒙𝐼) = {
2 3⁄ − 4𝑧𝐼

2 + 4𝑧𝐼
3

4 3⁄ − 4𝑧𝐼 + 4𝑧𝐼
2 − 4 3⁄ 𝑧𝐼

3

0

              
for
for
for

               

0 ≤ 𝑧𝐼 ≤ 1 2⁄ ,

1 2⁄ ≤ 𝑧𝐼 ≤ 1,
𝑧𝐼 > 1,

  (7) 

in which 𝑧𝐼 is defined as 𝑧𝐼 =
‖𝒙−𝒙𝐼‖

𝑎𝐼
.  

By construction, the RK shape functions satisfy the following 𝑛 th
 order reproducing 

conditions:  

∑𝛹𝐼(𝒙)𝑥1𝐼
𝑖 𝑥2𝐼

𝑗
𝑥3𝐼
𝑘

𝐼∈𝐺𝒙

= 𝑥1
𝑖𝑥2
𝑗
𝑥3
𝑘 , 0 ≤ 𝑖 + 𝑗 + 𝑘 ≤ 𝑛 (8) 
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where 𝑛  is the specified order of completeness, which determines the order of 

consistency in the solution of PDEs.  

2.1 Galerkin Formulation 

Consider the following linear elasticity problem:  

𝜎𝑖𝑗,𝑗  + 𝑏𝑖 = 0 

𝜎𝑖𝑗𝑛𝑗 = 𝑡𝑖 

𝑢𝑖 = 𝑔𝑖 

on Ω 

on ∂Ω𝑡 

on ∂Ω𝑔 

(9) 

Where 𝑢𝑖  is the displacement, 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙  is the Cauchy stress, 𝐶𝑖𝑗𝑘𝑙  is the elasticity 

tensor, 휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) is the strain, 𝑛𝑗  is the surface normal on ∂Ω, 𝑏𝑖  is the body 

force, and 𝑡𝑖  and 𝑔𝑖  denote the prescribed traction and displacement on ∂Ω𝑡  and ∂Ω𝑔 , 

respectively. Using Nitsche’s method [38] for the enforcement of essential boundary 

conditions, the weak form of Eq. (9) is written as follows 

∫ 𝛿휀𝑖𝑗𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙𝑑Ω

Ω

= ∫ 𝛿𝑢𝑖𝑏𝑖𝑑Ω

Ω

+ ∫ 𝛿𝑢𝑖𝑡𝑖𝑑Γ

∂Ω𝑡

+ ∫ 𝛿𝑢𝑖𝜆𝑖𝑑Γ

∂Ω𝑔

+ ∫ 𝛿𝜆𝑖(𝑢𝑖 − 𝑔𝑖)𝑑Γ

∂Ω𝑔

+ 𝛽 ∫ 𝛿𝑢𝑖(𝑢𝑖 − 𝑔𝑖)𝑑Γ

∂Ω𝑔

  

(10) 

where 𝜆𝑖 is the Lagrange multiplier, and in Nitsche’s method it is taken as the surface 

traction for elasticity problems, i.e., 𝜆𝑖 = 𝜎𝑖𝑗𝑛𝑗 , and 𝛽 = 𝛽𝑛𝑜𝑟𝐸/ℎ̅ , with 𝛽𝑛𝑜𝑟  the 

normalized penalty parameter, 𝐸  the Young’s modulus, and ℎ̅  the average of nodal 

spacing. Considering the following RK approximation for 𝒖 and 𝛿𝒖: 

𝒖ℎ = ∑𝛹𝐼(𝒙)𝒖𝐼
𝐼∈𝐺𝒙

,   𝛿𝒖ℎ = ∑ 𝛹𝐼(𝒙)𝛿𝒖𝐼
𝐼∈𝐺𝒙

,  (11) 

Eq. (10) yields the following matrix equations: 
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∑𝑲𝐼𝐽𝒖𝐽 − 𝑭𝐼  = 𝟎

𝐽

, ∀𝐼 (12) 

where 

𝑲𝐼𝐽 = 𝑲𝐼𝐽
𝑐 +𝑲𝐼𝐽

𝛽
− (𝑲𝐼𝐽

𝑔
+𝑲𝐼𝐽

𝑔 𝑇
) (13) 

𝑭𝐼 = 𝑭𝐼
𝑏 + 𝑭𝐼

𝑡 + 𝑭𝐼𝐽
𝛽
− 𝑭𝐼

𝑔
 (14) 

in which each matrices and vectors for 2-dimensional elasticity are expressed as 

𝑲𝐼𝐽
𝑐 = ∫ 𝑩𝐼

𝑇(𝒙)𝑪𝑩𝐽(𝒙)𝑑Ω

Ω

 (15) 

𝑲𝐼𝐽
𝛽
= 𝛽 ∫ 𝜳𝐼

𝑇(𝒙)𝑺𝜳𝐽(𝒙)𝑑Γ

∂Ω𝑔

 (16) 

𝑲𝐼𝐽
𝑔
= ∫ 𝑩𝐼

𝑇(𝒙)𝑪𝜼𝑺𝜳𝐽(𝒙)𝑑Γ

∂Ω𝑔

 (17) 

𝑭𝐼
𝑏 = ∫ 𝜳𝐼

𝑇(𝒙)𝒃(𝒙)𝑑Ω

Ω

 (18) 

𝑭𝐼
𝑡 = ∫ 𝜳𝐼

𝑇(𝒙)𝒕(𝒙)𝑑Γ

∂Ω𝑡

 (19) 

𝑭𝐼𝐽
𝛽
= 𝛽 ∫ 𝜳𝐼

𝑇(𝒙)𝑺𝒈𝑑Γ

∂Ω𝑔

 (20) 

𝑭𝐼
𝑔
= ∫ 𝑩𝐼

𝑇(𝒙)𝑪𝜼𝑺𝒈𝑑Γ

∂Ω𝑔

 (21) 

𝑩𝐼(𝒙) = [

𝛹𝐼,1(𝒙) 0

0
𝛹𝐼,2(𝒙)

𝛹𝐼,2(𝒙)

𝛹𝐼,1(𝒙)

] , 𝜳𝐼(𝒙) = [
𝛹𝐼(𝒙) 0

0 𝛹𝐼(𝒙)
],   (22) 
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𝜼 = [
𝑛1 0
0
𝑛2

𝑛2
𝑛1
] ,   𝑺 = [

𝑠1 0
0 𝑠2

] ,   𝒃 = [
𝑏1
𝑏2
] ,   𝒕 = [

𝑡1
𝑡2
] ,   𝒈 = [

𝑔1
𝑔2
]. (23) 

where 𝑛𝑖  is the component of the surface unit normal on the essential boundary, and 

𝑠𝑖 = 0 or 1 serves as a switch for imposing the boundary displacement 𝑔𝑖. For instance, 

if 𝑠1 = 1 and 𝑠2 = 0, then 𝑔1 is imposed.  

2.2 Domain Integration 

Domain integration plays an important role in accuracy, stability and convergence of 

meshfree methods. Quadrature domains for meshfree methods can be chosen either as 

background cells that are independent from the point discretization or associated with the 

nodal representative domains. The former scheme is commonly adopted in conjunction 

with the Gauss quadrature scheme and the latter is used for the nodal integration schemes; 

both of which have been implemented in RKPM2D as discussed in this section. 

2.2.1 Gauss Integration 

When Gauss quadrature is adopted, quadrature points are generated based upon the 

background cells [39, 40] as shown in Figure 2, where only the quadrature points inside 

the physical domain are considered for domain integration. Gauss points for contour 

integrals are generated along the natural and essential boundaries as shown in Figure 2. 

 

 
 

Figure 2. Meshfree nodes and generation of background Gauss quadrature points in an 

arbitrary two-dimensional domain Ω. 
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2.2.2 Stabilized Conforming Nodal Integration 

  

 
 

Figure 3. Voronoi cell diagram in a two-dimensional domain Ω. 

 

Direct nodal integration (DNI) is notorious for spurious zero-energy modes and non-

convergent numerical solutions. To ensure linear variational consistency, also known as 

passing the linear patch test, Chen et al. [35] showed that the quadrature rules in the 

Galerkin formulation need to meeting the following first order integration constraint on 

the gradient of shape function:  

∫𝛹𝐼,𝑖𝑑Ω

^

Ω

= ∫𝛹𝐼𝑛𝑖𝑑Γ

^

𝜕Ω

 (24) 

In (24), ^ over the integral symbol denotes numerical integration. If nodal integration is 

introduced as the quadrature rule for the domain integration on the left hand side of (24), 

Chen et al. [35] introduced the following nodally smoothed gradient �̃�𝐼,𝑖  at the nodal 

point 𝒙𝑁 for nodal integration: 

�̃�𝐼,𝑖(𝒙𝑁) =
1

𝐴𝑁
∫ 𝛹𝐼,𝑖(𝒙)𝑑Ω

Ω𝑁

=
1

𝐴𝑁
∫ 𝛹𝐼(𝒙)𝑛𝑖(𝒙)𝑑Γ

𝜕Ω𝑁

 (25) 

 

where 𝐴𝑁 denotes the area of the nodal representative domain Ω𝑁 associated with node 𝑁, 

and 𝑛𝑖  denotes the 𝑖th component of the outward unit normal vector to the smoothing 
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domain boundary as shown in Figure 3. It is shown in [35] that integrating (24) with 

nodal integration and with the nodally smoothed gradient of shape function in (25), the 

first order integration constraint in (24) is exactly satisfied as long as the same boundary 

integral quadrature rule is used for the right hand side of both (24) and (25). As discussed 

in [11], for linear consistency of the smoothed gradient of a linearly consistent shape 

function, a simple one-point Gauss integration rule used for the contour integral of Eq. 

(25) is sufficient:   

�̃�𝐼,𝑖(𝒙𝑁) ≈
1

𝐴𝑁
∑ 𝛹𝐼(�̃�𝑁

𝐾)𝑛𝑖(�̃�𝑁
𝐾)𝐿𝐾

𝐾∈𝑆𝑁

 (26) 

 

where 𝑆𝑁 = {𝐾|𝒙𝑁
𝐾 ∈ 𝜕Ω𝑁}  contains all center points of each boundary segment 

associated with node 𝒙𝑁, and the integration weight 𝐿𝐾 is the length of the 𝐾th
 segment of 

the smoothing cell boundary.  

2.2.3 Stabilized Nodal Integration Schemes 

Spurious oscillatory modes can be triggered in nodal integration methods. Therefore, 

additional stabilization techniques are needed to eliminate these low-energy modes, 

which will be described in this following. 

2.2.3.1 Modified Stabilized Nodal Integration 

 
Figure 4. Illustration of nodal integration cells of the modified stabilized nodal 

integration. 
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The first stabilization technique employed here for eliminating spurious low-energy 

modes is called modified stabilized nodal integration [36, 41], where a least-squares type 

stabilization term is introduced into the stiffness matrix: 

𝑲𝐼𝐽
𝑐 = ∑

(

 
 
�̃�𝐼
𝑇(𝒙𝑁)𝑪�̃�𝐽(𝒙𝑁)𝐴𝑁⏟            

SCNI

𝑁𝑃

𝑁=1

+ 𝑐𝑠𝑡𝑎𝑏∑(�̃�𝐼
𝑇(𝒙𝑁) − �̃�𝐼

𝑇(�̂�𝑁
𝑆 ))𝑪 (�̃�𝐽(𝒙𝑁) − �̃�𝐽(�̂�𝑁

𝑆 ))𝐴𝑁
𝑆

𝑁𝑆

𝑆=1⏟                                    
stabilization )

 
 

 

(27) 

where 𝑁𝑆 denotes the number of sub-cells associated with each nodal integration cell (as 

shown in Figure 4), �̂�𝑁
𝑆  denotes the centroid of the 𝑆th

 sub-cell, �̃�𝐽(�̂�𝑁
𝑆 ) is the smoothed 

gradient evaluated by Eq. (26) for the 𝑆th
 sub-cell and 𝐴𝑁

𝑆  denotes the area of the 𝑆th
 sub-

cell of 𝑁th
 nodal smoothing-cell. Here, 0 ≤ 𝑐𝑠𝑡𝑎𝑏 ≤ 1 is a stabilization parameter, which 

is chosen to be 𝑐𝑠𝑡𝑎𝑏 = 1 based on the study of Puso et al. [41] for elasticity.  

 

2.2.3.2 Naturally Stabilized Nodal Integration 

The other stabilized integration technique employed in RKPM2D is the naturally 

stabilized nodal integration (NSNI) proposed in [12], where an implicit gradient 

expansion of the strain field is introduced as: 

𝜺(𝒖ℎ(𝒙)) ≈ 𝜺𝑁 (𝒖
ℎ(𝒙𝑁) +∑(𝑥𝑖 − 𝑥𝑖𝐼)�̂�,𝑖

ℎ(𝒙𝑁)

𝑑

𝑖=1

) (28) 

where �̂�,𝑖
ℎ(𝒙𝑁) = ∑ 𝛹𝑖𝐼

𝛻(𝒙𝑁)𝒖𝑁
𝑁𝑃
𝑁=1  is the implicit gradient of the displacement with 𝛹𝑖𝐼

𝛻 

the implicit RK gradient function [22]: 

𝛹𝑖𝐼
𝛻 = 𝑯𝑖

𝑇𝑴−1(𝒙)𝑯(𝒙 − 𝒙𝐼)𝛷𝑎(𝒙 − 𝒙𝐼) (29) 
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where 𝑯 = [1 𝑥1 − 𝑥1𝐼 𝑥2 − 𝑥2𝐼]
𝑇 and the vector 𝑯𝑖  takes on the following values 

for linear basis: 

𝑯1 = [0 −1 0]𝑇 

𝑯2 = [0 0 −1]𝑇 

(30) 

Introducing the gradient expansion terms (28) into the variational equations, the stiffness 

matrix is obtained as 

𝑲𝐼𝐽
𝑐 = ∑ (�̃�𝐼

𝑇(𝒙𝑁)𝑪�̃�𝐽(𝒙𝑁)𝐴𝑁⏟            
SCNI 

𝑁𝑃

𝑁=1

+ 𝑩1𝐼
𝛻𝑇(𝒙𝑁)𝑪𝑩1𝐽

𝛻 (𝒙𝑁)𝑀1𝑁 + 𝑩2𝐼
𝛻𝑇(𝒙𝑁)𝑪𝑩2𝐽

𝛻 (𝒙𝑁)𝑀2𝑁⏟                              
stabilization

) 

(31) 

where 𝑩1𝐼
𝛻 (𝒙𝑁) and 𝑩2𝐼

𝛻 (𝒙𝑁) are defined as follows: 

𝑩1𝐼
𝛻 (𝒙𝑁) = [

𝛹𝐼1,1
𝛻 (𝒙𝑁) 0

0
𝛹𝐼1,2
𝛻 (𝒙𝑁)

𝛹𝐼1,2
𝛻 (𝒙𝑁)

𝛹𝐼1,1
𝛻 (𝒙𝑁)

] , 𝑩2𝐼
𝛻 (𝒙𝑁) = [

𝛹𝐼2,1
𝛻 (𝒙𝑁) 0

0
𝛹𝐼2,2
𝛻 (𝒙𝑁)

𝛹𝐼2,2
𝛻 (𝒙𝑁)

𝛹𝐼2,1
𝛻 (𝒙𝑁)

] (32) 

and 𝑀1𝑁 , 𝑀2𝑁 are the second moments of inertia in each nodal integration domain:  

𝑀1𝑁 = ∫(𝑥1 − 𝑥1𝑁)
2𝑑Ω

Ω𝑁

,   𝑀2𝑁 = ∫(𝑥2 − 𝑥2𝑁)
2𝑑Ω

Ω𝑁

 (33) 

From Eqns. (31) - (33), no subdivision of integration cells is required in the stabilization. 
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3 Get started 

In this section, the set-up of RKPM2D for solving linear elasticity will be explained, 

including the set-up of material properties, domain geometry, boundary conditions, 

domain discretization method, RK shape function parameters, quadrature rule and control 

of post-processing. All the source codes and sample scripts (.m files) are provided. 

In order to compile all the MATLAB scripts and functions, the code requires the 

following MATLAB environment: 

 MATLAB version (R2018a) or higher 

 MATLAB Partial Differential Equation Toolbox
TM

  

 MATLAB Mapping Toolbox
TM

 

If any error message shows up in the command window during the simulation due to 

undefined built-in functions, please search for the built-in function name in MATLAB to 

install the latest version of that function. 

3.1 Overall program structure 

The general flowchart of RKPM2D is given in Figure 5. Unlike in the FEM procedures 

where the element type is tied with mesh/nodes generation, the order of basis and 

smoothness are independent to the domain discretization in RKPM, while the general 

program functionalities (such as matrix assembly and solver) of a meshfree Galerkin 

method are similar to that of FEM. 
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Figure 5. Flowchart of the RKPM2D procedures. 

 

 

Shown in Figure 5 are the numerical procedures for the model input file generation, 

domain discretization, quadrature rule definition, shape function construction, matrix 

assembly, solver, and post-processing. For general purpose, only the input files 

getInput.m needs to be modified for modeling a problem. The input files for solving 

different linear elasticity problems are provided in the folders of “01_LinearPatchTest” to 

“06_TensileTest” as shown in Figure 6. The rest of the subroutines are located in the 

folder “MAIN_PROGRAM”. The description for each subroutine will be given in section 

3.3. To run the simulation, one needs to execute the main script MAIN.m after setting up 

the model parameters in getInput.m 
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Figure 6. Folders containing input files and subroutines for meshfree analysis. 

 

3.2 Preparation of Input files 

To illustrate the procedure to run RKPM2D, let us consider a tensile test for a tapered 

specimen in a 2D domain Ω ⊂ ℝ2, as shown in Figure 7: 

 
Figure 7. Illustration of the tensile test problem. 

 

The dimensions, material properties and the boundary conditions are given as follows: 

 Dimensions 

– 𝐿0 = 5.3334 × 10
−2 m, 𝑎0 = 0.32 × 10

−2 m, 𝑎1 = 0.64 × 10
−2 m. 

 Material model: Linear Elasticity 

– 𝐸: Young’s modulus, 206.9 GPa 

– 𝑣 : Poisson ratio, 0.29 

– Plane Strain Condition 

 Boundary conditions 
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– Prescribed traction 𝒕 = [20.69,0]𝑇 GPa at 𝑥1 = 𝐿0 

– Prescribed displacement 𝒈 = [0,0]𝑇 m at 𝑥1 = 0 

To set up the input files, the following steps are needed 

1. Create a new folder for input files (e.g. “06_TensileTest”). 

2. Copy any existing getInput.m from other folder and paste it in the new input 

folder 

3. Open getInput.m, and edit the input parameters 

The preparation of getInput.m is discussed in detail in the following subsection. 

 

3.2.1 Setting up the material properties 
 

In getInput.m, we first need to edit section (1) Material shown in Listing 1 to set up 

material parameters: 

 

1. Set Model.E = 206.9E9 for Young’s modulus as 𝐸 = 206.9 GPa 

2. Set Model.nu = 0.29 for Poisson ratio as 𝑣 = 0.29 

3. Set Model.Condition = 'PlaneStrain' to specify the plane strain 

condition. For plane stress condition, please use 'PlaneStress'. 

%% Read Input Files from Trelis Neutral file 
%% (1) Material 
% Linear Elasticity 
% Lame Parameters for Young's modulus and poisson ratio 
Model.E = 206.9E9; Model.nu = 0.29; 
Model.Condition = 'PlaneStrain'; % PlaneStress, or PlaneStrain 
Model.ElasticTensor = 

getElasticTensor(Model.E,Model.nu,Model.Condition); 
Model.DOFu = 2;                  % two dimensional problem 

Listing 1. Defining material properties in the input file. 

 

3.2.2 Setting up the domain geometry 
 

Next, go to section (2) Geometry shown in Listing 2 to define the coordinates of all 

vertices of the domain. For example, for the tensile test problem shown in Figure 7, set  
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x1_vertices = 1E-3*[0, 26.667, 53.334, 53.334, 26.667, 0]' 

and x2_vertices = 1E-3*[-6.2, -3.2, -6.2, 6.2, 3.2, 6.2]', 

where the 2D domain vertices are given in a counter-clock-wise (CCW) order. 

%% (2) Geometry 
% user input 
% geometry of the bar 
x1_vertices = 1E-3*[0 26.667 53.334 53.334 26.667 0]'; 
x2_vertices = 1E-3*[-6.2 -3.2 -6.2 6.2 3.2 6.2]'; 
% ensure the boundary segments to be counter clockwise 
[x1_vertices, x2_vertices] = poly2ccw(x1_vertices, x2_vertices); 
Model.xVertices = [x1_vertices, x2_vertices]; 
Model.DomainArea = polyarea(x1_vertices,x2_vertices); 

Listing 2. Defining domain geometry in the input file. 

 

3.2.3 Setting up the boundary conditions 
 

In section (3) Boundary condition shown in Listing 3, we can define the boundary 

conditions, including the prescribed traction 𝒕, body force 𝒃, displacement 𝒈, through the 

following steps: 

1. Define the criteria of finding the essential boundary coordinates and natural boundary 

coordinates (the number 1E-7 is a user-defined tolerance for locating the boundary 

edges/points) 

a. Model.CriteriaEBC = @(x1,x2) find(x1 < 0 + 1E-7) 

indicates essential boundary edge with coordinates 𝑥1 < 10
−7  

b. Model.CriteriaNBC = @(x1,x2) find(x1 > 5.3334E-2 - 

1E-7) indicates natural boundary edges with coordinates 𝑥1 > 0.053334 −

10−7 

c. For boundary edges that do not meet the above criteria, they are set to be a 

zero traction boundary conditions, by default 

2. Set Model.Beta_Nor = 1E2 for normalized Nitsches parameter 𝛽𝑛𝑜𝑟 . It is 

recommended to set this parameter to be between 10~100. 

3. For evaluation of traction 𝒕, body force 𝒃, displacement 𝒈 and the essential boundary 

switch 𝑺, RKPM2D provides two ways: 
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a. If an analytical expression of displacement 𝒖𝑒𝑥𝑎𝑐𝑡 exists, then we can provide 

the expression of displacement 𝒖𝑒𝑥𝑎𝑐𝑡 in a symbolic format in terms of 𝑥1 and 

𝑥2  for imposing the boundary condition. In this case, the corresponding 

boundary conditions will be calculated as 𝒕 = 𝜼𝑇𝑪𝜺𝑒𝑥𝑎𝑐𝑡 , 𝒈 = 𝒖𝑒𝑥𝑎𝑐𝑡 , 

𝒃 = 𝝈𝑖𝑗,𝑗
𝑒𝑥𝑎𝑐𝑡, 𝑺 = 𝑰2×2 in the code automatically. 

b. Usually, the exact expression of displacement is unknown, and in this case, 

one needs to the specify the value or expression (in terms of 𝑥1 and 𝑥2) for the 

prescribed traction 𝒕 , displacement 𝒈 , body force 𝒃 , and the essential 

boundary switch 𝑺 in the input files shown in Listing 4. 

 

%% (3) Boundary condition 
% If an edge is not specified, natural BC with zero traction is 

imposed. 
% displacement driven boundary conditions 
Model.CriteriaEBC = @(x1,x2) find(x1 <= 0); % user input 
Model.CriteriaNBC = @(x1,x2) find(x1>=5.3334E-2); % user input 

 
% beta parameter for Nitches Method 
Model.Beta_Nor = 1E2; 

  
% give the expression of function handle of switch S, essential  
% boundary conditions g, traction t, and body force b 
if isfield(Model,'ExactSolution') % if given analytical displacement 
    [Model.ExactSolution.S,Model.ExactSolution.g,... 
     Model.ExactSolution.t,Model.ExactSolution.b] = ... 
    getBoundaryConditions(Model); 
    Model.ExactSolution.Exist = 1; % exist exact solution 
else % if S, g, t, b are defined in functions 
    Model.ExactSolution.S = @getSebc; % function getSebc  
    Model.ExactSolution.g = @getGebc; % function getGebc 
    Model.ExactSolution.t = @getTraction; % function getTraction 
    Model.ExactSolution.b = @getBodyForce; % function getBodyForce 
    Model.ExactSolution.Exist = 0; % no existence of exact solution 
end 

Listing 3. Defining boundary conditions and area in the input file. 
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%% Create Boundary Conditions and body forces 
function [ t ] = getTraction(x1,x2,n1,n2) 
% Input:  
%   x1 x2: Cartesian coordinate 
%   n1,n2: Normal vector at X on boundary 
% Output:  
%       t: a 2 by 1 vector for the traction 
t = [20.69E9; 0];  
end 

 
function [ SEBC ] = getSebc(x1,x2) 
% Input:  
%  x1 x2: Cartesian coordinate  

% Output:  
%   SEBC: a 2 by 2 matrix for the switch matrix on EBC 
SEBC = diag([1 1]);  
End 

 
function [ gEBC ] = getGebc(x1,x2) 
%  Input:  
%  x1 x2: Cartesian coordinate 
% Output:  
%   gEBC: a 2 by 1 vector of prescribed displacement on EBC 
gEBC =[0; 0]; 
end 

 
function [ b ] = getBodyForce(x1,x2) 
%  Input:  
%  x1 x2: Cartesian coordinate 
% Output:  
%      b: a 2 by 1 vector for the body force 
b = [0; 0;]; 
end 

Listing 4. Defining traction 𝒕, body force 𝒃, imposed displacement 𝒈, and switch matrix 

𝑺 in the input file. 

3.2.4 Setting up the discretization  
 

RKPM2D provides four ways to discretize the domain defined in Section 3.2.2. We can 

edit section (4) Discretization Method shown in Listing 5 to specify the discretization 

method: 

1. Define the Model.Discretization.Method, and associated parameters.   

2. The illustration of each discretization and required parameters are listed below:  

a. 'A': MATLAB built-in mesh generator  
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i. Hmax: max discretized nodal distance, if Hmax is set to be zero, 

MATLAB will generate the discretization by a default nodal distance 

value. 

b. 'B': Uniform/Non-uniform discretization for a rectangular domain 

i. nx1: number of nodes in 𝑥1 direction.  

ii. nx2: number of nodes in 𝑥2 direction. 

iii. Randomness: random perturbation for nodal coordinates. 

c. 'C': Shestakov distorted discretization for the plate with a hole problem in 

[42] 

i. nc:  denotes a refinement parameter (nc > 1).  

ii. Distortion:  distortion level between 0 ~ 0.5. 

d. 'D': Read in a neutral file exported by other mesh generators (e.g. PATRAN, 

TRELIS, FEMAP, etc.) 

i. InputFileName:  The neutral file name (name in *.dat) 

3. In general, it is recommended to use method 'A'.   
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%% (4) Discretization Method 
% For general purposes, one can always use A 
Model.Discretization.Method = 'A';  

  
% (...A) MATLAB built-in FE mesh generator: Default 
% if A is chosen,  
% define Hmax: max nodal distance for MATLAB built-in mesh generator 
% if Hmax is <=0, then mesh is generated automatically  
% by MATLAB built-in routine 
% https://www.mathworks.com/help/pde/ug/pde.pdemodel.generatemesh.html 
Model.Discretization.Hmax = 0.005;  

  

  
% (...B) Uniform/Non-uniform discretization for rectangular domain: 
% if A is chosen,  
% define nx and ny: nx*ny is total number of nodes 
% Randomness can be introduced to nodal distribution.  
Model.Discretization.nx1 = 32;  
Model.Discretization.nx2 = 8; 
Model.Discretization.Randomness = 0.5;  % 0~1 

  

  
% (...C) Shestakov distorted discretization for the plate problem: 
% if C is chosen,  
% define nc and randomness:  
% nc>1 denotes a refinement parameter 
% 0<Distortion<=0.5 is the distortion level parameter. 
% This meshing option is specialized for "plate with a hole" geometry 
% modifications are needed for other geometries 
% as explained in the reference paper  
Model.Discretization.nc = 3;             % >=1 
Model.Discretization.Distortion = 0.1;   % 0~0.5 

  
% (...D) FEA discretization by Trelis: 
% if D is chosen,  
% define the input file name from CAD/FEA model *.dat 
% "please save the file in Patran format":  
Model.Discretization.InputFileName = 

'FE_Neutral_TensileTest_QuadMesh_Refined.dat';  

 

Listing 5. Defining the domain discretization method in the input file. 

 

3.2.5 Setting up RK shape function parameters 
 

The RKPM2D provides several choices of basis, kernel geometry, kernel type, and 

normalized support size for the RK shape functions. These parameters are specified in 

section (5) RK shape function parameters shown in Listing 6: 
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1. Set up the kernel function type by defining RK.KernelFunction. The variable 

names for different kernel functions are listed in Table 1 

Table 1. Abbreviation of the kernel function  

Parameter Continuity Kernel Function 

HVSIDE 𝐶−1 Heaviside 

SPLINE1 𝐶0 Linear B-Spline (tent) 

SPLINE2 𝐶1 Quadratic B-Spline 

SPLINE3 𝐶2 Cubic B-Spline 

SPLINE4 𝐶3 Quartic B-Spline 

SPLINE5 𝐶4 Quintic B-Spline 

 

2. Set up the kernel geometry RK.KernelGeometry, where two options are available: 

Table 2. Abbreviation of the kernel geometry 

Parameter CIR REC 

Shape of Kernel Circular  Rectangular 

 

3. Set up the normalized support size RK.NormalizedSupportSize, where the 

support size is usually defined as 𝑛 + 1, and 𝑛  is the order of basis. 

4. Set up the basis of the RK shape function RK.Order, where three basis are provided 

in the code as shown in Table 3. Linear order basis is recommended to use in 

conjunction with the SCNI-based nodal integration for general meshfree analysis.  

Table 3. Abbreviation of basis 

Parameter Constant Linear Quadratic 

Order of Basis Constant  Linear  Quadratic 

 

%% (5) RK shape function parameters 
RK.KernelFunction = 'SPLIN3';       % SPLIN3 
RK.KernelGeometry = 'CIR';          % CIR, REC 
RK.NormalizedSupportSize = 2.01;    % suggested order n + 1; 
RK.Order = 'Linear';                % Constant, Linear, Quadratic 

Listing 6. Defining RK shape function parameters in the input file 
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3.2.6 Setting up quadrature rules 
 

RKPM2D provides different quadrature rules, which can be specified in section (6) 

Quadrature rule shown in Listing 7, as follows: 

1. Set up the quadrature rule Integration, where three different integration rules are 

provided as shown in Table 4. 

Table 4. The abbreviation of quadrature rule 

Name Represented integration method 

DNI Direct nodal integration 

SCNI Stabilized conforming nodal integration 

GAUSS Background Gauss integration 

 

2. Set up the stabilization method for nodal integration, Stabilization, where two 

options for stabilization are available as shown in Table 5: 

Table 5. The abbreviation of the stabilization for nodal integration  

Name Represented stabilization type 

N Naturally stabilized method [12] 

M Least squares stabilization method [36] 

WO Without any stabilization 

 

3. Set up quadrature rule for boundary integration, Option_BCintegration, where 

one can choose 'NODAL' for nodal integration or 'GAUSS' for Gauss integration 

for the boundary integration.  

4. For background Gauss integration, it is required to set up two additional parameters: 

a. nGaussPoints: the number of Gauss points 𝑁𝑔 ∈ ℕ  in each 

background integration cell. E.g. 𝑁𝑔 = 6  denotes 6 × 6  Gauss points in 

each cell 

b. nGaussCells: the parameter determines the number of background 

integration cells along 𝑥1  or 𝑥2  direction of the problem domain, 

depending on the problem domain dimension.  
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%% (6) Quadrature rule 
Quadrature.Integration = 'SCNI';       % GAUSS, SCNI, DNI 
Quadrature.Stabilization = 'N';        % M, N, WO 
Quadrature.Option_BCintegration = 'NODAL'; % NODAL OR GAUSS 
Quadrature.nGaussPoints = 6;  
Quadrature.nGaussCells = 5;  

% nGaussCells on the short side of the domain 

Listing 7. Defining quadrature rules in the input file 

3.2.7 Controlling the output  
 

RKPM2D generates post-processing figures, based on the set-up in section (7) Control 

the output figures, where one can define each parameter shown in Table 6 to be 1 (on) or 

0 (off). 

Table 6. The abbreviation of outputs 

Name Represented output figures 

Discretization Discretization, nodal representative domains 

or background Gauss cells  

Displacement Displacement 𝑢1 and 𝑢2 

Strain Strain [휀11, 휀22, 2휀12] 
Stress Stress [𝜎11, 𝜎22, 2𝜎12] 
DeformedConfiguration Deformed configuration 

Error Absolute error in displacement and energy 

(active only when exact solution exists) 
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%% (7) Control the output figures 
Model.Plot.Discretization = 1; 

% plot discretization, nodal representative domains, or Gauss cells 
Model.Plot.Displacement = 1;    % plot displacement 
Model.Plot.Strain = 1;          % plot strain 
Model.Plot.Stress = 1;          % plot stress 
Model.Plot.DeformedConfiguration = 1;   

% plot deformed configuration 
Model.Plot.Error = 0;           % plot absolute error 

Listing 8. Control the output fields in figures 

3.3 Description of subroutines in RKPM2D 

In addition to getInput.m, all subroutines for different functionalities of RKPM are 

included in the folder “MAIN_PROGRAM”, as shown in Figure 8: 

 

Figure 8. Subroutines for pre-processing, solver and post-processing. 

 

The function of each subroutine is briefly described as follows, and users can check the 

reference [42] for more details of the code implementation: 
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getBackgroundIntegrationCell.m: This subroutine constructs the rectangular 

background Gauss integration cells if Gauss integration is adopted. 

getBoundaryConditions.m: This subroutine outputs the functional of the 

prescribed boundary conditions 𝒕 = 𝜼𝑇𝑪𝜺𝑒𝑥𝑎𝑐𝑡, 𝒈 = 𝒖𝑒𝑥𝑎𝑐𝑡, 𝑺 = 𝑰2×2 and the body force 

𝒃 = 𝝈𝑖𝑗,𝑗
𝑒𝑥𝑎𝑐𝑡 according to given expressions of displacement 𝒖𝑒𝑥𝑎𝑐𝑡 in terms of 𝑥1 and 𝑥2 

in a symbolic format.  

getGaussQuad.m: This subroutine outputs Gaussian quadrature points and weights for 

any 1D domain. For example, [Xgp,Wgp] = getGaussQuad(N,a,b) gives with 

point location Xgp and weight Wgp of N Gauss points in a line segment with two ends a 

and b, where a and b denote the 1D coordinates of two end points. 

getRKShapeFunction.m: This subroutine computes the 2D RK shape function and 

its direct gradients at a given evaluation point.  

getSmoothedDerivetive.m: This subroutine computes SCNI smoothed gradients 

for a given nodal representative domain.  

getVoronoidDiagram.m: This subroutine calls sub_VoronoiLimit.m to 

generate Voronoi cells and then re-arranges the Voronoi cell IDs and coordinates. 

MatrixAssembly.m: This subroutine assembles the stiffness matrix and force vector. 

PostProcess.m: This subroutine visualizes the calculated displacement, strain and 

stress fields. 

Pre_GenerateDiscratization.m: This subroutine generates point-based domain 

discretization based on domain vertices’ coordinates and the chosen discretization 

method. 

Pre_GenerateQuadraturePoint.m: This subroutine computes the quadrature 

points for domain integration and boundary integration for nodal integration or Gauss 

integration. 
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Pre_GenerateShapeFunction.m: This subroutine generates the RK shape 

functions and gradients at quadrature points. 

Pre_Initialization.m: This subroutine initializes the matrices and vectors for the 

simulation. It also displays the input information in the MATAB command window. 

sub_Shestakov.m: This subroutine generates highly distorted meshes using 

Shestakov’s algorithm [43] for a rectangular domain. This function is called in 

Pre_GenerateDiscratization.m when discretization method ‘D’ is used. 

sub_TestCompleteness.m: This subroutine tests the reproducing condition of RK 

shape functions and gradients.  

sub_textprogressbar.m: This subroutine generates the simulation progress bar in 

MATLAB command window.  

sub_VoronoiLimit.m: This subroutine calls a library that computes vertices’ 

coordinates of Voronoi cells and indices of vertices within each Voronoi cell. 
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3.4 Executing RKPM2D 

After the input file getInput.m is prepared, one can execute RKPM2D by running 

MAIN.m through the following steps: 

 

1. Open MAIN.m. shown in Figure 9 

2. Press “Run” to execute the simulation in MALTAB. 

3. Once the simulation is finished, the post-processing figures will be generated, and one 

can perform further analysis of the results. 

A successful execution of the meshfree analysis will show basic information for the 

simulation, as shown in Figure 10. 

 

Figure 9. The main script (MAIN.m) for running meshfree analysis. 
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Figure 10. MATLAB Command Windows showing the progress of simulation. 

 

 

3.5 Post-processing and analysis 

When the simulation is finished, key parameters and data structures associated with the 

results are saved in the workspace of MATLAB, as shown in Figure 11 where the data 

are mainly included in the structures RK, Quadrature, and Model. 

 

Figure 11. Data structure and parameters saved in the MATLAB Workspace area. 

 

A brief description of structures and important sub-classes are given as follows: 
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RK contains the following fields: 

 KernelFunction: kernel functions with different levels of continuity. 

 KernelGeometry: nodal support shape. 

 NormalizedSupportSize: normalized support size.  

 Order: order of basis.           

 xI: coordinates of RK nodes 

 nP: number of RK nodes 

 dI: solution coefficient 𝒖𝐼  
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Quadrature contains the following fields: 

 Integration: quadrature rules. 

 Stabilization: type of stabilization technique for nodal integrations. 

 Option_BCintegration: quadrature rule for boundary integrals. 

 Domain: class that defines the variables required for domain integration. 

– nQuad: total number of quadrature points. 

– xQuad: coordinates of quadrature points. 

– Weight: quadrature weights for domain integral. 

 BC: class that defines the variables required for boundary integration. 

– nQuad_onBoundary: number of quadrature points on the boundary. 

– xQuad_onBoundary: coordinates of quadrature points on the boundary. 

– Weight_onBoundary: quadrature weights for contour integral. 

– Normal_onBoundary: outward unit normal vectors at quadrature points 

 VoronoiDiagram: structure defines the quadrature rules required for nodal 

integration. 

– VerticeCoordinates: all vertices’ coordinates of Voronoi cells. 

– VoronoiCell: indexes of vertices within each Voronoi cell. 

 SHP: matrix of size nQuad×nP that stores the shape functions 𝛹𝐼(𝒙𝑁) of all nodes. 

 nQuad: number of quadrature points for domain integration, the value = 𝑁𝐺 for 

Gauss integration and = 𝑁𝑃 for nodal integration 

 SHPDX1: matrix of size nQuad×nP that stores the shape function derivatives 

𝛹𝐼,1(𝒙𝑁) or �̃�𝐼,1(𝒙𝑁) of all nodes. 

 SHPDX2: matrix of size nQuad×nP that stores the shape function derivatives 

𝛹𝐼,2(𝒙𝑁) or �̃�𝐼,2(𝒙𝑁) of all nodes. 
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Model contains the following fields: 

 E, nu: Young’s modulus 𝐸, Poisson ratio 𝜈. 

 DOFu: number of nodal degrees of freedom, DOFu=2 for 2D elasticity.  

 Beta_Nor: normalized penalty parameter. 

 xVertices: physical coordinates of problem domain. 

 CriteriaEBC: function handle to define the essential boundaries. 

 CriteriaNBC: function handle to define the natural boundaries. 

 Discretization: domain discretization method. 

 ExactSolution: function handle to define the essential boundaries. 

– t: functional handle returns the traction 𝒕. 

– b: functional handle returns the body force vector 𝒃. 

– g: functional handle returns the imposed displacement 𝒈. 

– S: functional handle returns the switch matrix 𝑺. 

In addition to the RK, Quadrature, and Model, other variables shown in Figure 11 are 

saved as  

 K: global total stiffness matrix after assembly, Eq. (13) 

 F: global total force vector after assembly, Eq. (14) 

 uhI: matrix of size 𝑁𝑃 × 2 that defines the physical displacements at RK nodes 

𝒖ℎ(𝒙𝐼). 

 Strain: double vector of size 𝑁𝑃 × 3 that defines the strain at RK nodes 𝜺(𝒙𝐼) =

[휀11(𝒙𝐼), 휀22(𝒙𝐼), 2휀12(𝒙𝐼)]. 

 Stress: double vector of size 𝑁𝑃 × 3 that defines the stress at RK nodes 𝝈(𝒙𝐼) =

[𝜎11(𝒙𝐼), 𝜎22(𝒙𝐼), 2𝜎12(𝒙𝐼)]. 

One can make use of the abovementioned information to perform further analysis of the 

simulation results, such as error analysis, convergence studies, etc. 
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4 Numerical Examples 

In this section, numerical examples and corresponding input files are provided, which can 

be used as the starting point for the users to solve more complicated problems. The 

reproducing kernel approximation with linear basis and cubic B-spline kernel is adopted, 

for which circular support with a normalized support size �̃� = 2.0  is used. The 

normalized penalty parameter for Nitsche’s method is chosen as 𝛽𝑛𝑜𝑟 = 100 . The 

abbreviation for domain integration methods are given in Table 7: 

Table 7. The abbreviations for domain integration with different stabilization 

 Naturally stabilized 
N 

Least-squared-based 

stabilization 
M  

No stabilization 
WO 

DNI NDNI MDNI DNI 

SCNI NSCNI MSCNI SCNI 

GAUSS Not applicable Not applicable GI 
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4.1 Plotting RK shape function in 1D/2D 

In the first example, two scripts (Filename: PlotRKShapeFunction1D and 

PlotRKShapeFunction2D shown in Figure 12) are provided to plot 1D and 2D RK shape 

functions, where the subroutines getRKShapeFunction and the corresponding 1D 

version getRKShapeFunction1D are adopted, respectively. 

 

 

Figure 12. MATLAB script for plotting RK shape functions in 1D and 2D. 

 

4.1.1 Plotting the RK shape function in 1D 

 

One can follow the following steps to plot the RK shape functions in 1D:  

1. Open the folder PlotRKShapeFunction. 

2. Open the MATLAB script PlotRKShapeFunction1D.m 

3. Specify the RK parameters, nodal distribution, and output figure type 

The definition of RK parameters are identical to the discussions given in section 3.2.5, 

and the variable output_figure specifies the types of output figures, and 

randomness_number imposes the magnitude of nodal coordinate perturbation if one 

wants to test non-uniform nodal discretizations. 
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%% RKPM Setting Area 
RK.KernelFunction = 'SPLIN3';       % SPLIN1-5, HVSIDE 
RK.KernelGeometry = 'CIR';          % CIR, REC 
RK.Order = 'Linear';                % Constant, Linear, Quadratic 
RK.nP = 11;                         % # of nodes 

  
% Support Size 
NormalzieSupportSize1 = 1.5; 

  
% Choose the output 
output_figure = 'Shape_Function';  

% Shape_Function, RK_condition, RK_condition_error, Support_Comparison 

  
%% Discretize RK nodes 
xmin=0; xmax= 1; 
nP = RK.nP; 
L = xmax-xmin; 

  
% randomness 
randomness_number = 0.5; 

Listing 9. RK parameters and nodal distribution set up in PlotRKShapeFunction1D.m 

Running the script PlotRKShapeFunction1D.m, one can observe how the kernel 

function controls the smoothness of the approximation, as shown in Figure 13, where the 

𝐶0 tent kernel function is compared with the 𝐶2 cubic B-spline kernel function. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. Kernel function and corresponding RK shape function with linear basis and 

support size  �̃�  = 1.5: (a) Tent kernel and (b) corresponding RK shape function, (c) 

Cubic B-Spline kernel and (d) corresponding RK shape function. 

 

4.1.2 Plotting the RK shape function in 2D 

 

One can follow the following steps to plot the RK shape functions in 2D:  

1. Open the folder PlotRKShapeFunction. 

2. Open the MATLAB script PlotRKShapeFunction2D.m 

3. Specify the RK parameters, nodal distribution, and output figure type 

The definition of RK parameters are identical to the discussion given in section 3.2.5, and 

the variable output_figure determines the types of output figures. In this example, 

the nodal distributions are generated by the Shestakov meshing method discussed in 

section 3.2.4 where nc determines the refinement level and randomness determines 
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the level of distortion. With the RK nodes uniformly distributed, the RK shape function 

with circular cubic B-spline kernels is plotted in Figure 14.  

 

%% Define RK Shape Function 
RK.KernelFunction = 'SPLIN3';       % HVSIDE,SPLIN1-5 
RK.KernelGeometry = 'CIR';          % CIR, REC 
RK.NormalizedSupportSize = 1.5;     %  
RK.Order = 'Linear';                % Constant, Linear, Quadratic 

  
%% define discrete RK nodes by Shestakov mesh 
% we use the test distorted mesh generator to test 
nc = 2; % the total number of nodes will be (2^nc+1)*(2^nc+1) 
randomness = 0.1; % 0~0.5, where 0.5 is uniform case 

  
% Choose the output 
output_figure = 'Shape_Function'; % Shape_Function, RK_condition, 

RK_condition_error 

Listing 10. Set-up of RK parameters and nodal distribution in 

PlotRKShapeFunction2D.m 

 

 

Figure 14. The RK shape function in the two-dimensional case with cubic B-spline and 

circular kernel. 
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4.2 Patch test 

In the second example, the linear patch test is provided to verify the accuracy of 

RKPM2D using linear basis in the RK approximation. The elasticity equation in (9) is 

considered with the exact solution defined as a linear polynomial function: 

𝒖𝑒𝑥𝑎𝑐𝑡 = [
0.1 + 0.1𝑥1 + 0.2𝑥2
0.05 + 0.15𝑥1 + 0.1𝑥2

] (34) 

Accordingly, the traction 𝒕 = 𝜼𝑇𝑪𝜺𝑒𝑥𝑎𝑐𝑡  is imposed on ∂Ω𝑡: (𝑥1, 𝑥2) ∈ ∂Ω, 𝑥2 > 0.5 , 

where 𝜼 is the collection of outward unit normal vector of the boundary surface, 𝑪 is the 

matrix of elastic moduli with Young’s modulus 𝐸 = 2.1 × 1011  and Poisson’s ratio 

𝜈 = 0.3,  𝜺𝑒𝑥𝑎𝑐𝑡 is the exact strain 𝜺𝑒𝑥𝑎𝑐𝑡 = [0.1, 0.1, 0.35]𝑇; 𝒈 = 𝒖𝑒𝑥𝑎𝑐𝑡 is enforced on 

∂Ω𝑔: (𝑥1, 𝑥2) ∈ ∂Ω, 𝑥2 ≤ 0.5 , and the body force is 𝒃 = 𝟎.   A square domain is 

considered, and its nodal discretization is shown in Figure 15.  

 

 

Figure 15. A square domain considered in the patch test. 

The input file for solving the linear patch test is provided in the folder 

“01_LinearPatchTest”. For demonstration purposes, we use discretization method 'A' 

(MATLAB Built-In Mesh Generator). NSCNI is used as the quadrature rule, and circular, 

cubic B-Spline kernel (normalized support size 2.01) is used for the RK shape function 

construction. Detailed information for setting up the model can be referred to Listing 11. 

Since the exact solution is known, the boundary conditions 𝒕, 𝒈, 𝑺 and body force 𝒃 will 

be automatically computed according to the given exact solution (Eq. (34)).  
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function [RK,Quadrature,Model] = getInput() 
%% INPUT FILE 
% Sample Input File for Patch Test  
%% (1) Material 
% Linear Elasticity 
% Lame Parameters for Young's modulus and Poisson ratio 
Model.E = 2.1E11; Model.nu = 0.3; 
Model.Condition = 'PlaneStress'; % PlaneStress, or PlaneStrain 
Model.ElasticTensor = 

getElasticTensor(Model.E,Model.nu,Model.Condition); 
Model.DOFu = 2;                  % two dimensional problem 
%% (2) Geometry 
x1_vertices = [0 1 1 0]'; 
x2_vertices = [0 0 1 1]'; 
% ensure the boundary segments to be counter clockwise 
[x1_vertices, x2_vertices] = poly2ccw(x1_vertices, x2_vertices); 
Model.xVertices = [x1_vertices, x2_vertices]; 
Model.DomainArea = polyarea(x1_vertices,x2_vertices); 
%% (3) Boundary condition 
% If an edge is not specified, natural BC with zero traction is 

imposed. 
Model.CriteriaEBC = @(x1,x2) find(x2<=0.5); % user input 
Model.CriteriaNBC = @(x1,x2) find(x2>0.5); % user input 
% beta parameter for Nitches Method 
Model.Beta_Nor = 1E2; 

  
% For verification purpose, provide the exact displacement solution 
syms x1 x2        % use x1 and x2 as x- & y- coordinates 
% exact solution 
Model.ExactSolution.u_exact =[0.1 + 0.1*x1 + 0.2*x2; 
                              0.05 + 0.15*x1 + 0.1*x2;]; 
[Model.ExactSolution.S,... 
 Model.ExactSolution.g,... 
 Model.ExactSolution.t,... 
 Model.ExactSolution.b] = getBoundaryConditions(Model); 
 Model.ExactSolution.Exist = 1; 

 
%% (4) Discretization Method 
% For general purpose, one can always use A 
Model.Discretization.Method = 'A';  
Model.Discretization.Hmax = 0;  
%% (5) RK shape function parameter 
RK.KernelFunction = 'SPLIN3';       % SPLIN3 
RK.KernelGeometry = 'CIR';          % CIR, REC 
RK.NormalizedSupportSize = 2.01;    %  
RK.Order = 'Linear';                % Constant, Linear, Quadratic 
%% (6) Quadrature rule 
Quadrature.Integration = 'SCNI';       % GAUSS, SCNI, DNI 
Quadrature.Stabilization = 'N';        % M, N 
Quadrature.Option_BCintegration = 'NODAL'; % NODAL OR GAUSS 
Quadrature.nGaussPoints = 6;  
Quadrature.nGaussCells = 10; % nGaussCells on the short side of the 

domain 
end 

Listing 11. Input file for solving a linear patch test with a square domain. 
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Once the numerical results were obtained, it can be verified that NSCNI passes patch 

tests by checking the displacement and strain energy errors shown in Figure 16. 

 

 

Figure 16. Absolute displacement and strain energy error. 
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4.3 Cantilever beam problem 

 

Figure 17. Problem setting of a cantilever beam under a shear force. 

The last example shown here is the cantilever beam problem shown in Figure 17, where 

the exact solutions are: 

𝑢1
𝑒𝑥𝑎𝑐𝑡 =

𝑃𝑥2
6𝐸𝐼

[(6𝐿 − 3𝑥2)𝑥1 + (2 + 𝜈) (𝑥2
2 −

𝑊2

4
)] ,    

𝑢2
𝑒𝑥𝑎𝑐𝑡 =

−𝑃

6𝐸𝐼
[3𝜈𝑥2

2(𝐿 − 𝑥1) + (4 + 5𝜈)
𝑊2𝑥1
4

+ (3𝐿 − 𝑥1)𝑥1
2]    

(35) 

in which the Young’s modulus 𝐸 = 1 , Poisson ratio 𝜈 = 0.3 , and the geometry and 

loading is plotted in Figure 17. The exact displacement solution is prescribed on the left 

wall as the essential boundary condition, i.e., 𝒈 = 𝒖𝑒𝑥𝑎𝑐𝑡, and the traction is imposed on 

the right-side surface as the natural boundary condition. 

 

Figure 18. Non-uniform discretization with 49 × 13  nodes for the cantilever beam 

problem, where the discretization consists of a randomized nodal distribution generated 

from a uniform nodal distribution. 
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A non-uniform nodal discretization of the beam is shown in Figure 18. The input file is 

provided in the folder “02_BeamProblem”. For demonstration purpose, we use 

discretization method 'B' (rectangular domain) with randomness number 0.5. Cubic B-

Spline kernel with circular support (normalized support size 2.01) is used for the RK 

shape function construction. Detailed information for setting up the model can be referred 

to Listing 12. Users are recommended to use different quadrature rules to solve this 

problem to examine their performance. As shown in Figure 19, both MSCNI and NSCNI 

perform well comparing with the exact solution, whereas DNI demonstrates spurious 

oscillations in the stress field.  
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function [RK,Quadrature,Model] = getInput() 
% Sample Input File for Beam Problem  
%% (1) Material 
% Lame Parameters for Young's modulus and Poisson ratio 
Model.E = 1.0E0; Model.nu = 0.3;  % user input 
Model.Condition = 'PlaneStress';  % 'PlaneStress' or 'PlaneStrain' 
Model.ElasticTensor = 

getElasticTensor(Model.E,Model.nu,Model.Condition); 
Model.DOFu = 2;                   % two dimensional problem 
%% (2) Geometry 
% rectangular polygon 
x1_vertices = [0 48 48 0]';  % user input 
x2_vertices = [-6 -6 6 6]';  % user input 
% ensure the boundary segments to be counter clockwise 
[x1_vertices, x2_vertices] = poly2ccw(x1_vertices, x2_vertices); 
Model.xVertices = [x1_vertices, x2_vertices]; 
Model.DomainArea = polyarea(x1_vertices,x2_vertices); 
%% (3) Boundary condition 
Model.CriteriaEBC = @(x1,x2) find(x1<=0+1E-7);    % user input 
Model.CriteriaNBC = @(x1,x2) find(x1>=48-1E-7);   % user input 
% beta parameter for Nitches Method 
Model.Beta_Nor = 1E2; 
% For verification purpose, provide the exact displacement solution 
syms x1 x2        % use x1 and x2 as x- & y- coordinates 
H = 12; L = 48; D = H; trac = 0.1;   % user input 
I_inertia = (H^3)/12;    % user input 
E = Model.E; nu = Model.nu; 
% exact solution exist, so use it 
u1 = (trac*x2/(6*E*I_inertia)).*((6*L-3*x1).*x1+(2+nu)*(x2.^2-

(D^2)/4)); 
u2 = -(trac/(6*E*I_inertia)).*(3*nu*x2.^2.*(L-

x1)+(4+5*nu).*((D^2*x1)/4)+(3*L-x1).*x1.^2); 
Model.ExactSolution.u_exact =[u1;u2;]; 
[Model.ExactSolution.S,Model.ExactSolution.g,... 
 Model.ExactSolution.t,Model.ExactSolution.b] = 

getBoundaryConditions(Model); 
Model.ExactSolution.Exist = 1; 
%% (4) Discretization Method 
Model.Discretization.Method = 'B';  
Model.Discretization.nx1 = 32;  
Model.Discretization.nx2 = 8; 
Model.Discretization.Randomness = 0.5;  % 0~1 
%% (5) RK shape function parameter 
RK.KernelFunction = 'SPLIN3';       % SPLIN3 
RK.KernelGeometry = 'CIR';          % CIR, REC 
RK.NormalizedSupportSize = 2.01;    % suggested order n + 1; 
RK.Order = 'Linear';                % Constant, Linear, Quadratic 
%% (6) Quadrature rule 
Quadrature.Integration = 'SCNI';    % GAUSS, SCNI, DNI 
Quadrature.Stabilization = 'N';     % M, N 
Quadrature.Option_BCintegration = 'NODAL'; % NODAL OR GAUSS 
Quadrature.nGaussPoints = 6;  
Quadrature.nGaussCells = 10;  
end 

Listing 12. Sample input file for solving cantilever beam problem. 
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Figure 19. Stress fields of the cantilever beam problem under non-uniform discretization. 
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Appendix 

The elasticity problem is chosen to demonstrate the performance of RKPM2D, whereas 

only slight modifications in certain subroutines are needed to convert the code to solve a 

different PDE. An example of converting the code to solve a Poisson problem is 

illustrated here. The corresponding input files and modified subroutines are also included 

in folder “04_PoissonProblem_src”. 

A Poisson problem is given as follows:  

(𝐷𝑖𝑗𝑢,𝑗),𝑖  + 𝑏 = 0 on Ω 

(36) 𝐷𝑖𝑗𝑢,𝑗𝑛𝑖 = 𝑡 on ∂Ω𝑡 

𝑢 = 𝑔 on ∂Ω𝑔 

where 𝑢  is a scalar field, 𝐷𝑖𝑗  is the diffusivity, 𝑏  is the source term, 𝑡  and 𝑔  are the 

prescribed boundary flux and boundary values of  𝑢 on ∂Ω𝑡 and ∂Ω𝑔, respectively. By 

introducing the RK approximation in Eq. (11), (36) can be recast into the following 

matrix equations as: 

∑𝐾𝐼𝐽𝑢𝐽
𝐽

− 𝐹𝐼  = 0 (37) 

where 

𝐾𝐼𝐽 = 𝐾𝐼𝐽
𝑑 + 𝐾𝐼𝐽

𝛽
− (𝐾𝐼𝐽

𝑔
+ 𝐾𝐼𝐽

𝑔𝑇
) (38) 

𝐹𝐼 = 𝐹𝐼
𝑏 + 𝐹𝐼

𝑡 + 𝐹𝐼𝐽
𝛽
− 𝐹𝐼

𝑔
 (39) 

in which the matrices and vectors in nodal integration are expressed as 

𝐾𝐼𝐽
𝑑 = ∫ 𝑩𝐼

𝑇(𝒙)𝑫𝑩𝐽(𝒙)𝑑Ω

Ω

≈ ∑𝑩𝐼
𝑇(𝒙𝑁)𝑫𝑩𝐽(𝒙𝑁)𝐴𝑁

𝑁𝑃

𝑁=1

 (40) 
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𝐹𝐼
𝑏 = ∫ 𝛹𝐼

𝑇(𝒙)𝑏(𝒙)𝑑Ω

Ω

≈ ∑𝛹𝐼
𝑇(𝒙𝑁)𝑏(𝒙𝑁)𝐴𝑁

𝑁𝑃

𝑁=1

 (41) 

𝐹𝐼
𝑡 = ∫ 𝛹𝐼

𝑇(𝒙)𝑡(𝒙)𝑑Γ

∂Ω𝑡

≈ ∑𝛹𝐼
𝑇(𝒙𝑁)𝑡(𝒙𝑁)𝐿𝑁

𝑁𝑃𝑡

𝑁=1

 (42) 

𝐾𝐼𝐽
𝛽
= 𝛽 ∫ 𝛹𝐼

𝑇(𝒙)𝑆𝛹𝐽(𝒙)𝑑Γ

∂Ω𝑔

≈ 𝛽∑𝛹𝐼
𝑇(𝒙𝑁)𝑆𝛹𝐽(𝒙𝑁)𝐿𝑁

𝑁𝑃𝑔

𝑁=1

 (43) 

𝐾𝐼𝐽
𝑔
= ∫ 𝑩𝐼

𝑇(𝒙)𝑫𝜼𝑆𝛹𝐽(𝒙)𝑑Γ

∂Ω𝑔

≈ ∑𝑩𝐼
𝑇(𝒙𝑁)𝑫𝜼𝑆𝛹𝐽(𝒙𝑁)𝐿𝑁

𝑁𝑃𝑔

𝑁=1

 (44) 

𝐹𝐼𝐽
𝛽
= 𝛽 ∫ 𝛹𝐼

𝑇(𝒙)𝑆𝑔𝑑Γ

∂Ω𝑔

≈ 𝛽∑𝛹𝐼
𝑇(𝒙𝑁)𝑆𝑔𝐿𝑁

𝑁𝑃𝑔

𝑁=1

 (45) 

𝐹𝐼
𝑔
= ∫ 𝑩𝐼

𝑇(𝒙)𝑫𝜼𝑆𝑔𝑑Γ

∂Ω𝑔

≈ ∑𝑩𝐼
𝑇(𝒙𝑁)𝑫𝜼𝑆𝑔𝐿𝑁

𝑁𝑃𝑔

𝑁=1

 (46) 

𝑩𝐼(𝒙𝑁) = [
𝛹𝐼,1(𝒙𝑁)

𝛹𝐼,2(𝒙𝑁)
] ,   𝑫 = [

𝑑 0
0 𝑑

] ,   𝜼 = [
𝑛1
𝑛2
] ,   𝑆 = 1. (47) 

where 𝑫 is the diffusive tensor, 𝑑  is the diffusion coefficient and 𝜼 is a collection of 

components of the surface unit normal on the boundary, and 𝑆 = 1  is set for the 

convenience of keeping a unified coding structure in RKPM2D. For demonstration 

purpose, we set the exact solution of the scalar field is 𝑢 = 0.1 + 0.1𝑥1 + 0.2𝑥2 , as a 

linear patch test for Poisson equations and all boundary conditions terms can be obtained 

from the exact solution 

The input file for this problem is generated in the function getInput. Compared to the 

input files of Listing 11 for linear elasticity, the following changes need to be made: 

 Remove Model.nu and Model.Condition, as Poisson ratio and plane-

stress/strain condition are not required for Poisson problem. 
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 Replace Model.E with Model.d (i.e., change the definition of Young’s modulus 

𝐸 to be the diffusion coefficient 𝑑). 

 Replace Model.ElasticTensor with Model.DiffusiveTensor (i.e., 

change the definition of elastic tensor 𝑪 to be the diffusive tensor 𝑫). 

 Set Model.DiffusiveTensor = diag([Model.d,Model.d])to define 

the diffusive tensor 𝑫 = [
𝑑 0
0 𝑑

]. 

 Set Model.DOFu = 1 to change the nodal degrees of freedom DOFu from 2 to 1. 

 Set u_exact = 0.1+0.1*x1+0.2*x2 to define the exact solution 𝑢𝑒𝑥𝑎𝑐𝑡 . 

In addition, we need to modify the subroutine getBoundaryConditions to 

generate the exact boundary flux 𝑡 = 𝜼𝑇𝑫𝛁𝑢𝑒𝑥𝑎𝑐𝑡 , body sources  𝑏 = 𝛁 ⋅ (𝑫𝛁𝑢𝑒𝑥𝑎𝑐𝑡), 

essential boundary conditions 𝑔 = 𝑢𝑒𝑥𝑎𝑐𝑡 , and switch matrix 𝑆 = 1  based on a given 

expression of the exact solution 𝑢𝑒𝑥𝑎𝑐𝑡 in a symbolic form, as shown in Listing 13. 

function [function_S,function_g,function_traction,function_b] = 

getBoundaryConditions(Model) 
syms x1 x2 n1 n2 
% function handle for essential boundary condition g 
u = Model.ExactSolution.u_exact;  
D = Model.DiffusiveTensor; 
function_g = matlabFunction(u); 
% function handle for diff(u) 
dudx1 = diff(u,x1); 
dudx2 = diff(u,x2); 
flux = D*[dudx1; dudx2;]; 
% function handle for surface flux (traction) 
eta = [n1; n2;]; 
surf_flux = eta'*flux; 
function_traction = matlabFunction(surf_flux,'Vars',[x1 x2 n1 n2]); 
% function handle for source b 
b = [diff(flux(1),x1)+ diff(flux(2),x2)]; 
function_b = matlabFunction(b,'Vars',[x1 x2]); 
% function handle for switch S 
function_S = matlabFunction(sym(1),'Vars',[x1 x2]);  
end 

Listing 13. Command lines of function to generate exact heat flux 𝑡, heat sources 𝑏, 

imposed temperature 𝑔, and switch matrix 𝑆 for Poisson problem. 

Due to the change of dimensionality in 𝑩  and 𝜳  matrix, modifications are made to 

MatrixAssmebly as follows 

 Set d = Model.d to define the diffusivity coefficient. 
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 Set D = Model.DiffusiveTensor to define the diffusivity from input files. 

 Replace E with d (i.e., replace the Young’s modulus E with diffusion coefficient d). 

 Replace C with D (i.e., replace elastic tensor C with diffusive tensor D). 

 Set B = sparse(2,nP*DOFu). 

 Set PSI = sparse(1,nP*DOFu). 

 Modify the allocation of the B and PSI from shape function SHP and derivative 

SHPDX1, SHPDX2 as: 

– PSI = SHP(idx_nQuad,:);  

– B(1,:)= SHPDX1(idx_nQuad,:);  

– B(2,:) = SHPDX2(idx_nQuad,:); 

 Set ETA = [n1; n2;]to define the surface normal 𝜼. 

With the abovementioned modifications, RKPM2D is converted to a code for solving a 

Poisson problem. By comparing the original code for the elasticity problem with the 

modified code for Poisson problem, one can see that very few code modifications are 

required. This capability of easy code extension is a unique feature of RKPM2D.  
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